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Abstract: This project reviews the study of simulation results performed for non spherical particles inside a Fluidized bed at different 

velocities, and we will be using the MFIX - SQP model to simulate this case. Mfix is an open source CFD software package developed 

by NETL for simulating multiphase flows in scientific and engineering applications. But before going deep into simulations of non - 

spherical particles, we will be understanding the fundamentals of Fluidized Bed and its principles and the models which are being used 

and also we will compare different models as wells, the difference which comes between spherical and non - spherical particle 

modeling. In this project, we will be analyzing the particles behavior and at different gas velocity and time frame. 
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1. Introduction 
 

Fluidized beds are used widely in the chemical and process 

industries for processes like drying, combustion gasification, 

and catalytic reactions. The fluidized bed reactors offer 

numerous advantages over other reactors, including better 

heat and mass transfer, better mixing and temperature 

control. But these reactors are complex to understand due to 

interaction between solid and gas particles, which makes it 

difficult to predict. In a fluidized bed, a bed of small solid 

particles are suspended and kept in motion by an upward 

flow of gas or liquid. In order to analyze the behavior of 

particles in fluidized beds, a thorough understanding of 

transport phenomena in these systems is required.  

 

 

Fluidized bed Reactor 

 

There is a vast amount of literature in existence on 

experimental study of fluidized beds. They often use pseudo 

2D fluidized beds to study the fluidization behavior by video 

techniques, because 3D beds are not accessible visually. To 

solve these limitations in practical experiments, Computer 

models gained attention from the early 1990s. The reason 

behind is because one can look inside the bed without even 

disturbing the flow of particles. The use of simulations, 

specifically the discrete element model (DEM), has enabled 

us to measure the properties like particle and gas velocities 

as well as porosity which were difficult to find through 

direct experimentation. In simulations, we also have the 

advantage of testing several design options and operating 

conditions with much ease. But the creation of a reliable 

model which can be leveraged to large - scale gas - solid is 

still challenging because of lack of fundamental 

understanding of dense gas - solid contractors, especially the 

phenomena which is related to effective particle - particle, 

particle - gas interactions, and particle - wall interactions.  
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Eulerian Vs Lagrangian treatment from a 2D mesh and its combined treatment 

 

Also the multiscale nature of this phenomena make it more 

complex because the interactions take place at molecular 

level which is a much smaller scale than the flow structure, 

which can be of meters in size, resulting in large separation 

of scale. To find a solution, discrete (Lagrangian) and 

continuum (Eulerian) models have been developed to 

understand the hydrodynamics of particle (solid) as well as 

gas phase. DEM (Discrete Element Modeling) has a wide 

range of applications in systems involving particles. 

However, understanding the particle and fluidizing air 

interactions results in coupling of DEM with a fixed volume 

description using the Navier Stokes equation for the gas 

phase.  

 

2. Governing Equation 
 

● Navier - Stokes equations: These equations describe the 

motion of fluid in terms of velocity, pressure and viscosity. 

They are given as:  

∂ρ/∂t + ∇  · (ρu) = 0 

ρ (∂u/∂t + u · ∇ u) = - ∇ P + μ∇ ^2u + F 

where ρ is the density of fluid, u is the velocity vector, P is 

the pressure, μ is the dynamic viscosity and F is the external 

force acting on the fluid.  

 

● Discrete element method (DEM) equations: These 

equations describe the motion of particles in terms of 

position, velocity and force. They are given as:  

mi (dvi/dt) = Fi 

ri = ri0 + viΔt + 1/2aiΔt^2 

 

where mi is the mass of the particle i, vi is the velocity of the 

particle i, Fi is the force acting on the particle i, ri is the 

position vector of the particle i, ri0 is the initial position 

vector of the particle i, ai is the acceleration of the particle i, 

and Δt is the time step.  

 

● Collision models: These models describe the 

interaction between two particles in terms of collision 

frequency, collision diameter, and restitution coefficient. 

They are given as:  

fc = σij|vi - vj| dcoll = di + dj 

e = (vr - v'r) / (u - u') 

where σij is the collision cross section, vi and vj are the 

velocities of particles i and j, di and dj are the diameters of 

particles i and j, e is the restitution coefficient, vr and v'r are 

the relative velocities of the particles before and after 

collision, and u and u' are the normal components of relative 

velocity.  

 

● Heat transfer equations: These equations describe the 

transfer of heat between particles and the fluid. They are 

given as:  

qconv = hA (Tp - Tf) qcond = - kA (∇ Tp) 

where qconv is the convective heat transfer rate, h is the 

convective heat transfer coefficient, A is the surface area of 

the particle, Tp is the temperature of the particle, Tf is the 

temperature of the fluid, qcond is the conductive heat 

transfer rate, k is the thermal conductivity of the particle, 

and ∇ Tp is the gradient of temperature in the particle.  

 

● Turbulence models: These models describe the 

turbulent motion of fluid in terms of Reynolds stresses and 

turbulence kinetic energy. They are given as:  

∂ (ρk) /∂t + ∇  · (ρku) = Pk - ε + ∇  · (μeff∇ k) 

∂ (ρui) /∂t + ∇  · (ρuiuj) = - ∇ Pi + ∇  · (μeff∇ ui) + ρg + Ri 

where k is the turbulence kinetic energy, u is the velocity 

vector, Pk is the production of turbulence kinetic energy, ε is 

the dissipation of turbulence kinetic energy, μeff is the 

effective viscosity, Pi is the pressure, g is the acceleration 

due to gravity, and Ri is the turbulent Reynolds stress.  

 

3. Collision Frameworks 
 

Hard Sphere Approach: In a hard - sphere system the 

trajectories of the particles are determined by momentum - 

conserving binary collisions. The interactions between 

particles are assumed to be pairwise additive and 

instantaneous. In the simulation, the collisions are processed 

one by one according to the order in which the events occur. 

For not too dense systems, the hard - sphere models are 

considerably faster than the soft - sphere models. Note that 

the possible occurrence of multiple collisions at the same 

instant cannot be accounted 
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(a) Hard Sphere Approach (b) Soft Sphere Approach 

Soft Sphere Approach:  

In more complex situations, the behavior of particles may be 

influenced by short - or long - range forces, and their 

movements can be determined by integrating Newton's 

equations of motion. The soft - sphere method, originally 

developed by Cundall and Strack in 1979, was the first 

simulation technique for granular dynamics published in the 

open literature. Soft - sphere models use a fixed time step, 

allowing particles to slightly overlap. The contact forces are 

subsequently calculated from the deformation history of the 

contact using a contact force scheme. The soft - sphere 

models allow for multiple particle overlap, although the net 

contact force is obtained from the addition of all pair - wise 

interactions. These models are essentially time - driven, 

requiring careful selection of the time step in calculating the 

contact forces. Various soft - sphere models can be found in 

literature, differing mainly with respect to the contact force 

scheme used. Schäfer et al. (1996) presented a review of 

various popular schemes for repulsive inter - particle forces. 

Walton and Braun (1986) developed a model using two 

different spring constants to model the energy dissipation in 

the normal and tangential directions, respectively. Langston 

et al. (1994) proposed a force scheme using a continuous 

potential of an exponential form, containing two unknown 

parameters: the stiffness of the interaction and an interaction 

constant.  

 

4. Simulations Results 
 

We did a simulation of rod shaped particle based on MFix - 

SQP Model and analyzed behavior of fluidized bed at 

different time interval with initial conditions which is given 

below 

 

Input and Ouput values of parameters:  

### Run controls 

description = 'fluidized_bed_superdem' run_name = 

'FB_SQP' 

units = 'SI' 

run_type = 'new' 

tstop = 2.0 

dt = 1.0000e - 02 

dt_max = 1.0000e - 02 

res_dt = 0.005 #!MFIX - GUI eq{float (1.0/200) } 

batch_wallclock = 172800.0 

chk_batchq_end =. False.  

drag_type = 'SQP_DIFELICE_HOLZER_SOMMERFELD' 

turbulence_model = 'NONE' enable_dmp_log =. False. 

energy_eq =. False.  

nodesi = 1 

nodesj = 1 

nodesk = 1 

term_buffer = 180.0 write_dashboard =. False. full_log =. 

True. momentum_x_eq (0) =. True. momentum_y_eq (0) =. 

True. momentum_z_eq (0) =. True. project_version = '9' 

species_eq (0) =. False. species_eq (1) =. False. species_eq 

(2) =. False.  

 

### Physical parameters 

gravity_x = 0.0 

gravity_y = - 9.81 

gravity_z = 0.0 

 

### Cartesian grid cartesian_grid =. False. use_stl =. False.  

 

### Numeric 

max_nit = 50 

norm_g = 0 tol_resid = 1.0000e - 03 ### Discretization 

discretize (1) = 0 

discretize (2) = 0 

discretize (3) = 0 

discretize (4) = 0 

discretize (5) = 0 

discretize (6) = 0 

discretize (7) = 0 

 

### Geometry 

coordinates = 'CARTESIAN' 

imax = 10 

jmax = 50 

kmax = 10 

x_max = 0.1 

x_min = 0 

y_max = 0.5 

y_min = 0 

z_max = 0.1 

z_min = 0 
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no_k =. False.  

#### Fluid 

mu_g0 = 1.8000e - 05 ro_g0 = 1.2005 

 

#### Solids 

mmax = 2 

# Solid 1 solids_model (1) = 'SQP' 

d_p0 (1) = 0.006442555128342861 

ro_s0 (1) = 708.5 

nmax_s (1) = 0 e_young (1) = 1.0000e+06 k_s0 (1) = 1.0 

ks_model (1) = 'MUSSER' sqp_a (1) = 0.001575 

sqp_b (1) = 0.003125 

sqp_c (1) = 0.001575 

sqp_m (1) = 4.0 

sqp_n (1) = 4.0 

sqp_q1 (1) = 1.0 

sqp_q2 (1) = 0.0 

sqp_q3 (1) = 0.0 

sqp_q4 (1) = 0.0 

v_poisson (1) = 0.3 

 

### Initial conditions 

# Initial condition 1: init1 

ic_x_e (1) = 0.1 #!MFIX - GUI eq{float (xmax) } ic_x_w 

(1) = 0.0 #!MFIX - GUI eq{float (xmin) } ic_y_s (1) = 0.0 

#!MFIX - GUI eq{float (ymin) } ic_y_n (1) = 0.1 #!MFIX - 

GUI eq{float (ymin + 0.1) } 

ic_z_b (1) = 0.0 #!MFIX - GUI eq{float (zmin) } ic_z_t (1) 

= 0.1 #!MFIX - GUI eq{float (zmax) } ic_des_fit_to_region 

(1) =. False.  

ic_ep_g (1)  = 0.7 

ic_t_g (1)  = 293.15 

ic_u_g (1)  = 0.0 

ic_v_g (1)  = 0.0 

ic_w_g (1)  = 0.0 

ic_p_star (1)  = 0.0 

ic_ep_s (1, 1)  = 0.3 

ic_t_s (1, 1)  = 293.15 

ic_theta_m (1, 1)  = 0.0 

ic_u_s (1, 1)  = 0.0 

ic_v_s (1, 1)  = 0.0 

ic_w_s (1, 1)  = 0.0 

ic_ep_s (1, 2)  = 0.0 

ic_t_s (1, 2)  = 293.15 

ic_theta_m (1, 2)  = 0.0 

ic_u_s (1, 2)  = 0.0 

ic_v_s (1, 2)  = 0.0 

ic_w_s (1, 2)  = 0.0 

 

# Boundary conditions 

# Boundary condition 1: Bottom_inlet bc_type (1) = 'MI' 

bc_x_e (1) = 0.1 #!MFIX - GUI eq{float (xmax) } bc_x_w 

(1) = 0.0 #!MFIX - GUI eq{float (xmin) } bc_y_s (1) = 0.0 

#!MFIX - GUI eq{float (ymin) } bc_y_n (1) = 0.0 #!MFIX - 

GUI eq{float (ymin) } bc_z_b (1) = 0.0 #!MFIX - GUI 

eq{float (zmin) } bc_z_t (1) = 0.1 #!MFIX - GUI eq{float 

(zmax) } bc_ep_g (1) = 1.0 

bc_p_g (1) = 1.0132e+05 bc_t_g (1) = 293.15 

bc_u_g (1) = 0.0 

bc_v_g (1) = 5.0 

bc_w_g (1) = 0.0 

# Solid 1 

bc_ep_s (1, 1) = 0.0 

bc_t_s (1, 1) = 293.15 

bc_u_s (1, 1) = 0.0 

bc_v_s (1, 1) = 0.0 

bc_w_s (1, 1) = 0.0 

# Solid 2 

bc_ep_s (1, 2) = 0.0 

bc_t_s (1, 2) = 293.15 

bc_u_s (1, 2) = 0.0 

bc_v_s (1, 2) = 0.0 

bc_w_s (1, 2) = 0.0 

# Boundary condition 2: Top_outlet bc_type (2) = 'PO' 

bc_x_e (2) = 0.1 #!MFIX - GUI eq{float (xmax) } bc_x_w 

(2) = 0.0 #!MFIX - GUI eq{float (xmin) } bc_y_s (2) = 0.5 

#!MFIX - GUI eq{float (ymax) } bc_y_n (2) = 0.5 #!MFIX - 

GUI eq{float (ymax) } bc_z_b (2) = 0.0 #!MFIX - GUI 

eq{float (zmin) } bc_z_t (2) = 0.1 #!MFIX - GUI eq{float 

(zmax) } bc_ep_g (2) = 1.0 

bc_p_g (2) = 101325.0 

bc_t_g (2) = 293.15 

# Solid 1 

bc_ep_s (2, 1) = 0.0 

bc_t_s (2, 1) = 293.15 

# Solid 2 

bc_ep_s (2, 2) = 0.0 

 

# VTK outputs 

write_vtk_files =. True. time_dependent_filename =. True. 

vtu_dir = 'VTK' 

# VTK output 1: Entire domain vtk_filebase (1) = 'CELL' 

vtk_x_e (1) = 0.1 #!MFIX - GUI eq{float (xmax) } vtk_x_w 

(1) = 0.0 #!MFIX - GUI eq{float (xmin) } vtk_y_s (1) = 0.0 

#!MFIX - GUI eq{float (ymin) } vtk_y_n (1) = 0.5 #!MFIX 

- GUI eq{float (ymax) } vtk_z_b (1) = 0.0 #!MFIX - GUI 

eq{float (zmin) } vtk_z_t (1) = 0.1 #!MFIX - GUI eq{float 

(zmax) } vtk_data (1) = 'C' 

vtk_dt (1) = 0.01 

vtk_nxs (1) = 0 

vtk_nys (1) = 0 

vtk_nzs (1) = 0 vtk_ep_g (1) =. True. vtk_p_g (1) =. True. 

vtk_vel_g (1) =. True. # VTK output 3 

vtk_filebase (3) = 'SuperDEM_Phase1' 

 

vtk_x_e (3) = 0.1 #!MFIX - GUI eq{float (xmax) } vtk_x_w 

(3) = 0.0 #!MFIX - GUI eq{float (xmin) } vtk_y_s (3) = 0.0 

#!MFIX - GUI eq{float (ymin) } vtk_y_n (3) = 0.5 #!MFIX 

- GUI eq{float (ymax) } vtk_z_b (3) = 0.0 #!MFIX - GUI 

eq{float (zmin) } vtk_z_t (3) = 0.1 #!MFIX - GUI eq{float 

(zmax) } vtk_data (3) = 'P' 

vtk_dt (3) = 0.01 

vtk_nxs (3) = 0 

vtk_nys (3) = 0 

vtk_nzs (3) = 0 vtk_part_diameter (3) =. True. vtk_part_vel 

(3) =. True. vtk_part_phase (3, 1) =. True. vtk_part_phase 

(3, 2) =. False. # VTK output 4 

vtk_filebase (4) = 'SuperDEM_Phase2' 

vtk_x_e (4) = 0.1 #!MFIX - GUI eq{float (xmax) } vtk_x_w 

(4) = 0.0 #!MFIX - GUI eq{float (xmin) } vtk_y_s (4) = 0.0 

#!MFIX - GUI eq{float (ymin) } vtk_y_n (4) = 0.5 #!MFIX 

- GUI eq{float (ymax) } vtk_z_b (4) = 0.0 #!MFIX - GUI 

eq{float (zmin) } vtk_z_t (4) = 0.1 #!MFIX - GUI eq{float 
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(zmax) } vtk_data (4) = 'P' 

vtk_dt (4) = 0.01 

vtk_nxs (4) = 0 

vtk_nys (4) = 0 

vtk_nzs (4) = 0 vtk_part_diameter (4) =. True. vtk_part_vel 

(4) =. True. vtk_part_phase (4, 1) =. False. vtk_part_phase 

(4, 2) =. True.  

# SPx outputs spx_dt (1) = 100.0 

spx_dt (2) = 100.0 

spx_dt (3) = 100.0 

spx_dt (4) = 100.0 

spx_dt (5) = 100.0 

spx_dt (6) = 100.0 

spx_dt (7) = 100.0 

spx_dt (8) = 100.0 

spx_dt (9) = 100.0 

spx_dt (10) = 100.0 

spx_dt (11) = 100.0 

 

### Residuals group_resid =. True. resid_string (1) = 'P1' 

resid_string (2) = 'U1' resid_string (3) = 'V1' 

 

### Discrete element model des_coll_model = 

'HERTZIAN' des_en_input (1) = 0.5 

des_en_input (2) = 0.5 

des_en_input (3) = 0.5 

des_en_wall_input (1) = 0.5 

des_en_wall_input (2) = 0.5 

des_epg_clip = 0.1 

des_et_input (1) = 0.5 

des_et_input (2) = 0.5 

des_et_input (3) = 0.5 

des_et_wall_input (1) = 0.5 

des_et_wall_input (2) = 0.5 

des_etat_fac = 0.5 

des_etat_w_fac = 0.5 des_interp_mean_fields =. True. 

des_interp_on =. True.  

des_interp_scheme = 'DPVM_SATELLITE' 

des_neighbor_search = 4 

desgridsearch_imax = 10 

desgridsearch_jmax = 50 

desgridsearch_kmax = 10 ew_young = 1.0000e+06 

gener_part_config =. True.  

kt_fac = 0.28571428571429 #!MFIX - GUI eq{float (2/7) } 

kt_w_fac = 0.28571428571429 #!MFIX - GUI eq{float (2/7) 

} mew = 0.4 

mew_w = 0.3 

neighbor_search_n = 20 

neighbor_search_rad_ratio = 1.0 

nfactor = 0 

vw_poisson = 0.3 

 

### Two - fluid model 

friction_model = 'SCHAEFFER' Output Results:  

Results for the above condition solids of superquadric nature 

which is rod shaped particle at different time interval is 

captured and shown below, from violet to yellow is the color 

map for the velocity ranges of the particle and it can be 

clearly observed that particles at higher positions of reactor 

and have higher velocities. Here we have used MFix - SQP 

Model and solving for superquadric particle, with SQP 

DiFelice - Holzer - Sommerfeld as the drag model with a 

mesh of 10, 50, 10 respectively in x, y and z direction. In 

initial condition we have considered 0.3 as the volume 

fraction of solid particles and 0.7 as the volume fraction of 

fluid from bottom to 0.1m in y - axid in a geometry of 

0.1*0.5*0.5 m. and the output shown considers volume 

fraction, pressure and velocity vector of Fluid and the results 

are as shown below 
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