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Research Question: Modelling the efficiency of an AVL (Adelson-Velskii and Landis) Tree in re-balancing itself in terms of 

time complexity whilst inserting values into it. 
 

Abstract: This research paper experimentally models the efficiency of an AVL (Adelson-Velskii and Landis) Tree in re-balancing itself 

during the insertion of values, focusing on its time complexity. The study demonstrates a logarithmic relationship between the time 

required for insertion and re-balancing operations in the AVL Tree. Through empirical analysis, the paper provides valuable insights 

into the performance characteristics of AVL Trees and their suitability for handling large data sets. The findings highlight the 

effectiveness of AVL Trees in maintaining balance and optimizing insertion operations, contributing to the understanding of efficient 

data structures. 
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1. Introduction 
 

Binary search trees are a fundamental data structure widely 

used in various applications due to their efficient 

organization and retrieval of data. This research paper 

focuses on the structure of binary search trees, specifically 

exploring one important type: the Adelson-Velskii. These 

type of trees are known for their ability to maintain balance, 

ensuring optimal performance for insertion operations. 

Through the course of this paper, the time complexity of 

both trees will be compared whilst inserting values into them 

in order to collect data to compare their re-balancing 

efficiencies.  

 

The research question guiding this investigation is: 

Modelling the efficiency of an AVL (Adelson-Velskii and 

Landis) Tree in re-balancing itself in terms of time 

complexity whilst inserting values into it. By addressing this 

question, we aim to provide valuable insights into the 

performance characteristics of these tree structures, aiding in 

the understanding and selection of appropriate data 

structures for specific applications. 

 

In the following sections, we will delve into the concepts of 

AVL Trees, exploring their respective properties, 

mechanisms for maintaining balance, and analysing their 

time complexity for insertion operations.  

 

2. Background Information 
 

2.1 Binary Search Trees and Time Complexities 

 

Binary Search Trees  

A binary search tree (BST) is a data structure organized in a 

manner such that it allows for data to be found in the 

quickest way possible. It is crucial to understand this 

concept as it is the basis of the algorithm in question.  

 

The word binary means “made up of two parts” (Definition 

of BINARY, 2023). In the case of binary trees, it means that 

each item in a tree can point to a maximum of two other 

items: these items are known as children. All of these items 

are collectively known as nodes and each of these nodes 

contain a value inside of them. A BST is a special type of 

this tree that inserts nodes in a manner that makes it possible 

to efficiently search, insert, and delete each node of the tree 

(Introduction to Binary Search Tree - Data Structure and 

Algorithm Tutorials - GeeksforGeeks, 2020). 

 

 
Figure 1: Binary Tree 

 

As shown above, Figure 1 depicts a binary tree with several 

different nodes. Before moving forward, it is important to 

understand a few rules relating to the insertion of nodes into 

a BST. They have been listed below.  

1) If the binary tree is empty, i.e. it contains no nodes 

inside of it, the first node to be created inside of it will 

be known as the root node. This can be easily identified 

by finding the node at the top of the binary tree. For 

instance, in Figure 1, the node containing the value 8 is 

the root node.  

2) Values to left of the root node must are part of the left 

subtree and will always contain values lesser than the 

root node. Contrarily, values to the right of the root 

node are part of the right subtree and will always 

contain values greater than the parent node itself. 

3) A node can have 0, 1, or 2 children. The left child of 

any node will always contain a value lesser than that of 

the parent node itself. On the other hand, the right child 

of any node will contain a value greater than that of the 

parent node itself. 
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4) For the purposes of this investigation, duplicate values 

cannot be entered into a binary tree as it will change the 

handling algorithms and may require different binary 

search algorithms compared to those mentioned in the 

research question (Binary Search Tree: Insertion | 

PrepInsta, n.d.). 

 

Once a BST has been successfully created, it is possible for 

us to begin the “Search” process inside of it using the data 

structure to our advantage. In data structures, searching is a 

key process which allows for certain values to be found 

inside the data structure.  

 

Time Complexities  

In the field of Computer Science, time complexity is a term 

referring to the time it takes for a particular algorithm to 

successfully execute (Understanding Time Complexity With 

Simple Examples - GeeksforGeeks, 2017). Although there 

are many ways in which the time complexity of an algorithm 

can be represented, this essay will focus on the worst-case 

time complexity represented through the Big-O Notation in 

order to highlight the longest possible time it can take for an 

algorithm to execute (Big O Notation in Data Structure: An 

Introduction, Simplilearn, 2022). 

 

Relating the above paragraph to BST, we find that a BST 

can provide us with a significant time advantage when 

dealing with large amounts of data through their search 

method as compared to linear searches which are executed 

in structures such as unordered arrays. This is because the 

Big-O Notation for an array is O(N) (Linear Search Vs 

Binary Search: Difference Between Linear Search & Binary 

Search | upGrad Blog, n.d.) where N refers to the number of 

elements present inside the array whereas it is O(log2N) 

(Bartakke, 2019) for a BST where N is the number of nodes 

in the data structure. When graphed, an obvious difference 

between the worst-case scenarios of each data structure is 

visible.  

 

 
Figure 2: Worst-Case Scenarios for Linear Search in an 

Array (Green) and using a BST (Red) 

 

As is clearly visible in Figure 2 above, as the size of the data 

structure increases, it is more beneficial to use a BST rather 

than a data structure such as an array to find an element as it 

requires a fewer number of searches implying that it would 

clearly take lesser time. However, this diagram assumes that 

the binary tree has been organized properly and is balanced. 

However, if we consider an unbalanced binary tree as shown 

in Figure 3 below, its worst-case time complexity would not 

be O(log2N), rather it would be O(N).  

 

 
Figure 3: An unbalanced binary tree 

 

It is crucial to understand the difference given in the above 

paragraph as it contains the answer to the question – Why 

are Binary Search Trees required? To avoid problems like 

the aforementioned, balancing algorithms are required to 

maintain the structure of the BST and ensure that the tree is 

created in the most optimal manner possible to reduce search 

times. This is also the function of the algorithm in question 

in this research paper, the AVL tree.  

 

2.2 AVL (Adelson-Velskii and Landis) Trees: 

 

AVL Trees are a type of BST that apply a special property 

called the height-balance property within themselves in 

order to balance the binary tree (AVL Trees Height-Balance 

Property, 2015). The height-balance property states that for 

the tree to be considered as a balanced tree, the height 

difference between the children of a particular node cannot 

be more than 1. Otherwise, the tree is considered to be 

unbalanced.  

 

To explain the above property further, the term height inside 

an AVL tree refers to the length of the longest path from the 

tree’s root to one of its leaves (Gautam, 2022). Please note 

that a leaf in a binary tree is a node that has no children. 

 

 
Figure 4: A balanced AVL tree. 

 

In the diagram above, the height of the left subtree is 2 

whereas the length of the right subtree is 3. As the difference 

between these two values is 1, the binary tree has been 

successfully balanced as it is meeting the condition which 

has been specified in paragraph 1. Although this may not 

seem like the best way to balance the tree, it is balanced well 

enough for a search algorithm to take place.  

 

In a scenario where the AVL tree is not balanced, i.e., the 

height difference property is not met, a process called 
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rotation takes place inside the binary tree. Let us consider 

figure 4 below: 

 

 
Figure 5: An unbalanced AVL Tree 

 

First, let us understand why this AVL tree is unbalanced. As 

the height-difference between the right and left subtrees is 2, 

the height-balance property is not met leading to an 

imbalance. Hence, this AVL tree must be rearranged. 

Although it is beyond the scope of this research paper to 

explain how this principle works in the programs attached in 

Appendices: 1,2,3, it can be explained in theory.  

 

From figure 5, we can clearly see that the right subtree has 

too many nodes inside it leading to an imbalance of the tree. 

Hence, to correct this imbalance, a rearrangement process 

known as Rotation takes place inside the AVL Tree (AVL 

Tree Data Structure - GeeksforGeeks, 2023). In simple 

terms, rotation is a process where nodes from the subtree 

with the greater height are picked and shifted to the subtree 

with a lesser height. Eventually, this shall balance the tree 

and it will allow us to run Search algorithms with utmost 

efficiency.  

 

To do this, we must follow 3 steps: 

1) Find out which side of the tree is unbalanced and locate 

the node closest to the root, i.e., the insertion point of 

the tree. Let’s call this A.  

2) Of A’s two subtrees, locate the subtree with the greater 

height. Let us call the root of this subtree B. 

3) Finally, locate B’s two subtrees and select the one with 

the greater height. Label it C.  

 

This can be seen in figure 6 below.  

 

 
Figure 6 

 

Now, if you observe carefully, all 3 nodes which we have 

marked are in a linear sequence inside the tree. As we have 

seen in figure 2 earlier, a linear sequence will increase the 

search time required inside the binary tree. Hence to break 

this sequence apart, we rearrange the nodes into the pattern 

shown in Figure 7.  

 

 
Figure 7: Rearranging the nodes 

 

The final step is finding what a, b, c corresponds to. Ideally, 

a is the smallest value, b is the middle value and c is the 

largest. Hence considering our example above, a will 

correspond to Node B (contains 50), b will correspond to 

Node C (contains 62), c will correspond to Node A (contains 

72). Now, as all of these nodes have their subtrees, once they 

have been rotated, they will be reconnected to their subtrees 

to form an ordered tree with reduced height. The same is 

shown in Figure 8 below.  

 

 
Figure 8: Ordered right sub-tree 

 

3. Hypothesis and Methodology 
 

Based on the theory in Section 2, the principle behind the 

working of the AVL tree algorithm has been explored in 

detail. Now, to model the relationship between the dataset 

size and the time it will take for the algorithm to run, we 

must remember that the AVL Tree has a theoretical worst-

case efficiency of 𝑂 (log2𝑁). Although this doesn’t take into 

account the insertion of values into the tree and rebalancing, 

which is being done in this experiment, as modern 

computers are extremely fast this shouldn’t impact results 

vastly.  

 

Hence, it can be predicted that the logarithmic relationship 

seen in Figure 2 of this essay will be seen in the results of 

this experiment too.  

 

To carry out this experiment, the independent variable will 

be the size of the dataset and the dependent variable will be 

the time take to insert and re-balance the tree. Datasets will 

contain consecutive integers from 1 to N, where N is the size 

of the dataset incremented in 100s. The time will be 

measured in nanoseconds through the program in order to 

obtain the most precise reading possible.  

 

4. Results, Graphs, and Analysis 
 

As per the methodology above, the experiment has been 

conducted for multiple data set sizes and each reading has 

been collected and averaged over 10 times to obtain a 

reliable result.  
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Figure 9: Result Readings 

 

 
Figure 10: Graph of Results table in Figure 9. Y-axis is average time in nanoseconds X-axis is the size of the dataset.  

(Please note these readings have been collected on a MacBook Air M1 2020 and can vary depending on the computer’s 

performance) 

 

Based on the graph obtained above (drawn using Excel), we 

clearly see that there is a logarithmic relationship between 

the average time taken for insertion and the size of the 

dataset. This confirms my hypothesis in section 3.  

 

I have also inputted these values into my GDC (Graphic 

Display Calculator) to find the relationship between the two 

values. The model in nanoseconds, expressed as a natural 

logarithm, is below: 

𝑦 =  −1.845 × 106 + 510324.733𝑙𝑛𝑥 
 

However, I would like to point out that the dataset of size 

400 stands out as it doesn’t fall within the expected trend of 

points. This could be due to recursion being used in the 

program obtained which can occasionally impact readings 

and lead to shorter times in a few cases. Furthermore, the 

model depicts the y-intercept as -0.001845 seconds which 

suggests there is a small error in the experiment readings as 

the time obtained can never be negative; however, as this is 

extremely minute, it can be ignored and the results can be 

considered largely accurate.  

 

5. Conclusion 
 

In conclusion, the experiment conducted in this research 

paper successfully achieved its objective of developing a 

model for inserting values into an AVL tree based on the 

theoretical foundation presented in Section 2. As observed in 

Section 4, the obtained results demonstrated a consistent and 

anticipated logarithmic relationship between the time 

required for insertion and re-balancing operations in AVL 

trees. Thus, it can be confidently concluded that this 

research paper effectively models the relationship between 

these variables, effectively fulfilling its intended purpose. 

 

However, it is important to recognize the potential for 

further exploration and advancement of this experiment. 

Building upon the methodology employed in this study, it is 

feasible to create similar models for other binary search tree 

(BST) algorithms and conduct a comparative analysis of 

their efficiency in value insertion and re-balancing 

procedures. Such an investigation would be invaluable in 

determining the most optimal algorithm, thereby reducing 

processing time and enhancing performance in the industrial 

realm. Expanding the scope of this research to encompass a 

range of BST algorithms, such as the Red-Black Tree, Splay 

Tree, and B-Tree, would facilitate a more comprehensive 

evaluation of their insertion and re-balancing efficiency. 

Employing a consistent experimental approach as 

demonstrated in this paper, one could examine the time 

complexity associated with insertion operations and assess 

the effectiveness of re-balancing mechanisms employed by 

each algorithm. 

 

Overall, I believe this research paper has significantly 

improved my understanding of binary trees and has provided 

me with a fantastic learning opportunity.  
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Appendices: 

Appendix 1: AvlTree.java  
// AvlTree class 

// 

// CONSTRUCTION: with no initializer 

// 

// ******************PUBLIC OPERATIONS********************* 

// void insert( x )       --> Insert x 

// void remove( x )       --> Remove x (unimplemented) 

// boolean contains( x )  --> Return true if x is present 

// boolean remove( x )    --> Return true if x was present 

// Comparable findMin( )  --> Return smallest item 

// Comparable findMax( )  --> Return largest item 

// booleanisEmpty( )     --> Return true if empty; else false 

// void makeEmpty( )      --> Remove all items 

// void printTree( )      --> Print tree in sorted order 

// ******************ERRORS******************************** 

// Throws UnderflowException as appropriate 

 

/** 

 * Implements an AVL tree. 

 * Note that all "matching" is based on the compareTo method. 

 * @author Mark Allen Weiss 

 */ 

public class AvlTree<AnyType extends Comparable<? super AnyType>> 

{ 

    /** 

     * Construct the tree. 

     */ 

    public AvlTree( ) 

    { 

        root = null; 

    } 

 

    /** 

     * Insert into the tree; duplicates are ignored. 

     * @param x the item to insert. 

     */ 

    public void insert( AnyType x ) 

    { 

        root = insert( x, root ); 

    } 

 

    /** 
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     * Remove from the tree. Nothing is done if x is not found. 

     * @param x the item to remove. 

     */ 

    public void remove( AnyType x ) 

    { 

        root = remove( x, root ); 

    } 

 

 

    /** 

     * Internal method to remove from a subtree. 

     * @param x the item to remove. 

     * @param t the node that roots the subtree. 

     * @return the new root of the subtree. 

     */ 

    private AvlNode<AnyType> remove( AnyType x, AvlNode<AnyType> t ) 

    { 

        if( t == null ) 

            return t;   // Item not found; do nothing 

 

        int compareResult = x.compareTo( t.element ); 

 

        if( compareResult< 0 ) 

t.left = remove( x, t.left ); 

        else if( compareResult> 0 ) 

t.right = remove( x, t.right ); 

        else if( t.left != null &&t.right != null ) // Two children 

        { 

t.element = findMin( t.right ).element; 

t.right = remove( t.element, t.right ); 

        } 

        else 

            t = ( t.left != null ) ? t.left : t.right; 

        return balance( t ); 

    } 

 

    /** 

     * Find the smallest item in the tree. 

     * @return smallest item or null if empty. 

     */ 

    public AnyTypefindMin( ) 

    { 

        if( isEmpty( ) ) 

            throw new UnderflowException( ); 

        return findMin( root ).element; 

    } 

 

    /** 

     * Find the largest item in the tree. 

     * @return the largest item of null if empty. 

     */ 

    public AnyTypefindMax( ) 

    { 

        if( isEmpty( ) ) 

            throw new UnderflowException( ); 

        return findMax( root ).element; 

    } 

 

    /** 

     * Find an item in the tree. 

     * @param x the item to search for. 

     * @return true if x is found. 

     */ 

    public boolean contains( AnyType x ) 
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    { 

        return contains( x, root ); 

    } 

 

    /** 

     * Make the tree logically empty. 

     */ 

    public void makeEmpty( ) 

    { 

        root = null; 

    } 

 

    /** 

     * Test if the tree is logically empty. 

     * @return true if empty, false otherwise. 

     */ 

    public booleanisEmpty( ) 

    { 

        return root == null; 

    } 

 

    /** 

     * Print the tree contents in sorted order. 

     */ 

    public void printTree( ) 

    { 

        if( isEmpty( ) ) 

System.out.println( "Empty tree" ); 

        else 

printTree( root ); 

    } 

 

    private static final int ALLOWED_IMBALANCE = 1; 

 

    // Assume t is either balanced or within one of being balanced 

    private AvlNode<AnyType> balance( AvlNode<AnyType> t ) 

    { 

        if( t == null ) 

            return t; 

 

        if( height( t.left ) - height( t.right ) > ALLOWED_IMBALANCE ) 

            if( height( t.left.left ) >= height( t.left.right ) ) 

                t = rotateWithLeftChild( t ); 

            else 

                t = doubleWithLeftChild( t ); 

        else 

        if( height( t.right ) - height( t.left ) > ALLOWED_IMBALANCE ) 

            if( height( t.right.right ) >= height( t.right.left ) ) 

                t = rotateWithRightChild( t ); 

            else 

                t = doubleWithRightChild( t ); 

 

t.height = Math.max( height( t.left ), height( t.right ) ) + 1; 

        return t; 

    } 

 

    public void checkBalance( ) 

    { 

checkBalance( root ); 

    } 

 

    private int checkBalance( AvlNode<AnyType> t ) 

    { 

        if( t == null ) 
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            return -1; 

 

        if( t != null ) 

        { 

            int hl = checkBalance( t.left ); 

            int hr = checkBalance( t.right ); 

            if( Math.abs( height( t.left ) - height( t.right ) ) > 1 || 

                    height( t.left ) != hl || height( t.right ) != hr ) 

System.out.println( "OOPS!!" ); 

        } 

 

        return height( t ); 

    } 

 

 

    /** 

     * Internal method to insert into a subtree. 

     * @param x the item to insert. 

     * @param t the node that roots the subtree. 

     * @return the new root of the subtree. 

     */ 

    private AvlNode<AnyType> insert( AnyType x, AvlNode<AnyType> t ) 

    { 

        if( t == null ) 

            return new AvlNode<>( x, null, null ); 

 

        int compareResult = x.compareTo( t.element ); 

 

        if( compareResult< 0 ) 

t.left = insert( x, t.left ); 

        else if( compareResult> 0 ) 

t.right = insert( x, t.right ); 

        else 

            ;  // Duplicate; do nothing 

        return balance( t ); 

    } 

 

    /** 

     * Internal method to find the smallest item in a subtree. 

     * @param t the node that roots the tree. 

     * @return node containing the smallest item. 

     */ 

    private AvlNode<AnyType>findMin( AvlNode<AnyType> t ) 

    { 

        if( t == null ) 

            return t; 

 

        while( t.left != null ) 

            t = t.left; 

        return t; 

    } 

 

    /** 

     * Internal method to find the largest item in a subtree. 

     * @param t the node that roots the tree. 

     * @return node containing the largest item. 

     */ 

    private AvlNode<AnyType>findMax( AvlNode<AnyType> t ) 

    { 

        if( t == null ) 

            return t; 

 

        while( t.right != null ) 

            t = t.right; 
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        return t; 

    } 

 

    /** 

     * Internal method to find an item in a subtree. 

     * @param x is item to search for. 

     * @param t the node that roots the tree. 

     * @return true if x is found in subtree. 

     */ 

    private boolean contains( AnyType x, AvlNode<AnyType> t ) 

    { 

        while( t != null ) 

        { 

            int compareResult = x.compareTo( t.element ); 

 

            if( compareResult< 0 ) 

                t = t.left; 

            else if( compareResult> 0 ) 

                t = t.right; 

            else 

                return true;    // Match 

        } 

 

        return false;   // No match 

    } 

 

    /** 

     * Internal method to print a subtree in sorted order. 

     * @param t the node that roots the tree. 

     */ 

    private void printTree( AvlNode<AnyType> t ) 

    { 

        if( t != null ) 

        { 

printTree( t.left ); 

System.out.println( t.element ); 

printTree( t.right ); 

        } 

    } 

 

    /** 

     * Return the height of node t, or -1, if null. 

     */ 

    private int height( AvlNode<AnyType> t ) 

    { 

        return t == null ? -1 : t.height; 

    } 

 

    /** 

     * Rotate binary tree node with left child. 

     * For AVL trees, this is a single rotation for case 1. 

     * Update heights, then return new root. 

     */ 

    private AvlNode<AnyType>rotateWithLeftChild( AvlNode<AnyType> k2 ) 

    { 

AvlNode<AnyType> k1 = k2.left; 

        k2.left = k1.right; 

        k1.right = k2; 

        k2.height = Math.max( height( k2.left ), height( k2.right ) ) + 1; 

        k1.height = Math.max( height( k1.left ), k2.height ) + 1; 

        return k1; 

    } 

 

    /** 
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     * Rotate binary tree node with right child. 

     * For AVL trees, this is a single rotation for case 4. 

     * Update heights, then return new root. 

     */ 

    private AvlNode<AnyType>rotateWithRightChild( AvlNode<AnyType> k1 ) 

    { 

AvlNode<AnyType> k2 = k1.right; 

        k1.right = k2.left; 

        k2.left = k1; 

        k1.height = Math.max( height( k1.left ), height( k1.right ) ) + 1; 

        k2.height = Math.max( height( k2.right ), k1.height ) + 1; 

        return k2; 

    } 

 

    /** 

     * Double rotate binary tree node: first left child 

     * with its right child; then node k3 with new left child. 

     * For AVL trees, this is a double rotation for case 2. 

     * Update heights, then return new root. 

     */ 

    private AvlNode<AnyType>doubleWithLeftChild( AvlNode<AnyType> k3 ) 

    { 

        k3.left = rotateWithRightChild( k3.left ); 

        return rotateWithLeftChild( k3 ); 

    } 

 

    /** 

     * Double rotate binary tree node: first right child 

     * with its left child; then node k1 with new right child. 

     * For AVL trees, this is a double rotation for case 3. 

     * Update heights, then return new root. 

     */ 

    private AvlNode<AnyType>doubleWithRightChild( AvlNode<AnyType> k1 ) 

    { 

        k1.right = rotateWithLeftChild( k1.right ); 

        return rotateWithRightChild( k1 ); 

    } 

 

    private static class AvlNode<AnyType> 

    { 

            // Constructors 

AvlNode( AnyTypetheElement ) 

        { 

            this( theElement, null, null ); 

        } 

 

AvlNode( AnyTypetheElement, AvlNode<AnyType>lt, AvlNode<AnyType> rt ) 

        { 

            element  = theElement; 

            left     = lt; 

            right    = rt; 

            height   = 0; 

        } 

 

AnyType           element;      // The data in the node 

AvlNode<AnyType>  left;         // Left child 

AvlNode<AnyType>  right;        // Right child 

        int               height;       // Height 

    } 

 

      /** The tree root. */ 

    private AvlNode<AnyType> root; 
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        // Test program 

    public static void main( String [ ] args ) 

    { 

AvlTree<Integer> t = new AvlTree<>( ); 

        final int SMALL = 40; 

        final int NUMS = 1000000;  // must be even 

        final int GAP  =   37; 

 

System.out.println( "Checking... (no more output means success)" ); 

 

        for( int i = GAP; i != 0; i = ( i + GAP ) % NUMS ) 

        { 

        //    System.out.println( "INSERT: " + i ); 

t.insert( i ); 

            if( NUMS < SMALL ) 

t.checkBalance( ); 

        } 

 

        for( int i = 1; i < NUMS; i+= 2 ) 

        { 

         //   System.out.println( "REMOVE: " + i ); 

t.remove( i ); 

            if( NUMS < SMALL ) 

t.checkBalance( ); 

        } 

        if( NUMS < SMALL ) 

t.printTree( ); 

        if( t.findMin( ) != 2 || t.findMax( ) != NUMS - 2 ) 

System.out.println( "FindMin or FindMax error!" ); 

 

        for( int i = 2; i < NUMS; i+=2 ) 

             if( !t.contains( i ) ) 

System.out.println( "Find error1!" ); 

 

        for( int i = 1; i < NUMS; i+=2 ) 

        { 

            if( t.contains( i ) ) 

System.out.println( "Find error2!" ); 

        } 

    } 

} 

 

Appendix 2: AvlNode.java 
    package DataStructures; 

 

    // Basic node stored in AVL trees 

    // Note that this class is not accessible outside 

    // of package DataStructures 

 

    class AvlNode 

    { 

            // Constructors 

AvlNode( Comparable theElement ) 

        { 

            this( theElement, null, null ); 

        } 

 

AvlNode( Comparable theElement, AvlNodelt, AvlNode rt ) 

        { 

            element  = theElement; 

            left     = lt; 

            right    = rt; 

            height   = 0; 

        } 
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            // Friendly data; accessible by other package routines 

        Comparable element;      // The data in the node 

AvlNode    left;         // Left child 

AvlNode    right;        // Right child 

        int        height;       // Height 

    } 

 

Appendix 3: Program used to conduct the experiment 
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