Impact of Combined Vitamins Supplementation in BPA Induced Swiss Albino Mice (MUS Musculus)

Kather Bee S¹, Dr Sendhilavadivu M²

¹Research Scholar Department of Zoology Queen Mary’s College;
²Assistant Professor, Department of Zoology, Queen Mary’s College, Chennai 600 004. Tamil Nadu, India

Corresponding Author Email: sendhilmpmc[at]gmail.com

Abstract: Bisphenol A BPA is an extensively used chemical found in consumer goods and food products, to which human beings are exposed. This study aims to evaluate the damaging effect of BPA in albino mice and investigate the role of combined vitamins as antioxidants against BPA - induced oxidative stress. BPA - induced albino mice were treated with combined vitamins, resulting in increased levels of enzymes such as GST, GPx, SOD, and catalase, and a decrease in the level of TBARS. These findings suggest that combined vitamins could act as antioxidants against BPA - induced oxidative stress. This study aims to evaluate the damaging effect of BPA in albino mice and investigate the potential protective role of combined vitamins as antioxidants against BPA - induced oxidative stress. Understanding the damaging effect of BPA and exploring potential protective strategies is crucial due to the widespread exposure of human beings to this chemical. This study contributes to the knowledge of BPA - induced oxidative stress and highlights the potential role of combined vitamins as antioxidants, which may help mitigate the adverse effects of BPA.

Keywords: BPA, Combined vitamins, Antioxidant, Albino mice

1. Introduction

Industrial advancement and agricultural development are inevitably linked to increase pollution and likelihood of environmental contamination by various harmful chemicals such as pesticides or industrial waste which may further add - up in successive food chain. As per recent reports, these chemicals hold the ability to interfere with the metabolic homeostasis, which may lead to several disease morbidities (Philips et. al 2018; Perrot - Applanat., 2018).

Some chemicals such as BPA, due to their micromolecular nature, can cross the blood brain barrier and could act as potential neurotoxins and may affect neuronal signaling pathways; involving reactive oxygen species; oxidative stress, calcium signaling and mainly neurotransmitters homeostasis across the nervous system (Wang et al., 2019).

BPA is an important and notorious chemical, used at the industrial scale in the production of numerous commonly used products including polycarbonate plastics (Krishnan et al., 1993; Biles et al., 1997), resins for coating inner lining of food cans (Brotons et al., 1995), thermal paper (Biedermann et al., 2010), medical devices, food containers and construction utilities, automotive industries, optical media (CDs and DVDs), electronics and dental sealants (Olea et al., 1996).

Ingestion of BPA is one of the major routes of exposure which happens via eating contaminated food, drinking water and workplace exposure (EPA, 2015).

BPA being its precursor (Nargotra Sharma et al., 2018). Thermal paper and carbon paper used in the cash receipts coating is an active source of BPA toxicity.

World population capacity of Bisphenol A was 1 million tons in Year 1980s, and more than 2.2 million tons in 2009. In 2003, U. S. consumption was 856, 000 tons, 72% of which used to make polycarbonate plastics and 21% going into epoxy resins. In the U. S. less than 5% of the BPA produced is used in food contact applications, but remains in the canned food and printing application such as sales receipts.

BPA-based resins are commonly used in dentistry. Due to its major applications in the production of plastic food or beverage containers and the coating of food cans, people of different ages are inevitably exposed to BPA in daily life. BPA has been detected in the human placenta (Schonfelder et al., 2002), cord blood (Yi Wan et al., 2010), amiotic fluid (Ikezuki et al., 2002; Yamada et al., 2002), fetal liver (Cao et al., 2012) and breast milk (del RiscoSun et al., 2004), making exposure of human neonates and infants a very real concern today.

Moreover, many research have shown that BPA induces oxidative stress in vital organs such as the liver, and kidney (Bindumol et al., 2003; Chitraet al., 2003; Kabuto et al., 2004; Mourad and Khadrawy, 2012).

Several studies reported the occurrence of oxidative toxicity after BPA exposure in rats and mice (Chitra et al., 2003; Gong and Han, 2006). BPA can cause liver, kidneys, brain, and other organs injury by forming Reactive oxygen species (ROS). Moreover, the study of Bindhumol et al., (2003) revealed that low doses of BPA generate ROS by decreasing the activities of antioxidant enzymes and increasing lipid peroxidation thereby causing oxidative stress in liver of rats.

Oxidative stress is an important process in which the natural balance between pro -oxidants and antioxidants is shifted toward the oxidant side to cause biological damage (Sies, 1991).

Oxidative stress affects the major cellular components like proteins, lipids and DNA. The importance of oxidative stress is commonly emphasized in the pathogenesis of various
degenerative diseases, such as diabetes, cancer, cardiovascular disorders or neurodegenerative diseases.

Due to highly exposure of BPA which is harmful substance, we investigate its role in the induction of oxidative stress, its effect on antioxidant enzyme parameters in blood of albino mice to evaluate the antioxidant role of combined vitamins. Each of the vitamins and minerals in MVMs have a unique role to play in the body.

Vitamins and mineral supplements together maintain a delicate balance inside our body. They must cooperate to produce the better in the organisms body effect. Some dietary supplements are combined, such as combined vitamins to help us to obtain proper nutrient levels in one easy away.

2. Materials and Method

2.1 Animals

This study was conducted on 24 apparently healthy male and female Swiss Albino mice (*Mus musculus*) aged between 8 to 12 weeks with an average body weight of 32 to 40 grams. They were kept in 12 hour light and 12 hour dark cycle under the controlled temperature at 23°C degree celcius+ 2 degree celciusand relative humidity (55% +5%) conditions. Animals were acclimatized to the laboratory conditions. The animals were fed on certified pelleted rodent food, purchased from, Thansi Pets Super Stores, No.22, South Mada street, Kolathur Chennai - 600 099.

2.2 Experimental Design

The rats were divided into 4 groups comprising of 6 animals in each group.

Group I Control - sham operated animals (C)

Group II BPA induced (by oral) 30 days animals - Control (EC)

Group III Animals were first induced with BPA for 30 days and then from 31 to 60 days with Combined Vitamin (Vitamin A, B1, B2, B6, B12 and E) was given.

Group IV BPA was induced to animals for 1 to 3 days and immediately after 4th to 34th days BPA and Combined Vitamin was given.

The study was carried out to assess the oxidative stress, antioxidant enzymes, Glutathione S Transferase (GST), Glutathione peroxidase (Gpx), TBARS, Super oxide dismutase (SOD), Catalase (CAT), in the BPA induced animal blood. Along with the BPA induced mice were administered with Combined vitamin supplementation in powder form mixed with water for administration.

2.3 BPA induction: (Nimisha Balakrishnan and Sendhilvadivu, 2016)

BPA was given to the albino mice orally (20mg/ kg body weight) for 30 days.

2.3.1 Research Study Methods: BPA - induced albino mice were treated with combined vitamins, and the levels of enzymes GST, Gpx, SOD, catalase and TBARS were measured to assess the impact of combined vitamins supplementation on oxidative stress. The experimental design, dosage, and duration of treatment should be provided to enhance the study's reproducibility and transparency.

2.4 Combined Vitamins Supplementation (Hasan et al., 2011)

Mice were fed with combined vitamins (20mg/kg body weight).

2.5 Sample Preparation: The experimental animals were sacrificed by cervical dislocation at the end of the appropriate experimental period. The various experimental groups viz. C (Group - 1), EC (Group – 2), ET (Group – 3) BPA induced to animals for 30 days and from 31 to 60 days Combined Vitamin (Vitamin A, B1, B2, B6, B12 and E) was given. ET (Group – 4) BPA was induced to animals for 1 to 3 days and immediately after 4th to 34th days BPA and Combined Vitamins (Vitamin A, B1, B2, B6, B12 and E) was given. Immediately after the experiment the heart was punctured and the mice were dissected and heart punctured and blood sample was collected for analysis.

2.6 Oxidative Stress Analysis

Oxidative damage is analysed by the levels of antioxidant enzymes present in the blood samples of mice by measuring the levels of TBARS, Glutathione S Transferase (GST), Glutathione Peroxidase (Gpx), Super oxide Dismutase (SOD) and Catalase (CAT).

2.6.1 Glutathione S - Transferase (Habig et al, 1974)

Glutathione s - Transferase (GST) enzyme was assayed in all the blood samples viz C, EC, ET (Combined vitamin) 31 to 60 days and ET Combined vitamin immediate after 4th to 34th day by using the method of Habigetal., 1974.

2.6.2 Glutathione Peroxidase (Rotrucket al, 1973)

Glutathione Peroxidase (Gpx) enzyme was assayed in all the blood samples of the animal viz C, EC, ET (Combined vitamin) 31 to 60 days and ET Combined vitamin immediately after 4th to 34th day by using the method of Rotrucket al, (1973).

2.6.3 TBARS (MDA)

TBARS (MDA) was measured in all the blood samples of the animal viz C, EC, ET Combined vitamin (31 - 60days), ET combined vitamins immediately after 4th to 34th daysanimals using the method of Okahwa (1979).

2.6.4 Super oxide dismutase (EC.1.151.1)

Supe oxide - dismutase enzyme was assayed in all the blood samples of the animals viz. C, EC, ET Combined vitamin (31 - 60days), ET combined vitamins immediately after 4th to 34th days by using the method of Beauchamp and Fridovich (1973).

2.6.5. Catalase (EC.1.11.1.6)

Catalase was measured in all the blood samples of the animals viz. C, EC, ET Combined vitamin (31 - 60days), ET combined vitamins immediately after 4th to 34th daysby using the method of Chance and Machly (1955).
3. Statistical Analysis

The statistical analysis of the various parameters of the present study in all animal groups was carried out. Student ‘t’ test was conducted to test the difference between two sample means by using given formula as suggested by Gupta (1978).

4. Results

The present study aimed to evaluate the effect of oxidative stress caused by BPA in the blood whether co-administration of combined vitamins in both prolonged (30 Days BPA, 31 – 60 days combined vitamins) and immediate (1 - 3 days BPA, 4 to 34 th day BPA and combined vitamins) form can ameliorate this oxidative damage in albino mice.

In the Experimental Control animals (EC) after administration of BPA without any treatment, The activity level of Thiobarbituric acid (TBARS) reactive substances was significantly elevated to be - 219.78 % when compared to that of Control (Table 1). The activity level of antioxidant enzymes namely Glutathione S transferase (GST), Glutathione Peroxidase (GPx), Super oxide dismutase (SOD), Catalase (CAT), are found to be reduced to 88.33%, 82.09% 81.60% and 51.03% in the BPA induced albino mice when compared to that of Control (Table - 1).

In Group – III (BPA induced to mice for 30 days and supplemented with Combined Vitamin from 31 – 60 days). The activity level of antioxidant enzymes in Group – III viz. GST, GPx, SOD, CAT, are found to be reduced to 61.15%, 53.08%, 71.89%, 20.68%, in the BPA induced albino mice when compared to that of Control (Table - 2). The TBARS value has a significant decrement 57.66% indicating lowered lipid peroxidation in the BPA induced albino mice blood supplemented with Vitamin C. (Table 2)

In Group – IV (BPA induced for 1 to 3 days followed by 4th to 34th days BPA + Combined vitamin). The results on antioxidant enzymes revealed significant improvement in the levels of GST, GPx, SOD and CAT in the blood Samples of the mice, the elevated activity levels of enzymes ranged from 21.78%, 9.44%, 59.62%, - 43.65% (Table - 2). The TBARS value has a significant decrement27.03% indicating lowered lipid peroxidation in the BPA induced albino mice blood supplemented with Combined vitamin (Table 2).

In Group III AND Group IV the oxidative damage was found significantly reduced whereas the levels of antioxidant enzymes such as GST, GPx, SOD and CAT was observed to improve significantly.

5. Discussions

Vitamins and minerals play an essential role within many cellular processes including energy production and metabolism. Supplementation with of multivitamin/mineral (MVM) for ≥28 days resulted in improvements in cognition and subjective state of animals. It was demonstrated that the shifts in metabolism during cognitively demanding tasks following MVM in females, both acutely and following 8 - week supplementation.

Dodd et al., (2016) investigated the interaction between these metabolic parameters which were modulated by micronutrient interventions such as a full spectrum multivitamin/mineral (MVM) with approximately one recommended dietary allowance (RDA) of water soluble vitamins (B vitamins and vitamin C) alongside coenzyme Q10 has increased cerebral blood flow after a single dose, and a higher single dose of MVM with approximately 3 RDAs of water soluble vitamins has found to increase of fat oxidation and total energy expenditure, with the latter effect still evident after 8 weeks’ of supplementation.

Sholeyet al., (2017) study indicated a change in the metabolic and psychological effects of MVM treatment on first day at 28 days of treatment. The acute effects of MVM supported the previous research work by Dodd et al., (2016)... which demonstrated modulation of both physiological and subjective parameters.

Hasan et al., (2011) studied the modulatory role of MVM on chronic unpredictable stress (CUS) and Dietry restriction (DR) that induced biochemical changes to delineate, role of micronutrient supplementation.

Glutathione Transferase

In Table 1 (Group – I & II), the activity level of GST in the II group was significantly decreased as compared to the control group of Albino mice in the present study. The activity level of GST was decreased to be 0.041 µg as compared to the control, 0.3516 µg respectively.

In Table 2 (Group – I & III), the activity level of GST in group III was significantly increased as compared to the control group of Albino mice in the present study. The activity level of GST was found to be 0.1366 µg as compared to the control, 0.3516 µg respectively.

In Group IV, The activity level of GST in group IV was significantly increased as compared to the control group of Albino mice in the present study. The activity level of GST was found to be 0.275 µg as compared to the control, 0.3516 µg respectively. The Treatment with Combine Vitamins (Vitamin A, B1, B2, B6, B12 and E) both prolonged and immediate results in significant increase in the level of GST.

Glutathione Peroxidase

In Table 1 (Group – I & II), The activity level of GPx in the group II was significantly decreased as compared to the control group of Albino mice in the present study. The activity level of GST was decreased to 0.0916 µg as compared to the control, 0.5116µg respectively.

In Table 2 (Group – I &III) GPx Antioxidant level of the treated mice was found to be 0.24µg as compared to the the control value of 0.5116 µg. The values were found to be significant at p < 0.05 level.

In Group – IV, the GPx Antioxidant level of the Treated mice was found to be 0.463 µg as compared to the the control value of 0.5116 µg. The values were found to be
significant at p < 0.05 level. The Treatment with Combine Vitamins both prolonged and immediate results in significant increase in the level of the antioxidant enzyme GPx.

TBARS

In Table 1 (Group – I & II), The activity level of TBARS in the Experiment group was significantly increased as compared to the control group of Albino mice in the present study. The activity level of TBARS was increased to 1.636 µg as compared to the control, 0.5116 µg respectively.

In Table 2 (Group - I & III) The activity level of TBARS enzyme (0.2166 µg) was significantly decreased in the treated mice as compared to the control group of Albino mice, 0.5116 µg. The values were found to be significant at p < 0.05 level in the present study.

In Group IV, the activity level of TBARS enzyme (0.3733 µg) was significantly decreased in the treated mice as compared to the control group of Albino mice, 0.5116 µg. The values were found to be significant at p < 0.05 level in the present study. The Treatment with Combine Vitamins both prolonged and immediate significantly reduce the damage caused by Oxidative stress and results shows decrease in the level of TBARS in Group.

Super Oxide Dismutase

In Table 1 (Group – I & II), The activity level of SOD in the Experiment group was significantly decreased as compared to the control group of Albino mice in the present study. The activity level of SOD was found to be 0.145 µg as compared to the control, 0.7883 µg respectively.

In table 2, (Group – I & III), The activity level of SOD in the treated group was significantly increased as compared to the control group of Albino mice in the present study. The activity level of SOD was found to be 0.2216 µg as compared to the control, 0.7883 µg respectively.

In (Group – I & IV), the activity level of SOD in the Treated mice was found to be 0.3183 µg as compared to the control level of 0.7883 µg. The values were found to be significant at p < 0.05 level. The Treatment with Combine Vitamins both prolonged and immediate results in significant increase in the level of the antioxidant enzyme.

The Treatment with Combine Vitamins both prolonged and immediate results in significant increase in the level of the antioxidant enzyme SOD.

CATALASE

In Table 1 (Group – I & II), The activity level of CAT in the Experimental group was significantly decreased as compared to the control group of Albino mice in the present study. The activity level of CAT was decreased to 0.071 µg as compared to the control, 0.145 µg respectively.

In Table 2, (Group – I & III) the CAT enzyme level of the treated mice was found to be 0.115 µg as compared to the control level of 0.145 µg. The values were found to be significant at p < 0.05 level. The Treatment with Combine Vitamins both prolonged and immediate results in significant increase in the level of the antioxidant enzyme Catalase.

In Group – I & IV, the activity level of CAT in the Treated mice was found to increased to 0.2083 µg as compared to the control value of 0.145 µg. The values were found to be significant at p<0.05 level. The Treatment with Combine Vitamins (Vitamin A, B1, B2, B6, B12 and E) both prolonged and immediate results in significant increase in the level of the antioxidant enzyme Catalase.

6. Conclusion

The findings of this study suggest that combined vitamins supplementation has a positive impact on BPA - induced oxidative stress in albino mice. The increased levels of antioxidant enzymes GST, GPx, SOD, catalase and decreased levels of TBARS indicate the potential antioxidant role of combined vitamins against BPA - induced oxidative stress. Further research is warranted to elucidate the underlying mechanisms and explore the therapeutic potential of combined vitamins in mitigating the adverse effects of BPA.

Conflicts of Interests

The authors declares no conflicts of interests.

References

Table 1: Showing Parameters of antioxidant enzymes in Control (Group - I) and Experimental BPA induced Group (Group – II). Values are mean +/- SD.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Parameters</th>
<th>Control (Group - I)</th>
<th>% of Changes</th>
<th>Experiment (Group - II)</th>
<th>% of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GST</td>
<td>0.3516 ± 0.0147</td>
<td>88.33%</td>
<td>0.041 ± 0.008</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GPx</td>
<td>0.5116 +0.00371</td>
<td>82.09 %</td>
<td>0.0916+0.018</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TBARS</td>
<td>0.5116 +0.0365</td>
<td>-219.78 %</td>
<td>1.636+0.036</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SOD</td>
<td>0.7883 +0.0278</td>
<td>81.60 %</td>
<td>0.145+0.033</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CAT</td>
<td>0.145 +0.0137</td>
<td>51.03 %</td>
<td>0.071+0.013</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Showing Parameters of antioxidant enzymes in Control (Group - I) and BPA (1 to 30 days), combined vitamins (A, B1, B2, B6, B12 and E) and E (31 - 60 days) treated Group (Group – III) and BPA (1 to 3 days), BPA and Combined vitamins (4th – 34th days) Treated Group (Group – IV). Values are mean +/- SD.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Parameters</th>
<th>Control (Group I)</th>
<th>Experiment (Group II)</th>
<th>% of Changes</th>
<th>Experiment (Group III)</th>
<th>% of Changes</th>
<th>Experiment (Group IV)</th>
<th>% of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GST</td>
<td>0.3516+ 0.0147</td>
<td>0.041+ 0.008</td>
<td>61.15%</td>
<td>0.1366+ 0.0103</td>
<td>21.78%</td>
<td>0.275+ 0.0273</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GPx</td>
<td>0.5116+ 0.00371</td>
<td>0.091+ 0.0186</td>
<td>53.08%</td>
<td>0.24 +0.0258</td>
<td>9.44%</td>
<td>0.4633+ 0.0159</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TBARS</td>
<td>0.5116+ 0.0365</td>
<td>1.636+0.036</td>
<td>57.66%</td>
<td>0.2166+0.0136</td>
<td>27.03%</td>
<td>0.3733+ 0.408</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SOD</td>
<td>0.7883+ 0.0278</td>
<td>0.145+0.033</td>
<td>71.89%</td>
<td>0.2216+0.0204</td>
<td>59.62%</td>
<td>0.3183+ 0.0278</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CAT</td>
<td>0.145+ 0.0137</td>
<td>0.071+0.013</td>
<td>20.68%</td>
<td>0.115+0.03594</td>
<td>-43.65%</td>
<td>0.2083+ 0.0116</td>
<td></td>
</tr>
</tbody>
</table>

[GST - Glutathione Transferase GPx - Glutathione peroxidase TBARS - Thiobarbituric Acid Reactive Substances SOD - Superoxide Dismutase]