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Abstract: AI-driven software testing has evolved alongside AI-based and assisted software development. It offers a wide range of benefits 

for conventional software, but it's critical for more complex applications. This includes AI/ML applications and real-time applications. 

But in these domains, AI-driven software testing comes with its own set of challenges. This includes the complexity of such applications 

(AI/ML and real-time), data dependencies, quality issues, the dynamic and evolving nature of these software, scalability and performance 

concerns, and ethical concerns. In addition to choosing the right AI-driven software testing models that can adapt to the evolving needs 

of this software, the right approach to AI-driven test case generation, synthetic data generation, and integrating explainability in the 

development and testing stage can help developers get around this issue.  
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1. Introduction 
 

Artificial Intelligence (AI) has transformed a lot of different 

industries, including software development. Developers are 

now using different types of tools, including Large Language 

Models (LLMs) like OpenAI’s ChatGPT and coding 

assistants like GitHub CoPilot, to develop, optimize, and 

maintain code. This is true for almost all different types of 

applications, including, ironically, AI and Machine Learning 

(ML) applications and real-time applications. Both of these 

application types have to be more dynamic and adaptable in 

nature compared to applications dealing with a predictable 

amount, type, and nature of data. Considering AI is still in its 

early stages, rigorous and comprehensive testing of sensitive 

AI/ML applications and real-time applications is needed to 

ensure that they work as intended. This is where another breed 

of AI tool comes into play, i. e., AI-driven software testing. 

Like its influence in development, AI-driven software testing 

is rapidly growing, and the stakeholders in this industry 

understand the strengths and limitations of these tools to a 

healthy extent. However, the challenges associated with AI-

driven software testing are enhanced for complex software 

packages and applications, including AI/ML applications and 

real-time applications.  

 

2. Literature Review 
 

The literature on this topic has evolved over several years. 

The early literature on this topic discussed the broader impact 

of AI on software testing and identified its core strengths, like 

faster testing (leading to rapid production cycles)  [1]. More 

directed research in software testing for AI/ML systems 

focused on bridging the gap between traditional 

methodologies and the demands of intelligent systems  [2]. 

The literature also covered specific test scenarios/software 

types like cross-platform applications and how AI-driven 

testing can revolutionize and automate their testing and 

improve quality  [3]. Integrating AI-driven testing into 

DevOps can significantly enhance and improve the software 

production lifecycles and allow for smarter, more intelligent 

testing, which is critical for a broader range of applications. 

Early efforts highlighted the limitations of manual test case 

design in capturing the non-deterministic behavior of ML 

models, particularly in computer vision and natural language 

processing  [4]. Studies emphasized the need for automated 

frameworks capable of simulating diverse input distributions 

and adversarial scenarios to uncover model vulnerabilities  

[5].  

 

In real-time systems, literature identified the importance of 

latency-aware testing frameworks to validate performance 

under strict timing constraints  [6]. Researchers explored 

techniques such as hardware-in-the-loop (HIL) simulations 

and probabilistic timing analysis to ensure systems met 

deadlines without compromising accuracy  [7].  

 

3. Problem Statements: AI-driven software 

Testing and Automation Challenges for 

AI/ML and Real-Time Applications 
 

A wide range of challenges and problems can be associated 

with AI-driven software testing, particularly for AI/ML 

applications and a range of real-time applications. This 

includes but is not limited to:  

 

3.1 AI/ML Application Complexity 

 

Conventional applications, even ones with comprehensive 

operational scopes, usually have predictable use cases and 

expectations. Developers have a general idea of how these 

applications may need to perform under certain conditions, 

allowing for easier test development. However, many AI/ML 

applications are designed to handle a wide range of unknown 

variables and scenarios. This complexity and lack of 

predictability require testing to be as dynamic as the 

variability the application is likely to face.  

 

Further complicating the problem is the black-box nature of 

most AI and ML models and applications based on them. 
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Understanding how a model might behave in certain way is 

almost impossible to predict so testing scenarios have to be 

comprehensive in nature as well. There are also 

hyperparameters, overfitting and underfitting concerns, and 

other AI/ML related complexities to take into account.  

 

3.2 Real-Time Application Challenges 

 

Real-time application may have their own set of unique 

challenges different from AI and ML applications, starting 

with the volume of data they need to handle, fluctuations in 

data, range, and parameters around the data sets, etc. The most 

significant challenge domain, however, is rapid real-time 

processing, response, and decision-making, especially for 

time-sensitive applications like trading and medical 

diagnostics. For other applications, the massive amount of 

data they have to handle and the pre-sorting and cleaning of 

data within the application can pose a unique set of 

challenges. So, the testing has to account for not just how well 

the software/application is performing in relevant scenarios 

but how rapidly it’s performing and how well it acts while 

different systems are running concurrently. These 

applications also often have a slew of integrations that have 

to be tested and handled.  

 

3.3 Data Dependency and Quality Issues 

 

AI models are highly sensitive to input data distribution. 

Shifts in data—such as seasonal variations in e-commerce 

traffic or sensor noise in IoT devices—can degrade model 

performance. Testing frameworks must account for data drift, 

missing values, and adversarial inputs, which are rarely 

addressed in conventional testing pipelines. They may also 

have to test the “corrections” or realignment built into AI/ML 

and real-time applications (usually outside AI/ML models) to 

ensure that it’s making correct adjustments to outputs and 

performance of the applications.  

 

3.4 Dynamic and Evolving Models 

 

Many AI systems employ continuous learning, where models 

update iteratively based on new data. This creates a moving 

target for testers, as validation suites must adapt to evolving 

logic without human intervention. A recommendation system 

that retrains daily, for instance, requires automated regression 

testing to prevent unintended bias. Testing for such systems 

and the applications based on them has to evolve alongside 

the model, too. This may include hyperparameters within the 

model, the broader scope of the application itself, and its 

behavior in different scenarios and input cases.  

 

3.5 Scalability and Performance Bottlenecks 

 

As AI applications scale to handle millions of users or 

devices, testing frameworks must simulate high-load 

scenarios without prohibitive computational costs. 

Performance bottlenecks in distributed systems—such as 

network latency or database contention—are often 

overlooked during testing.  

 

3.6 Ethical and Security Concerns 

 

AI systems risk perpetuating biases present in training data or 

succumbing to adversarial attacks. Testing must validate not 

only functionality but also fairness, transparency, and 

resistance to malicious inputs.  

 

4. Solutions: Best AI-Driven Software Testing 

Practices 
 

Developing the right testing scenarios and using the right 

automated test creation frameworks can go a long way toward 

solving these problems.  

 

4.1 AI-Driven Test Case Generation 

 

AI-driven test case generation leverages machine learning 

algorithms to autonomously identify high-risk scenarios and 

optimize validation processes. Traditional methods, which 

rely on predefined scripts, struggle to anticipate the 

unpredictable behavior of AI/ML systems. Generative 

Adversarial Networks (GANs) address this by synthesizing 

edge cases—such as adversarial images with imperceptible 

noise or sensor data simulating rare hardware failures—that 

expose model vulnerabilities. These synthetic inputs force 

models to confront scenarios absent from training data, 

revealing biases or overfitting. Reinforcement Learning (RL) 

further enhances test coverage by enabling agents to explore 

the system’s decision space dynamically. RL agents learn to 

prioritize test cases that maximize defect discovery, such as 

inputs that trigger conflicting predictions in autonomous 

systems. Meanwhile, metamorphic testing infers relationships 

between input transformations and expected outcomes (e. g., 

rotating an image should not alter its classification label) to 

validate consistency. This triad of approaches—GANs, RL, 

and metamorphic testing—enables frameworks to adaptively 

probe AI systems, ensuring robustness against both known 

and unforeseen failure modes.  

 

 
Figure 1: Adversarial Inputs Using GAN 

 

4.2 Adaptive Testing Frameworks for Evolving Models 

 

Continuous learning models, which update iteratively in 

response to new data, demand testing frameworks capable of 

evolving in tandem. Adaptive testing integrates with CI/CD 

pipelines to automate validation across model versions. 

Dynamic regression testing employs ML algorithms to 

compare predictions between iterations, flagging deviations 
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that indicate performance regressions or unintended 

behavioral shifts. For instance, a recommendation system 

retrained daily might inadvertently prioritize controversial 

content; automated comparisons against baseline metrics can 

detect such anomalies. Concept drift detection complements 

this by monitoring input data distributions in real-time. 

Statistical tests, such as Kolmogorov-Smirnov or chi-squared 

analyses, quantify deviations from expected data patterns. 

When drift exceeds predefined thresholds—such as sudden 

changes in user demographics or sensor calibration—the 

framework triggers retraining or retesting. The goal of these 

measures is to ensure that the underlying models remain 

aligned with operational environments, even as the data 

changes and evolves over time.  

 

 
Figure 2: Detecting Concept Drift 

 

4.3 Anomaly Detection and Monitoring in Real-Time 

 

Real-time systems, which include algorithmic trading 

platforms and autonomous drones, often require testing 

frameworks that validate not just functional correctness but 

timing constraints as well. AI-powered anomaly detection 

tools process telemetry streams to identify latency spikes, 

resource contention, or prediction outliers. Stream processing 

engines like Apache Flink or Kafka Streams analyze high-

velocity data, applying unsupervised learning models to 

detect anomalies in execution times or throughput. For 

example, a medical monitoring system might use clustering 

algorithms to flag irregular heart rate patterns that deviate 

from established norms. Predictive latency modeling 

augments this by forecasting execution times under varying 

loads. Regression models trained on historical performance 

data predict how system latency scales with input volume, 

enabling preemptive optimization. This extends to ensuring 

that applications meet Service-Level Agreements (SLAs) 

constraints and requirements, which can often be quite 

demanding.  

 

4.4 Synthetic Data Generation (including its 

Augmentation)  

 

One of the main problems AI testing and AI development face 

is the lack of the right type of data. One way to solve this issue 

is to use AI models to generate the type of data needed to train 

and test certain AI models. Another problem is that when 

there is enough data on hand, it's either biased in some regard 

or over-presents or underrepresents certain elements within a 

population. Healthcare data in the US is mostly comprised of 

a single race, underrepresenting the needs of other races. The 

right approach to AI-generated data, i. e., synthetic data, can 

resolve this issue. These models/systems can be used to 

generate data that mimic the underlying realities of the real 

world without bias or malice. There are different types of 

synthetic data generators that are useful for different types of 

requirements.  

 

This includes Variational Autoencoders (VAEs) and diffusion 

models that are capable of producing high-quality and 

realistic simulations of rare events, such as equipment 

malfunctions in industrial IoT systems or atypical symptoms 

in medical diagnostics. The datasets for these scenarios are 

either too small or too biased in the real world. In facial 

recognition systems, synthetic data can represent 

underrepresented demographics, reducing racial or gender 

bias. Augmentation techniques further diversify training data 

by applying transformations like noise injection or geometric 

distortions. Bias mitigation algorithms, such as reweighting 

or adversarial debiasing, adjust training data distributions to 

ensure fairness. For instance, a loan approval model might be 

tested for demographic parity by comparing approval rates 

across synthetic datasets with balanced ethnic representation.  

 

4.5 Explainability and Transparency Tools 

 

Explainable AI (XAI) techniques integrate with testing 

frameworks to audit model decisions and enhance trust. 

Saliency maps visualize input features influencing 

predictions, enabling testers to identify overreliance on 

spurious correlations. In a computer vision model, saliency 

maps might reveal that a tumor detector focuses on image 

artifacts rather than biological structures. Counterfactual 

analysis generates minimal perturbations to inputs—such as 

altering a single pixel in an image—to test model sensitivity. 

These “what-if” scenarios isolate failure modes and validate 

decision boundaries. These tools also ensure compliance with 

regulations like the EU AI Act, which mandates transparency 

in high-risk systems.  

 

4.6 Ethical and Security Validation 

 

AI testing frameworks must validate ethical compliance and 

resilience against adversarial attacks. Robustness testing 

subjects models to adversarial inputs, such as perturbed audio 

commands that mislead voice assistants or adversarial patches 

that confuse object detectors. Penetration testing simulates 

attacks like model inversion, where adversaries extract 

training data from API responses. Fairness testing employs 

metrics like equalized odds or demographic parity to quantify 

disparities in outcomes across groups. For example, a hiring 

tool might be tested for gender bias by evaluating its 

shortlisting rates against synthetic resumes with randomized 

genders. These practices ensure systems align with ethical 

guidelines and withstand malicious exploitation.  

 

5. Conclusion  
 

AI-driven software testing, whether it's automated for specific 

scenarios or evolving to meet the changing needs of an AI/ML 

system, is paradigm-shifting, to say the least. The right AI-

powered adaptive testing frameworks and models can make 

the process of testing not just smooth but also much more 

comprehensive and useful than manual testing could ever be. 

Its benefits of freeing up development teams from testing 

responsibility is one of the most cited and easily understood 
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ones. But it’s worth understanding that in many scenarios, it’s 

AI-driven software testing is not an added benefit. It’s critical 

to test AI/ML applications and real-time applications that, 

thanks to their complexity, cannot be tested manually.  

 

References 
 

[1] “The Impact of Artificial Intelligence on Software 

Testing. ” Accessed: Mar.05, 2025. [Online]. Available: 

https: //ieeexplore. ieee. org/abstract/document/8717439 

[2] V. Jeremić, R. Bucea-Manea-Ţonis, S. Vesić, and H. 

Stefanović, “Revolutionizing Software Testing: The 

Impact of AI, ML, and IoT”.  

[3] N. Srinivas, N. Mandaloju, and S. V. Nadimpalli, “Cross-

Platform Application Testing: AI-Driven Automation 

Strategies,” Artif. Intell. Mach. Learn. Rev., vol.1, no.1, 

Art. no.1, Jan.2020, doi: 10.69987/AIMLR.2020.10102.  

[4] T. M. King, J. Arbon, D. Santiago, D. Adamo, W. Chin, 

and R. Shanmugam, “AI for Testing Today and 

Tomorrow: Industry Perspectives, ” in 2019 IEEE 

International Conference On Artificial Intelligence 

Testing (AITest), Apr.2019, pp.81–88. doi: 

10.1109/AITest.2019.000-3.  

[5] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: 

Automated Whitebox Testing of Deep Learning Systems, 

” in Proceedings of the 26th Symposium on Operating 

Systems Principles, in SOSP ’17. New York, NY, USA: 

Association for Computing Machinery, Oct.2017, pp.1–

18. doi: 10.1145/3132747.3132785.  

[6] R. Jabbar, M. Krichen, M. Shinoy, M. Kharbeche, N. 

Fetais, and K. Barkaoui, “A Model-Based and Resource-

Aware Testing Framework for Parking System Payment 

using Blockchain, ” in 2020 International Wireless 

Communications and Mobile Computing (IWCMC), 

Jun.2020, pp.1252–1259. doi: 

10.1109/IWCMC48107.2020.9148212.  

[7] S. Raikwar, L. Jijyabhau Wani, S. Arun Kumar, and M. 

Sreenivasulu Rao, “Hardware-in-the-Loop test 

automation of embedded systems for agricultural 

tractors,” Measurement, vol.133, pp.271–280, Feb.2019, 

doi: 10.1016/j. measurement.2018.10.014.  

Paper ID: SR23720083036 DOI: https://dx.doi.org/10.21275/SR23720083036 2327 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/



