Examining Dopamine D5 Receptor Gene Polymorphism among Indian Population with Cervical Dystonia


1, 2 Department of Biochemistry, Institute of Science, BHU, Varanasi, India
3 Department of Medicine, Institute of Medical Sciences, BHU, Varanasi, India
4 Department of Neurology, Institute of Medical Sciences, BHU, Varanasi, India
6, 7 Department of Clinical Neurosciences, Royal Free and University College Medical School, Rowland Hill Street, London, NW3 2PF, UK

1Corresponding Author Email: bk1bhu[at]gmail.com
Mobile- +91-7376140653

Abstract: Cervical dystonia or CD, also known as spasmodic torticollis, is a form of focal dystonia. It is caused by a multitude of environmental, neurochemical, and genetic factors but the exact etiology is still unknown. In the British and Italian population human dopamine D5 receptor has been considered as a susceptible gene for cervical dystonia. To view the hypothesis that DRD5 polymorphism is associated with the susceptible to cervical dystonia, We have examined differences in allele frequencies of D5DR5 polymorphism in 107 Indian patients with cervical dystonia and in 107 control subjects in India. Significant association was found for alleles 2, allele 6 and allele 10 of the D5 receptor microsatellite. Allele 6 was found to be significant in patients than in control subjects. This results increased twofold risk for developing the disease. Allele 10 was found highly significant in control than in patients whereas allele 2 was also found significant in control than in patients. In conclusion, the finding of a significant association with an allele in the D5 receptor gene in patient with cervical dystonia may point out a pathogenic role of this gene.

Keywords: cervical dystonia, allelic association, dopamine D5 receptor

1. Introduction

Cervical dystonia is one of the most common form of focal dystonia is characterized by sustained, involuntary contractions of the neck muscles that result in abnormal movements and postures of the head.1 It is also known as the spasmodic torticollis. The etiology of cervical dystonia is unknown.2 A gene was mapped to chromosome 18p (DYT7) in a large German family in whom the phenotype was predominantly adult onset torticollis.3 It has been observed that abnormalities of dopaminergic neurotransmission in the basal ganglia may be responsible for producing dystonic movements. Dopa responsive dystonia caused by mutations in the for GTP-cyclohydrolase I, the rare limiting enzyme for the synthesis of tetrahydrobiopterin, a key cofactor in Dopamine synthesis.4 The DYT1 gene which causes childhood onset autosomal dominant primary generalized dystonia has recently been cloned and encodes a protein called torsinA.5 The function of torsinA is unknown but it is preferentially expressed in the substantia nigra pars compacta6 and may interfere with dopamine vesicle transport.7 A recent study on British and Italian patients affected by cervical dystonia showed an association between the dopamine D5 receptor and dystonia, suggesting a multifactorial inheritance of cervical dystonia.8,9 The aim of this study, therefore, was to examine if polymorphisms in the gene for the dopamine D5 receptor gene is associated with cervical dystonia.

2. Materials and Methods

Patients
One hundred seven patients with cervical dystonia were identified from Medicine and Neurology OPD of S.S.Hospital, Institute of Medical Sciences, Banaras Hindu University, Varanasi. Each patient had been seen by a neurologist with expertise in the field of dystonia.

Controls
One hundred seven control subjects with a similar age, range, sex and ethnic background were collected from patients attending the blood bank of S.S hospital, BHU who did not have a neurological illness. This study was ethically approved.

Collection of Material for PCR:
Blood (1-2 ml) was collected and processed either the same day for the isolation of DNA or kept at −20°C for future use. Samples from the hospital site were brought on ice and processed in the similar fashion.

DNA Isolation
DNA was isolated by the phenol–chloroform method following standard protocol. Briefly, fresh and frozen (after thawing) blood samples were treated with RBC lysis buffer (pH 7.4): 155 mM NH4Cl, 10 mM Potassium Bicarbonate, 0.1 mM EDTA). After centrifugation the white blood cells (WBC) pellets were suspended in extraction buffer (10 mM Tris HCl [pH 8.0], 0.1 mM EDTA, 20 µg/ml pancreatic Ribonuclease A, and 0.5% SDS). Proteinase K (100 µg/ml)
was used in both cases. DNA was extracted by phenol –
chloroform extraction and ethanol precipitation. DNA
threads were washed with 70% ethanol and air dried. DNA
was dissolved in 50μl TE buffer (10mM Tris HCl [pH 7.5],
1mM EDTA autoclaved).

Primers:
The following Fluorecently labeled primers (Forward Primer
CGTGTATGATCCCTGGCA; Reverse Primer
GCTCATGAGAAAGATGGAGTG were constructed to
amplifying the region containing the (CT/GT/GA)n
polymorphism.10 The forward primer was fluorently labeled
with FAM.

PCR Amplification:
5μl of DNA was added to 45μl of reaction mixture
containing 10mM Tris HCl (pH 8.3) and 50mM KCl,
1.5mM MgCl2, 200μM of each dNTPs (Genetec, India),
50ng of each primers and 1.25U Taq DNA polymerase
(Genetec, India). Amplification was performed in a thermal
cycler (MJ Research, USA), with the heated lid option,
programmed for 40 cycles of denaturation at 94°C for 1 min,
annealing at 45°C for 1 min, extension at 72°C for 2 minutes,
preceded by initial denaturation at 94°C for 2 minutes. Final
extension was for 3 min at 72°C.

Genotyping:
The amplified PCR product was run on an ABI PRISM 3100
automated sequencer (Applied Bioystem) and analyse with
dedicated software.

Statistical analysis:
Statistical analysis was carried out using the χ² test and odds
ratios (OR) with relative 95% confidence intervals (CI).

Results
Female to male ratio was 1:1.6 in patients and 1:1.3 in
controls. The mean age of cases and control was 53.4 years
and 45.4 years respectively.

Table1 represents the results of DRD5 (CT/GT/GA)n
microsatellite genotyping in patients and controls. A total of
12 alleles were detected for the (CT/GT/GA)n microsatellite.
A significant association was found for allele 6 (bp 146),
more frequent in patients than in control subjects.

This resulted in approximately twofold increased risk of
developing the disease (OR 0.521; 95% CI 0.317 to 0.857; p =
0.01, table 1). Conversely, allele 5 (bp 148) was more
common in controls than in patients, but the difference did
not reach statistical significance (OR 0.922; 95% CI 0.621 to
1.369; p = 0.687). The frequencies of allele 10 (bp 138) (OR
6.815; 95% CI 2.591 to 17.929; p= 0.00) and allele 2 (OR
4.178; 95% CI 1.162 to 15.024), were significantly higher in
controls than the patients.

Discussion
The aim of this study was to evaluate association between
DRD5 and sporadic adult onset cervical dystonia in Indian
population. In our study, the overrepresentation of allele 6
(p=0.010) of the D5 receptor dinucleotide repeat within the
CD patients group compared with the normal controls
probably resulted in a two fold increased risk of developing
the disease (table 1). Conversely, allele 2 and allele 10 were
overrepresented in control subjects compared to CD patients
suggested their protective role in the development of
disease. However, the frequency of distribution of allele 10
(p=0.00) was significantly higher than allele 2 (p=0.018) in
controls suggested more protective role for this allele as
compared to other alleles. Both susceptibility and protective
DRD5 alleles in the present study are different to those
described in the British and Italian study.8,9

The DRD5 gene codes for a dopamine receptor included in
the D1 super family. The involvement of a dopamine
pathway in the pathogenesis of PTD is particularly
earlying. It has been recently suggested that dopamine
D1/5 receptors could play a role in the so called indirect
pathway of the basal ganglia circuitry.11 Furthermore, DRD5
has been recently associated with blepherospasam, another
form of adult onset focal PTD.12 Additional facts supports a
link between dopamine and dystonia. Autosomal dominant
dopa responsive dystonia is caused by mutations in the GTP
cytoplasmic I gene, whose protein involved in dopamine
synthesis. Parkinson’s disease affected patients, when
received with L-dopa, can develop dystonic dyskinesias, and
antipsychotic drugs which inhibit dopamine receptors can
produce dystonia. The multifactorial inheritance of
cervical dystonia has been already recommended, based on
the observation of familial clustering.13,14 The association
between DRD5 and CD in three independent studies hints
which a accepted role of DRD5 as a susceptible gene for
primary cervical dystonia.

Table 1: Distribution of the (CT/GT/GA) n Microsatellite alleles in 107 cervical dystonia patients and 107 controls

<table>
<thead>
<tr>
<th>Allele</th>
<th>Patients</th>
<th>Controls</th>
<th>Odds ratio</th>
<th>95% CI (lower)</th>
<th>95% CI (upper)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(156)</td>
<td>0</td>
<td>2</td>
<td>0.991</td>
<td>0.978</td>
<td>1.004</td>
<td>0.156</td>
</tr>
<tr>
<td>2(154)</td>
<td>3</td>
<td>12</td>
<td>4.178</td>
<td>1.162</td>
<td>15.024</td>
<td>0.018</td>
</tr>
<tr>
<td>3(152)</td>
<td>21</td>
<td>20</td>
<td>0.947</td>
<td>0.498</td>
<td>1.804</td>
<td>0.870</td>
</tr>
<tr>
<td>4(150)</td>
<td>16</td>
<td>14</td>
<td>0.866</td>
<td>0.412</td>
<td>1.822</td>
<td>0.705</td>
</tr>
<tr>
<td>5(148)</td>
<td>79</td>
<td>75</td>
<td>0.922</td>
<td>0.621</td>
<td>1.369</td>
<td>0.687</td>
</tr>
<tr>
<td>6(146)</td>
<td>51</td>
<td>30</td>
<td>0.521</td>
<td>0.317</td>
<td>0.857</td>
<td>0.010</td>
</tr>
<tr>
<td>7(144)</td>
<td>9</td>
<td>8</td>
<td>0.885</td>
<td>0.335</td>
<td>2.338</td>
<td>0.805</td>
</tr>
<tr>
<td>8(142)</td>
<td>7</td>
<td>6</td>
<td>0.853</td>
<td>0.282</td>
<td>2.581</td>
<td>0.778</td>
</tr>
<tr>
<td>9(140)</td>
<td>9</td>
<td>8</td>
<td>0.885</td>
<td>0.335</td>
<td>2.338</td>
<td>0.805</td>
</tr>
<tr>
<td>10(138)</td>
<td>5</td>
<td>30</td>
<td>6.815</td>
<td>2.591</td>
<td>17.929</td>
<td>0.000</td>
</tr>
<tr>
<td>11(136)</td>
<td>8</td>
<td>7</td>
<td>0.871</td>
<td>0.310</td>
<td>2.445</td>
<td>0.793</td>
</tr>
<tr>
<td>12(134)</td>
<td>3</td>
<td>2</td>
<td>0.664</td>
<td>0.110</td>
<td>4.011</td>
<td>0.653</td>
</tr>
</tbody>
</table>

Volume 12 Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: SR23807131024
DOI: 10.21275/SR23807131024
Abbreviations: CD, cervical dystonia; CI, Confidence interval; DRD5, dopamine D5 receptor; OR, odds ratio; PTD, primary torsion dystonia.

Acknowledgements
I would like to thank Dr. M.R. Placzek and Dr.T.T. Warner of Department of Clinical Neurosciences, Royal Free and University College Medical School, Rowland Hill Street, London, NW3 2PF, UK for providing me suggestion and cooperation for doing this work. I am also thankful to Junior and senior Resident of department of Neurology and Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India for full cooperation of samples collection.

References