
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 7, July 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

AI-Driven Software Testing: Automating Test

Creation and Execution for AI/ML and Real-Time

Applications

Anbarasu Arivoli

Company: Target, Minneapolis, MN

Email: anbarasuarivoli[at]gmail.com

Abstract: AI-driven software testing has evolved alongside AI-based and assisted software development. It offers a wide range of benefits

for conventional software, but it's critical for more complex applications. This includes AI/ML applications and real-time applications.

But in these domains, AI-driven software testing comes with its own set of challenges. This includes the complexity of such applications

(AI/ML and real-time), data dependencies, quality issues, the dynamic and evolving nature of these software, scalability and performance

concerns, and ethical concerns. In addition to choosing the right AI-driven software testing models that can adapt to the evolving needs

of this software, the right approach to AI-driven test case generation, synthetic data generation, and integrating explainability in the

development and testing stage can help developers get around this issue.

Keywords: AI-driven software testing, AI/ML applications, real-time applications

1. Introduction

Artificial Intelligence (AI) has transformed a lot of different

industries, including software development. Developers are

now using different types of tools, including Large Language

Models (LLMs) like OpenAI’s ChatGPT and coding

assistants like GitHub CoPilot, to develop, optimize, and

maintain code. This is true for almost all different types of

applications, including, ironically, AI and Machine Learning

(ML) applications and real-time applications. Both of these

application types have to be more dynamic and adaptable in

nature compared to applications dealing with a predictable

amount, type, and nature of data. Considering AI is still in its

early stages, rigorous and comprehensive testing of sensitive

AI/ML applications and real-time applications is needed to

ensure that they work as intended. This is where another breed

of AI tool comes into play, i. e., AI-driven software testing.

Like its influence in development, AI-driven software testing

is rapidly growing, and the stakeholders in this industry

understand the strengths and limitations of these tools to a

healthy extent. However, the challenges associated with AI-

driven software testing are enhanced for complex software

packages and applications, including AI/ML applications and

real-time applications.

2. Literature Review

The literature on this topic has evolved over several years.

The early literature on this topic discussed the broader impact

of AI on software testing and identified its core strengths, like

faster testing (leading to rapid production cycles) [1]. More

directed research in software testing for AI/ML systems

focused on bridging the gap between traditional

methodologies and the demands of intelligent systems [2].

The literature also covered specific test scenarios/software

types like cross-platform applications and how AI-driven

testing can revolutionize and automate their testing and

improve quality [3]. Integrating AI-driven testing into

DevOps can significantly enhance and improve the software

production lifecycles and allow for smarter, more intelligent

testing, which is critical for a broader range of applications.

Early efforts highlighted the limitations of manual test case

design in capturing the non-deterministic behavior of ML

models, particularly in computer vision and natural language

processing [4]. Studies emphasized the need for automated

frameworks capable of simulating diverse input distributions

and adversarial scenarios to uncover model vulnerabilities

[5].

In real-time systems, literature identified the importance of

latency-aware testing frameworks to validate performance

under strict timing constraints [6]. Researchers explored

techniques such as hardware-in-the-loop (HIL) simulations

and probabilistic timing analysis to ensure systems met

deadlines without compromising accuracy [7].

3. Problem Statements: AI-driven software

Testing and Automation Challenges for

AI/ML and Real-Time Applications

A wide range of challenges and problems can be associated

with AI-driven software testing, particularly for AI/ML

applications and a range of real-time applications. This

includes but is not limited to:

3.1 AI/ML Application Complexity

Conventional applications, even ones with comprehensive

operational scopes, usually have predictable use cases and

expectations. Developers have a general idea of how these

applications may need to perform under certain conditions,

allowing for easier test development. However, many AI/ML

applications are designed to handle a wide range of unknown

variables and scenarios. This complexity and lack of

predictability require testing to be as dynamic as the

variability the application is likely to face.

Further complicating the problem is the black-box nature of

most AI and ML models and applications based on them.

Paper ID: SR23720083036 DOI: https://dx.doi.org/10.21275/SR23720083036 2324

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:anbarasuarivoli@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 7, July 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Understanding how a model might behave in certain way is

almost impossible to predict so testing scenarios have to be

comprehensive in nature as well. There are also

hyperparameters, overfitting and underfitting concerns, and

other AI/ML related complexities to take into account.

3.2 Real-Time Application Challenges

Real-time application may have their own set of unique

challenges different from AI and ML applications, starting

with the volume of data they need to handle, fluctuations in

data, range, and parameters around the data sets, etc. The most

significant challenge domain, however, is rapid real-time

processing, response, and decision-making, especially for

time-sensitive applications like trading and medical

diagnostics. For other applications, the massive amount of

data they have to handle and the pre-sorting and cleaning of

data within the application can pose a unique set of

challenges. So, the testing has to account for not just how well

the software/application is performing in relevant scenarios

but how rapidly it’s performing and how well it acts while

different systems are running concurrently. These

applications also often have a slew of integrations that have

to be tested and handled.

3.3 Data Dependency and Quality Issues

AI models are highly sensitive to input data distribution.

Shifts in data—such as seasonal variations in e-commerce

traffic or sensor noise in IoT devices—can degrade model

performance. Testing frameworks must account for data drift,

missing values, and adversarial inputs, which are rarely

addressed in conventional testing pipelines. They may also

have to test the “corrections” or realignment built into AI/ML

and real-time applications (usually outside AI/ML models) to

ensure that it’s making correct adjustments to outputs and

performance of the applications.

3.4 Dynamic and Evolving Models

Many AI systems employ continuous learning, where models

update iteratively based on new data. This creates a moving

target for testers, as validation suites must adapt to evolving

logic without human intervention. A recommendation system

that retrains daily, for instance, requires automated regression

testing to prevent unintended bias. Testing for such systems

and the applications based on them has to evolve alongside

the model, too. This may include hyperparameters within the

model, the broader scope of the application itself, and its

behavior in different scenarios and input cases.

3.5 Scalability and Performance Bottlenecks

As AI applications scale to handle millions of users or

devices, testing frameworks must simulate high-load

scenarios without prohibitive computational costs.

Performance bottlenecks in distributed systems—such as

network latency or database contention—are often

overlooked during testing.

3.6 Ethical and Security Concerns

AI systems risk perpetuating biases present in training data or

succumbing to adversarial attacks. Testing must validate not

only functionality but also fairness, transparency, and

resistance to malicious inputs.

4. Solutions: Best AI-Driven Software Testing

Practices

Developing the right testing scenarios and using the right

automated test creation frameworks can go a long way toward

solving these problems.

4.1 AI-Driven Test Case Generation

AI-driven test case generation leverages machine learning

algorithms to autonomously identify high-risk scenarios and

optimize validation processes. Traditional methods, which

rely on predefined scripts, struggle to anticipate the

unpredictable behavior of AI/ML systems. Generative

Adversarial Networks (GANs) address this by synthesizing

edge cases—such as adversarial images with imperceptible

noise or sensor data simulating rare hardware failures—that

expose model vulnerabilities. These synthetic inputs force

models to confront scenarios absent from training data,

revealing biases or overfitting. Reinforcement Learning (RL)

further enhances test coverage by enabling agents to explore

the system’s decision space dynamically. RL agents learn to

prioritize test cases that maximize defect discovery, such as

inputs that trigger conflicting predictions in autonomous

systems. Meanwhile, metamorphic testing infers relationships

between input transformations and expected outcomes (e. g.,

rotating an image should not alter its classification label) to

validate consistency. This triad of approaches—GANs, RL,

and metamorphic testing—enables frameworks to adaptively

probe AI systems, ensuring robustness against both known

and unforeseen failure modes.

Figure 1: Adversarial Inputs Using GAN

4.2 Adaptive Testing Frameworks for Evolving Models

Continuous learning models, which update iteratively in

response to new data, demand testing frameworks capable of

evolving in tandem. Adaptive testing integrates with CI/CD

pipelines to automate validation across model versions.

Dynamic regression testing employs ML algorithms to

compare predictions between iterations, flagging deviations

Paper ID: SR23720083036 DOI: https://dx.doi.org/10.21275/SR23720083036 2325

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 7, July 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

that indicate performance regressions or unintended

behavioral shifts. For instance, a recommendation system

retrained daily might inadvertently prioritize controversial

content; automated comparisons against baseline metrics can

detect such anomalies. Concept drift detection complements

this by monitoring input data distributions in real-time.

Statistical tests, such as Kolmogorov-Smirnov or chi-squared

analyses, quantify deviations from expected data patterns.

When drift exceeds predefined thresholds—such as sudden

changes in user demographics or sensor calibration—the

framework triggers retraining or retesting. The goal of these

measures is to ensure that the underlying models remain

aligned with operational environments, even as the data

changes and evolves over time.

Figure 2: Detecting Concept Drift

4.3 Anomaly Detection and Monitoring in Real-Time

Real-time systems, which include algorithmic trading

platforms and autonomous drones, often require testing

frameworks that validate not just functional correctness but

timing constraints as well. AI-powered anomaly detection

tools process telemetry streams to identify latency spikes,

resource contention, or prediction outliers. Stream processing

engines like Apache Flink or Kafka Streams analyze high-

velocity data, applying unsupervised learning models to

detect anomalies in execution times or throughput. For

example, a medical monitoring system might use clustering

algorithms to flag irregular heart rate patterns that deviate

from established norms. Predictive latency modeling

augments this by forecasting execution times under varying

loads. Regression models trained on historical performance

data predict how system latency scales with input volume,

enabling preemptive optimization. This extends to ensuring

that applications meet Service-Level Agreements (SLAs)

constraints and requirements, which can often be quite

demanding.

4.4 Synthetic Data Generation (including its

Augmentation)

One of the main problems AI testing and AI development face

is the lack of the right type of data. One way to solve this issue

is to use AI models to generate the type of data needed to train

and test certain AI models. Another problem is that when

there is enough data on hand, it's either biased in some regard

or over-presents or underrepresents certain elements within a

population. Healthcare data in the US is mostly comprised of

a single race, underrepresenting the needs of other races. The

right approach to AI-generated data, i. e., synthetic data, can

resolve this issue. These models/systems can be used to

generate data that mimic the underlying realities of the real

world without bias or malice. There are different types of

synthetic data generators that are useful for different types of

requirements.

This includes Variational Autoencoders (VAEs) and diffusion

models that are capable of producing high-quality and

realistic simulations of rare events, such as equipment

malfunctions in industrial IoT systems or atypical symptoms

in medical diagnostics. The datasets for these scenarios are

either too small or too biased in the real world. In facial

recognition systems, synthetic data can represent

underrepresented demographics, reducing racial or gender

bias. Augmentation techniques further diversify training data

by applying transformations like noise injection or geometric

distortions. Bias mitigation algorithms, such as reweighting

or adversarial debiasing, adjust training data distributions to

ensure fairness. For instance, a loan approval model might be

tested for demographic parity by comparing approval rates

across synthetic datasets with balanced ethnic representation.

4.5 Explainability and Transparency Tools

Explainable AI (XAI) techniques integrate with testing

frameworks to audit model decisions and enhance trust.

Saliency maps visualize input features influencing

predictions, enabling testers to identify overreliance on

spurious correlations. In a computer vision model, saliency

maps might reveal that a tumor detector focuses on image

artifacts rather than biological structures. Counterfactual

analysis generates minimal perturbations to inputs—such as

altering a single pixel in an image—to test model sensitivity.

These “what-if” scenarios isolate failure modes and validate

decision boundaries. These tools also ensure compliance with

regulations like the EU AI Act, which mandates transparency

in high-risk systems.

4.6 Ethical and Security Validation

AI testing frameworks must validate ethical compliance and

resilience against adversarial attacks. Robustness testing

subjects models to adversarial inputs, such as perturbed audio

commands that mislead voice assistants or adversarial patches

that confuse object detectors. Penetration testing simulates

attacks like model inversion, where adversaries extract

training data from API responses. Fairness testing employs

metrics like equalized odds or demographic parity to quantify

disparities in outcomes across groups. For example, a hiring

tool might be tested for gender bias by evaluating its

shortlisting rates against synthetic resumes with randomized

genders. These practices ensure systems align with ethical

guidelines and withstand malicious exploitation.

5. Conclusion

AI-driven software testing, whether it's automated for specific

scenarios or evolving to meet the changing needs of an AI/ML

system, is paradigm-shifting, to say the least. The right AI-

powered adaptive testing frameworks and models can make

the process of testing not just smooth but also much more

comprehensive and useful than manual testing could ever be.

Its benefits of freeing up development teams from testing

responsibility is one of the most cited and easily understood

Paper ID: SR23720083036 DOI: https://dx.doi.org/10.21275/SR23720083036 2326

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 7, July 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

ones. But it’s worth understanding that in many scenarios, it’s

AI-driven software testing is not an added benefit. It’s critical

to test AI/ML applications and real-time applications that,

thanks to their complexity, cannot be tested manually.

References

[1] “The Impact of Artificial Intelligence on Software

Testing. ” Accessed: Mar.05, 2025. [Online]. Available:

https: //ieeexplore. ieee. org/abstract/document/8717439

[2] V. Jeremić, R. Bucea-Manea-Ţonis, S. Vesić, and H.

Stefanović, “Revolutionizing Software Testing: The

Impact of AI, ML, and IoT”.

[3] N. Srinivas, N. Mandaloju, and S. V. Nadimpalli, “Cross-

Platform Application Testing: AI-Driven Automation

Strategies,” Artif. Intell. Mach. Learn. Rev., vol.1, no.1,

Art. no.1, Jan.2020, doi: 10.69987/AIMLR.2020.10102.

[4] T. M. King, J. Arbon, D. Santiago, D. Adamo, W. Chin,

and R. Shanmugam, “AI for Testing Today and

Tomorrow: Industry Perspectives, ” in 2019 IEEE

International Conference On Artificial Intelligence

Testing (AITest), Apr.2019, pp.81–88. doi:

10.1109/AITest.2019.000-3.

[5] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore:

Automated Whitebox Testing of Deep Learning Systems,

” in Proceedings of the 26th Symposium on Operating

Systems Principles, in SOSP ’17. New York, NY, USA:

Association for Computing Machinery, Oct.2017, pp.1–

18. doi: 10.1145/3132747.3132785.

[6] R. Jabbar, M. Krichen, M. Shinoy, M. Kharbeche, N.

Fetais, and K. Barkaoui, “A Model-Based and Resource-

Aware Testing Framework for Parking System Payment

using Blockchain, ” in 2020 International Wireless

Communications and Mobile Computing (IWCMC),

Jun.2020, pp.1252–1259. doi:

10.1109/IWCMC48107.2020.9148212.

[7] S. Raikwar, L. Jijyabhau Wani, S. Arun Kumar, and M.

Sreenivasulu Rao, “Hardware-in-the-Loop test

automation of embedded systems for agricultural

tractors,” Measurement, vol.133, pp.271–280, Feb.2019,

doi: 10.1016/j. measurement.2018.10.014.

Paper ID: SR23720083036 DOI: https://dx.doi.org/10.21275/SR23720083036 2327

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

