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Abstract: The study of forest dynamics is concerned with the changes in forest structure and composition over time,and it is obvious 

that forests managed in a sustainable manner are able to produce both high quality wood products and other ecological goods and 

services which include water purification, wildlife habitat and carbon sequestration. Similarly, forest management practices that protect 

aquatic systems, minimise soil disturbance and erosion, and promote rapid forest regeneration are all components of sustainable 

forestry. These factors have therefore necessitated this study of modelling forest growth and its associated harvesting policy for 

determining future sequence in order not to compromise its benefits. A number of growth models such as The Malthusian Growth 

Model, The Logistic Growth Model, Verhulst Logistic Growth Scaled with a ‘Delaying’ Factor  
1

1 c N K


   , and Richard’s Growth 

Equation were some of the growth models mentioned in this study of the dynamics of the forest stand.The two possible equilibrium 

values for the solution of the model are 0eP   and  1000 1 5eP h  . Whenever h r , this will lead to extinction of the population 

and therefore as 0.2h r  , the population size will settle down to the stable equilibrium 1 5eP h  . Hence for as long as 

0 0.2h   one can be confident that, the population won't die out. Again, 0.1h  which is one-half of the growth rate r yields the 

maximum value of harvest,  1 5h h  for any value of the harvesting rate ℎ. The model is applicable to most forest reserves in Ghana 

for sustainable harvesting. 
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1. Introduction 
 

Forests are long-lived biological systems that are 

continuously changing. The study of forest dynamics is 

concerned with the changes in forest structure and 

composition over time, including its behaviour in response 

to anthropogenic and natural destructions. Tree growth and 

forest destructions are primary evidence of forest dynamics. 

They are determined by resources such as water, nutrients 

supply and environmental conditions which includes 

temperature, soil acidity, air pollution and human activities. 

Forest management decisions are made based on information 

about both current and future resource conditions. 

Inventories taken at one instant in time provide information 

on current wood volumes and related statistics. Growth and 

yield models describe forest dynamics (it’s growth, 

mortality, reproduction and associated changes in the stand) 

over time. These models have been widely used in forest 

management because of their ability to update inventories, 

predict future yields and to explore management alternatives 

and silvicultural options, thus providing information for 

decision-making (Burkhart, 1990; Vanclay, 1994). 

 

Human activities affect forest growth in many diverse ways. 

To begin with, they influence the composition, cover, age 

and density of the vegetation. The landscapes for these 

forests systems are altered by human activities. Thus, 

changing the kinds of stands present and their spatial 

arrangement, which influences the movement of wind, 

water, animals and soils. At the regional level, we introduce 

by-products into the air that may fertilize or kill forests. At 

the global scale, human consumption of fossil fuels has 

increased atmospheric carbon dioxide levels and changed the 

way that carbon is distributed in vegetation, soils and the 

atmosphere, with implications on global climate. The 

worldwide demand for forests products has stimulated not 

only the transfer of processed wood products from one 

country to another, but also the introduction of non-native 

tree species, along with associated pests, that threaten native 

forests and fauna. While the management of forested lands is 

becoming increasingly important, it is also becoming more 

contentious because less forested land is available for an 

increasing range of demands. 

 

It is becoming increasingly clear that, forests that are 

managed in a sustainable manner are able to produce both 

high quality wood products and other ecological goods and 

services such as water purification, wildlife habitat and 

carbon sequestration. Forest management practices that 

protect aquatic systems, minimise soil disturbance and 

erosion, and promote rapid forest regeneration are all 

components of sustainable forestry. When forests are 

managed in a sustainable manner, the environmental values 

can be explained along the following lines of action: 

1) The forests play an important role in our water cycle by 

pumping water from the soil back into the atmosphere 

through transpiration. This process also helps to cool the 

surrounding environment; 

2) The forests stabilise the soil and reduce erosion and 

sedimentation into aquatic systems thereby help 

maintain water quality and  
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3) The forests remove airborne particles and ozone from 

our air and improve air quality.   

4) In similar manner, forests have natural economic values 

that are often overlooked by society. When forests are 

degraded, there is a financial cost incurred by society to 

replace the lost ecological goods and services through 

the following: 

5) Increased water treatment cost, 

6) Increased illness and health care costs due to decreased 

water and air quality, 

7) Decreased property value due to degraded aesthetic 

qualities, and also  

8) Decreased revenues from tourism and other non-timber 

commercial activities associated with healthy 

ecosystems. 

It is therefore worth noting that “the contribution of forests 

to a country’s economy, environment and social well-being 

is significant. Our forests therefore form an important part of 

the roots as a nation and a big part of our future. Taking care 

of them and ensuring their ongoing health, is a key priority” 

(Natural Resources Canada, 2006). 

 

Despite these numerous benefits of our forest to the 

country’s economy, environment and social well-being, the 

level of degradation of the forest reserves is high. Studies on 

the forests therefore cannot be over emphasized due to its 

economic, environmental and health importance to the 

society.  

 

The early studies on forests growth were basically on 

continuous population dynamics and the original research on 

growth models was attributed to Thomas Malthus (1798). 

He was therefore considered as the originator of growth 

models. 

 

Nye and Spiers (1964) developed the partial differential 

equations used to describe simultaneous mass flow and 

diffusion for nutrient uptake by a unit length of root. Nye 

and Marriot (1969) defined boundary conditions for the 

equations and solved them numerically, while Baldwin et al. 

(1973), on the other hand, solved the equations analytically 

with steady state approximations. Their work became the 

foundation for mechanistic nutrient uptake models. Building 

on this, Claassen and Barber (1976), Nye and Tinker (1977), 

Barber and Cushman (1981), Claassen et al. (1986), 

Smethurst and Comerford (1993b), Yanai (1994), Smethurst 

et al. (2004), and Comerford et al. (2006) proposed model 

revisions to cover the major sub-processes of nutrient uptake 

and to accommodate a variety of additional conditions.  

Other researchers such as Wu et al. (1985), Wu et al. (1994) 

and Sharpe et al. (1985) modelled the physical growth of the 

forest by considering the influence of stem, crown and roots. 

Others just considered the effect of either one of the 

following: availability of light, surface water or nutrients to 

the growth of the tree and subsequently to the growth of the 

forest.All in the quest to delve into the growth of the forest 

and how best to manage it.The timber in our forest reserves 

must be utilised despite its environment, economic and 

social benefitssince our very existence demands that we use 

the products of timber. Lumber and other forests products 

are therefore needed in our daily lives. This indicates that, 

the forest must be exploited. It is therefore necessary to 

formulate and institute appropriate management policies to 

check over exploitation of the timber in the forests reserves 

whose total depletion will have an adverse effect on the very 

existence of man (Nyarko, et al., 2010). These and many 

other factors have therefore necessitated the study into the 

modelling using non -linear models for determining future 

sequence of harvests from the forest. It has been an inherent 

part of forest management planning and decision-making to 

determine the optimal harvesting schedules for the forestry 

industry. 

 

2. Materials and Methods 
 

Many growth models have been applied to a number of 

growth data to determine the dynamics of the strand. A 

number of candidate models of continuous population 

dynamics have been outlined in this study. The essence is to 

determine a feasible growth model which can incorporate 

harvesting parameter (h) for predicting harvesting levels. 

 

2.1 The Malthusian Growth Model 

 

Thomas Malthus proposed an exponential growth model and 

assumed that, if  N t  is the number of individuals in a 

population at time t , and let b  and d  be the average per 

capita birth and death rates, respectively, then in a short time 

t , the number of births in the population is  b tN t , and 

the number of deaths is  d tN t . Thus, the change in 

population between the times t  and  t t  is determined 

by the relation        N t t N t t b d N t      which 

can be rearranged as         /N t t N t t b d N t      . 

Now, the limit as 0t  , this expression was obtained as 

Equation (1) 

 
 

dN t
rN t

dt
     (1) 

with the integral form which proposes an exponentially 

growth as Equation (2)  

  0

rtN t N e               (2) 

where, 
0N  is the initial population,  N t is the population 

after some time t  and r b d   being the intrinsic growth 

rate. 

 

2.2 The Logistic Growth Model 

One of the two regulation models to the Malthus exponential 

growth model is the logistic growth model by Verhulst. 

Verhulst’s findings in 1838 revealed that, Malthus 

exponential growth for population size is unrealistic over a 

long period since growth will eventually be checked by 

over-consumption of resources.  He therefore proposed a 

model called the Logistic growth model which is of the form 

given by Equation (3) 

 

 
dN

rNF N
dt

    (3) 

where  F N  provides a model for environmental 

regulation. He indicated that, this function should satisfy 

 0 1F  when the population grows exponentially with 
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growth rate r  and N  is small,   0F k   indicating that the 

population stops growing at the carrying capacity, and 

  0F N   when N k  thus the population decays when it 

is larger than the carrying capacity. The simplest function, 

 F N  satisfying these conditions is linear and was given by 

  1 /F N N K  . The resulting model is the well-known 

logistic equation given as Equation (4)  

  1
dN N

rN
dt k

 
  

 
             (4) 

where  1 N k  represents the fractional deficiency of the 

current size from the saturation level, .k  This is an 

important model for many processes besides bounded 

population growth. 

 

2.3 Verhulst Logistic Growth Scaled by the ‘Delaying’ 

Factor  
1

1 c N K


    

 

The other regulation model to the Malthus exponential 

growth model is by Smith (1963). Smith also reported that 

the Verhulst logistic growth equation did not fit 

experimental data satisfactorily due to problems associated 

with time lags. According to Smith, the major problem in 

applying the logistic growth equation to data concerns an 

accurate portrayal of the portion of the limiting factor as yet 

unutilized given by  1 N k . He then argued that for a 

food-limited population, the term  1 N k  should be 

replaced with a term representing the proportion of the rate 

of food supply currently unutilized by the population. Thus. 

if F  is the rate at which a population of size N  uses food 

and T  is the corresponding rate at saturation level, then the 

model can best be represented as Equation (5) 

  1
dN F

rN
dt T

 
  

 
  (5)  

where    F T N K , since a growing population will use 

food faster than a saturated population. F  must depend on 

N  and dN dt , and the simplest relationship was identified 

to be linear indicated as Equation (6) 

  , 0,
dN

F aN b a b o
dt

      (6) 

At saturation , , 0 ,
dN

F T N k
dt

    hence T ak  and as 

a result the modified Verhulst logistic growth equation is 

given as Equation (7) 

  

1

1

N

dN krN
Ndt

c
k

 
 

  
  
 

               (7) 

where c rb a  

 

2.4 Extensions of the Logistic Growth Model 

 

In a survey paper, Buis (1991) revisited several previous 

logistic growth derived functions that have been introduced 

and outlined some of their respective properties. The 

generalised logistic growth model was deduced based on the 

three postulates of the kinetic theory of growth. The three 

postulates are stated as follows:  

P1: The rate of change of size is jointly proportional to a 

monotonically increasing function 
1  of the distance 

between the origin and the size, and to a monotonically 

increasing function 
2  of the distance between size and 

ultimate size. This is represented mathematically as 

Equation (8) 

     1 20, ,n n

dN
N N k

dt
            

  (8) 

P2: The monotonically increasing functions 
1  and 

2  are 

power functions where 
1 2, 0   . These are 

represented by Equations (9) and (10) 

      1

1


        (9) 

      2

2


                    (10) 

P3: The exponents 
1  and 

2  obey the constraints 

represented by Equations (11) and (12) 

  
1 1 np                        (11) 

   
2 n np              (12) 

where 1 2
10, 1 , 1n p n

n
         

Based on these postulates of the kinetic theory of growth, 

the generalized logistic function is defined as Equation (13):  

 

1
dN N

rN
dt k




  

   
   

  (13) 

where ,   and   are positive real numbers. The emphasis 

is mostly on positive values for these parameters, as negative 

exponents do not always provide a biologically plausible 

model. Other growth models that follow come under 

extensions of generalised logistic growth model. Three main 

features that can be made out of the generalized logistic 

growth model are as follows: 

(i)  lim
t

it N t k


 , the population will ultimately reach its 

carrying capacity. 

(ii) the relative growth rate dN Ndt  attains its maximum 

value at. N
 given by Equation (14) 

 1

1
1

N k






  
  

 
   (14)  

provided N
 is real and greater than 

0N , otherwise it 

declines non-linearly reaching its minimum zero value at 

N k . The maximum relative growth rate is given by 

Equation (15) 

 

 
 1

1

max

1 1

1 1

dN
rk

N dt





 

   



     
     

        
  (15) 

Important limit values of N
 are 

0
lim 0it N





  

 1

0
lim it N e









  
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0
lim it N k







 
 

(iii) The population at the inflection point (where growth 

rate is maximum), is given by Equation (16) 

  
 1

inf 1N k N






 
   
 

 

  (16)  

Few examples of growth equations that are derived from the 

generalised logistic growth model are considered below. 

 

2.5 Richard’s Growth Equation 

 

Richard extended the growth equation developed by Von 

Bertalanffy to fit empirical plant data (Richards, 1959). In 

Richard’s suggestion, he came up with Equation (17) which 

is also a special case of the Bernoulli differential equation:  

  1
dN N

rN
dt k

  
   

   

   (17) 

This has a solution given by Equation (18) 

   
 

0

1

0 0

rt

kN
N t

N k N e
   



  
 

 

  (18) 

Here, the inflection 
infN  occurs at a value given by Equation 

(19) 

  

1

inf

1

1
N k





 
  

 
   (19) 

Richard’s form is readily deduced from generalised logistic 

function (3.13) with 1   . For 1  , Equation (3.22) 

trivially reduces to the Verhulst logistic growth equation 

(3.4) and similarly exhibits the same inflexible inflection 

point value. 

 

3. Model Formulation 
 

The purpose of Harvesting model is to manage the forest 

resource so that the value of the harvest from the forest is 

determined such that, the forests is made to attain its stable 

state without going into extinction. This is possible if certain 

maximum allowable cut does not exceed the calculated 

proportion to be harvested within every one step period. 

 

Model Assumptions: 

The model development of this paper was based on the 

following assumptions: 

1) A tree may advance at most one size class during the unit 

period from t  to 1t  .  

2) Regeneration can occur only when trees are thinned from 

the forest. 

3) The enumeration 𝑋(t) takes place right before harvesting. 

 

The generalization of the process is as indicated in figure 1 

where the population is counted before harvesting. 

 

 
Figure 1: The population is counted before the harvest. 

 

4) After growth period and after harvesting, the forest is 

returned to its prior state. This is represented asEquation 

(20) 

5)  

( 1) ( )X t X t      (20) 

 

Whenever an environment cannot sustain an infinite 

population of a species, population growth will slow down 

as the population size increases. This study models the effect 

of these environmental factors with a carrying capacity that 

limits growth, leading to the application of a logistic 

equation for population growth of the form given as 

Equation (21)  

1 1 t

t t t

P
P P rP

K


 
   

 
  (21) 

where r is the low-density growth rate and K  is the carrying 

capacity. If the evolution of a population is following such 

logistic growth and r isn't too large, then the population size 

will evolve to a steady state of K  even without harvesting. 

Ingeneral, for natural populations, a population following 

logistic growth doesn't require harvesting to maintain a 

steady population. 

 

In most cases, the goal of harvesting a natural population is 

not population control, but simply to yield of a substantial 

harvest from the population. In such cases, some of the 

possible questions one may ask include: what harvest 

strategy will provide the maximum long-term yield, what is 

the maximum allowable harvest that will still retain the 

population, and what are the stable equilibrium sizes of the 

population under harvesting? In this study, we investigate 

these questions using the logistic model where the harvest is 

proportional to the population size, i.e., with the model 

where 
th  is the fraction of the population harvested at time 

step t and represented as Equation (22). 

1 1 t

t t t t t

P
P P rP h P

K


 
    

 
   (22) 

 

4. Simulated illustrations for 

HarvestingLevels 
 

As an illustrative example of the effects of harvesting,the 

study begins with the assumption of Equations (23) and (24) 

0 1000P      (23) 

1 0.2 1 t

t t t t

P
P P P hP

K


 
    

 
   (24) 

of a population with an initial value of 1000 trees,a low-

density growth rate of 0.2 per time interval, with carrying 

capacity of 1000 trees and assume a constant harvesting 

rate h  for all times. The goal is to determine what 

fraction, h  may be harvested while still retaining the 

population. 
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To begin with, if the equilibrium population size is denoted 

as
eP , setting both 

1t eP P  and 
t eP P , one therefore solves 

for 
eP  as Equations (25) to (31): 

1 0.2 1 t

t t t t

P
P P P hP

K


 
    

 
   (25) 

0.2 1
1000

e

e e e e

P
P P P hP

 
    

 
   (26) 

0 0.2 1
1000

e

e e

P
P hP
 

   
 

         (27) 

0 0.2 1
1000

e

e

P
P h
  

    
  

        (28) 

The product is zero if either 

0eP   or 0.2 1 0
1000

eP
h

 
   

 
         (29) 

We can solve the second option for Pe: 

1 5
1000 0.2

eP h
h

 
   

 
   (30) 

 1000 1 5 eh P              (31) 

 

Therefore, the two possible equilibrium values are given as 

Equations (32) and (33) 

0eP      (32) 

 1000 1 5 eh P    (33) 

 

Since 
eP  is a population size, the equilibria make physical 

sense only if they are positive. Thus, if 1−5ℎ is negative, 

then the second equilibrium is negative and doesn't make 

sense and therefore, the only realistic equilibrium is 0eP  . 

If the harvest is more than 20% of the population present at 

each time, then 0.2h  and 1 5h  is negative. Such a large 

harvest rate will cause the population to die out. The low-

density growth rate (births minus natural deaths) is 20%, and 

this is the maximum growth rate. If the harvest rate exceeds 

the low-density growth rate, the population will dwindle 

away and disappear. In fact, even if the harvest rate is 

exactly 20%, then the second equilibrium 

is  1000 1 5(0.2 0eP    , and the population will still die 

out. 

To simplify the further analysis, the equation is normalised 

by dividing equation (22) by the carrying capacity 1000.This 

normalizes the initial equation by dividing by the carrying 

capacity to obtain Equation (34): 

1 0.2 1
1000 1000 1000 1000 1000

t t t t tP P P P P
h  

    
 

   (34) 

 

letting 1000t tP P , the dynamical system for 
tP  can be 

written as Equations (35) and (36) 

0 1P      (35) 

 1 0.2 1t t t t tP P P P hP       (36) 

 

This normalization just replaces the carrying capacity by the 

number 1. This normalization is done to show that the value 

of the carrying capacity doesn't play an important role in 

determining the dynamics. If the carrying capacity had been 

a number other than 1000, we could have divided by that 

number, and the end result would be the same equation. 

 

The equilibria for 
tP  are the same as the equilibria of 

equation (36) for 
tP , with just the carry capacity 1000 

changed to 1. If one denotes the equilibria for 
tP  as 

eP , the 

equilibria are obtained as Equation (37) 

0eP  and 1 5eP h      (37) 

 

As long as the fractional harvest ℎ is set at a number less 

than 0.2, both equilibria 0 and 1 5h are valid. It was 

observed that the equilibrium 0eP   is unstable and the 

equilibrium 1 5eP h  is stable. Thus, as long as 

0 0.2h  , then one can be confident that, the model 

predicts that the population won't die out. 

 

5. Results and Discussion 
 

The objective of introducing harvesting component is to 

maximize the harvest without altering the stability of the 

forest stand or the population becoming tiny. The amount of 

the harvest will be ℎ times the population size 
tP . To 

maximize the harvest, we want both the population size 
tP

 to be large and the harvest rate h  to be large. Since 

increasing the harvest rate will decrease the population size, 

it's not so simple to see what the optimal harvest rate should 

be. However, h r is too large since the population will die 

out and the harvest will be zero. But, if 0h  , the harvest 

will also be zero. The question now dwells on what 

intermediate value of the fractional harvest ℎ that will 

maximize the total harvest? 

To optimize the harvest rate h , the study assume that 

harvesting has been done at the rate h  for a long time so 

that the population has reached equilibrium. As long 

as 0.2h  , the population size will settle down to the stable 

equilibrium 1 5eP h  . With the population size being 

fixed at 
eP , then the total amount of harvest is given as 

Equation (38) 

 

 1 5eh P h h   . 

  (38) 

 

The maximum harvest at equilibrium will be obtained at a 

harvest level that maximizes  1 5h h  . The study 

therefore determines the value of ℎ for which  1 5h h  is 

the largest. Let G be the total harvest as a function of harvest 

rate ℎ. Then the total harvest can be represented as Equation 

(39) 

 

    ( ) 1 5G h h h     (39) 

 

Calculating the critical points of G, one obtains Equation 

(40) 
/ ( ) 1 10G h h     (40) 
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At the critical points ( ) 0G h   and this occurs 

when 0.1h   

 

To determine local maximum or minimum, the study 

obtained ( )G h  given as Equation (41). 

/ / ( ) 10 0G h       (41) 

Since G′′(h) is less than zero, the critical point is a local 

maximum. Thus 0.1h   yields the maximum value 

of  1 5h h  for any value of the harvesting rate ℎ. 

 

In this example, we had set 0.2r  . The optimal 10% 

harvest strategy is exactly one-half the low-density growth 

rate. Furthermore, the equilibrium when 0.1h 

 is 1 5 0.5eP h   , which is exactly half the maximum 

supportable population  

The study calculated this result for the special case 

when 0.2r  , but it turns out that, this is a general property 

of logistic models. 

 

From the illustrative example, it is evident that the value of 

the carrying capacity in the Logistic growth model doesn't 

play any important role in determining the dynamics of the 

forest stand.  However, the extinction or otherwise of a 

forest stand depends on maximum allowable cut that must 

strictly be less than the low-density growth rate, thus 

0 h r  . As long as the fractional harvest ℎ is set at a 

number less than 0.2, both equilibria 0 and 1 5h  are valid. 

It was observed that the equilibrium 0eP   is unstable and 

the equilibrium 1 5eP h   is stable. As long as 0 0.2h  , 

then one can be confident that, the population won't die out. 

 

6. Conclusion 
 

The study used the Vehaulst’s logistic growth model with a 

harvested proportion h to determine the dynamics of the 

forest stand.The Logistic growth model necessitated this 

study of modelling forest growth and its associated 

harvesting policy for determining future sequence in order 

not to compromise its benefits.it is evident that the value of 

the carrying capacity in the Logistic growth model doesn't 

play any important role in determining the dynamics of the 

forest stand. the extinction or otherwise of a forest stand 

depends on maximum allowable cut that must strictly be less 

than the low-density growth rate, thus 0 h r  . 
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