International Journal of Science and Research (1JSR)
ISSN: 2319-7064
SJIF (2022): 7.942

Numerical Solution of Damped Harmonic Oscillator
and Simulation using GNumeric Spreadsheets and
Python Codes

Dr. Vedavathi Aluri

Department of Physics, Sri Sathya Sai Institute of Higher Learning
Email: vedavathialuri[at]sssihl.edu.in

Abstract: The damped harmonics oscillator problems have been solved numerically using classical Runge-Kutta method.The
differential equations are solved in a Free Open Source Software (FOSS) GNumeric, a simple worksheet environment. The requisite
algorithm is implemented in another FOSS python. Initial values for the simulation were taken from model parameters given in the
book on C for Computer Simulation in Physics by R. C. Verma and Setul Verma, which were then optimized to obtain the best

convergence for the particular problems.

Keywords: Runge-Kutta method, FOSS, Python codes, Gnuemeric worksheets

1. Introduction

Every physics student studies classical mechanics and learns
the analytical solutions of simple problems. But many
interesting problems are difficult to solve analytically. Such
problems can be solved using numerical techniques. The
understanding of the theoritical model which is employed for
solving the problems is the first step to any laboratory
experiment, simulation or virtual experiment. In classical
mechanics, a solution to a typical problem involves solving
the equations of motion that could be obtained using
Newton's second law or the Lagrangian approach [1]. This
can be done by solving an initial value problem which is a
second order differential equation for which initial position
and initial velocity are given. In most cases, analytical
techniques are available and we obtain the trajectory of the
system with the capability to predict the position of the
particle in the system at some future time, as the solution
gives us r as r(t). Occasionally, we come across some cases
for which the analytical solution is not available or is not
easy to obtain, we approach the numerical techniques like
Euler or Runge-Kutta methods [2] to solve the problem,
which involve writing code in a programming language like
python. In this paper, the numerical solutions of damped
harmonic oscillator problem are obtained using Classical
Runge-Kutta method and the the simulation has been done
with GNumeric Spreadsheets, and python programming

2. Methodology

In GNuermic environment, the data can be accessed and
manipulated using python programming. Since, both python
and Gnumeric are free softwares, the source codes in
GNumeric can be directly extended to the functions in
python programming. Python offers a high-level abstraction
through which to interact with the spreadsheet. Python
and Gnumeric can be used in several ways (3). This paper
describes how to implement GNumeric worksheet
simulations to the Damped Harmonic Oscillator and python
codes. The problem has been solved numerically using
Classical Runge-Kutta method in this work.

The approach to modelling and simulation can be broadly
divided into four steps:

o Modelling the Damped Harmonic problem.

¢ Implementation of the numerical method in a computer.

e Simulation of system by using FOSS.

The first step is elucidated by their application to the present
study below. While the second and third steps are discussed
under Results and Discussion.

2.1 Modelling of Damped Harmonic Oscillator

An ideal simple harmonic oscillator experiencing no
dissipative force is difficult to encounter in the real world.
The dissipative forces are always present which reduces the
amplitude of the oscillationswith each cycl, dies our after
some time, unless energy is supplied to sustain it. This is
called damping, which is generally velocity dependent.
Taking the force to be directly proportional to the velocity,
the equation of motion for the damped oscillator becomes

dzx_ . dx |
Mmaee = T T e @

Where ¢ demotes the damping coeficient and k denotes the
force constamt. There are three different situations to the

damped oscillator: Under damped (4;—22 < %), Over damped
CZ

(4m2 > %), Critically damped (4;—22 = %) (4). Here the
Classical Runge-Kutta method has been used for solving the
differntial equation. It is considered that a mass m of 1.25 kg
is attahced to a spring of force constant k=5 N/m is
oscillating in a medium with damping coefficient c=0.2. The
initial state of motion for the current situation is given by
X(0)=0 m, v(0)=1.5 m/s. The time step is h= 0.05 s for the
under damped oscillator and by changing the parameters, one
can obtain the position and velocity of the oscillator in the
three different cases.

Volume 12 Issue 7, July 2023

WWW.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: SR23706201903

DOI: 10.21275/SR23706201903 492

mailto:vedavathialuri@sssihl.edu.in

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
SJIF (2022): 7.942

3. Results and Discussion

3.1 Implementation of the numerical method in a
computer:

Equation (1) is a Il order Ordinary differential eqution. It can
be resolved in to two first ordr ODEs as

dx
Let EZ ————— (2)
dv_—k c 3
@& m S Tml T T)

The classical Runge-Kutta method for the above two
equations is given by

h
3 [ki1 + 2(k1 + ky3) + kq4]

h
=v; + g[ku + 2(kyy + ka3) + kps]

Xiy1 =X+
Vit1

Here

ki1, k1o, kyzkg keoq ks ko3, kpy are constants to be

calculated using GNumeric worksheets and Python codes.

3.2 Simulation of system

The damped harmonic oscillator problem after solving
numerically using Runge-kutta method, was simulated with
two FOSS. The constants were calculated using the
GNumeric method and also python codes

3.2.1 Visualizing the position and velocity of Damped
Harmoic Oscillator using GNumeric spreadsheets

The system parameters were chosen as force constant k=5
N/m, mass of the spring, m= 1.25000 kg, the initial position

of the spring at the initial time t=0 was taken as 0 m/s and
initial velocity as 1.5 m/s. The damping coefficient of the
medium was considered as ¢=0.2 and the angular frequency
was calculated as k/m. The system paramters were ¢ Runge-
Kutta fourth order method is a powerful numerical tool to
solve ordinary differential equations numerically. The
system parameters chosen for system are shown in Fig.1.
After calculating the constants and substituting in the R-K
formulae for the position and velocity, the value obtained at
different times are given Fig.2. The graphs between posiiton
and time and velocity and time resembled the expected graph
which is shown in Fig.3 to visualize the position, velocity of
the system at different times. This is most impressive when
displayed by computer animation as the system oscillates by
varying aplitudes.

[}

1

\Force cone K= 5.00000 N/m i
mass m= 1.25000 kg |
:initia|time ti= 0.00000 s i
final time tf= 15.00000 s E
o of steps n= 300.00000 !
iinitial posit xi= 0.00000 m{s !
Hinitial velo vi= 1.50000 m/s '
istep size vi= 0.05000 '
1omega“t2 vi= 4.00000 i
idamping c vi= 0.20000 |
mu= vi= 1.25000 i
! o/m= 0.16000 i

Figure 1: The system paramters to implement R-K Method

c/m= U. 1600y
Time i Vi k11 k12 k13 k14 k21 k22 k23 k24 a
0 0000000 150000 1.50000 1494 1490274 14806 _o4 -n30004 —0.35784304 053495204928 —0.24000
005 0074576 1.48055 148059 1.467214 1.463566 1.4466 5352 —0,681119 -0.6791971563 -0.822479862979757 -0.25181
0.1 0.147816 ~ 144661 144661 1.42604 1422506 1.3985 _ngpp72 0964092 -0.9614607248 —1.009531487067097 -0.41623
0.15 0.219001 1.39850 139850 1.371002 1367616 1.33 —pog77 -1.235216 -1.2319247776 -1.363433236191647 -0.25880
0.2 0.287440 1.33685 1.33685 130276 1.299554 1.2624 _j 36366 —1491887 -1.4679649668 -1.611663503933064 -0.64506
0.25 0.332473 126239 1.26239 1222006 1219101 1.1760 31187 -1.731666 -1.7271570921 -1.841877093917578 -0.73062
0.3 0413480 117596 117596 1129912 1.127157 1.0786 -1 84207 -1,952301 -1.9472550005 -2,051926258634681 -0,80035
0.35 0.469886 1.07852 1.07852 1.027219 1.024728 0.971 05211 -2,151740 -2,1462204941 -2,230891393099747 -0.85230
0.4 0521166 057112 097112 0915121 0.912917 0.855 324004 -2,328195 -2,3222418672 -2,404048053472015 -0,98423
0.45 0566851 0.85491 0.85491 0.794809 0.782912 0.7312 340410 -2.480064 -2.4737502200 -2.542982035316247 —0.83458
05 0606531 073112 073112 0667346 0.663973 0.6011 -25431 2606043 -2.5094330068 -2.655501752002824 —0.88266
055 0639858 0.60104 0.60104 0.534654 0.333417 0.4661 26556 —2,705082 -2.698245504 -2,740697901514242 -0.94962
0.6 0.666553 0.46602 0.46602 0.3975 0.396609 0.3275 -2 74077 -2.776413 -2.7604181876 —-2.707040345140637 —0.739345
065 0.686401 0.32743 0.32743 0.257484 0.2356945 0.186 279799 —2,819544 -2.8124630871 -2.826852155036694 -0.71397
07 0699260 018669 018669 0.11602 0.113836 0.0453 —280601 2834273 -2,8271750524 -2.827460800507146 -0.62768
075 0705058 0.04522 0.04522 -0.02347 -0.0253 -0.095 -2.82747 -2,820678 -2.8136361158 -2.799896549669755 -0.52272
0.8 0703793 -0.09558 -0.09558 -0.16558 -0.16506 -0.234 -279088 -2.77912 -2.7722034422 -2.7446879336496 -0.40772
085 0695534 -0.23431 -0.23431 -0.30293 -0.30207 -0.369 —2,74465 -2,710236 -2.703512513 -2.662604658285602 -0.28664
Figure 2: The calculated values of the constants
Volume 12 Issue 7, July 2023
Www.I|sr.net
Licensed Under Creative Commons Attribution CC BY
Paper ID: SR23706201903 DOI: 10.21275/SR23706201903 493

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
SJIF (2022): 7.942

Velocity Vs Time

Position Vs Time

2.00000 7

Phase Trajectory of the D:

0.800000
0500000 150000 1

0.400000 1.00000

0.200000 4 0.50000
00000004
0200000

0400000

0500000

24

1.50000
1.00000 -
0.50000
10.00000
~0.50000]

—1.00000

-1.

~0.800000 -
0.7500000000000001 955

-1 TITITTTTITIrIrTT
0.7500000000000001 955

T T T T
08060402 0 020406 08

Position Vs Time

Fig.1. The graphs of Position Vs Time, Velocity Vs Time and Phase Trajectory (Under damped)

Velocity Vs Time Phase Trajectory of the D:

0.300000

0.250000

0.200000

0.150000

0.100000

0.050000 0.00000

2.00000

1.50000-4

1.00000—

0.50000

> 0.000004

-0.50000

0.000000 ®11

u T
0.7500000000000001 8.74999999999999

0. TTTTITTITTIT T 17T
0.7500000000000001 955

T T T T T
0 005 01 015 02 025 03

Figure 3: Plots obtained from calcuated values using GNuemeric worksheets

3.2.2 Python Simulation
Python is an interpreted, interactive, object-oriented high-
level language. Its syntax resembles pseudo-code, especially
because of the fact that indentation is used to indentify
blocks. Python is a dynamcally typed language, and does not
require variables to be declared before they are used.
Variables “appear” when they are first used and “disappear”
when they are no longer needed. Python is a scripting
language like Tcl and Perl. Because of its interpreted nature,
it is also often compared to Java. Unlike Java, Python does
not require all instructions to reside inside classes. Python is
also a multi-platform language, since the Python interpreter
is available for a large number of standard operating
systems, including MacQOS, UNIX, and Microsoft Windows.
Python interpreters are usually written in C, and thus can be
ported to almost any platform which has a C compiler. To
make the understanding more clear, the python codes, have
been written using different modules available, for the
damped oscillator with different conditions and visualized
the position, velocity and amplitude of the system at
different times. The plots are shown in Fig .4 which
resemble the behavoiur of the damped oscillator.

bime ws Position

time ws Vielocity Phase Trajectony

ol i
o LG -~ ., ™,
N o A
o4 | Iy LT Y
| | 13 | | as{ f s Y
a3 | {
ol oo aoq |
|
\ |
a3 | (!
| | =03 o b N
" y . v \ —)
| o || \\.__ p
0 L] % LY]
time ws Position time v Vielocity Phase Trajectory
630 | \
038 \ T .
™,
L] and \
,
| 18 ™,
61%
o4 o4
o1g
o a2
oo o \
\ bag | - o -1 F
" e

0e T— a3
10 i3 L] L ail LF. oy

Figure 4: Plots obtained from python code

4. Conclusion

The numerical methods have been implanted to the damped
harmonic oscillator to enhance the understanding of the
students. By visualizing different damping conditions, one
can understand that in over damped and critical damped
conditions, the system will return to the equilibrium position
most quickly. In conclusion, it is proposed that in an
introductory mechanics course, numerical solutions can be
shown either by computer animation or in graphs like
figures showed in this paper.

References

[1] L. Verlet, 1967 Physics Review 159, 98

[2] R.W. Stanley 1984 Am. J. Phys. 52, 499 (1984)

[3] Aditi Sharma and O S K S Sastri, 2020 European J.
Phys. 1, 41

[4] C for Computer Simulations in Physics, R.C. Vema,
Setul Verma, ISBN: 978-81-89927-20-2

Volume 12 Issue 7, July 2023

Paper ID: SR23706201903

WWW.ijsr.net
Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/SR23706201903

494

