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Abstract: A predator-prey model with parasitic infection spread in predator population is considered. The predator population is 

divided into two groups, namely susceptible predator, infected predator whereas the prey population remains free from infection. The 

existence of various equilibrium points and local stability analysis at those equilibrium points has been discussed. It has been observed 

that a Hopf-bifurcation may occur about the interior equilibrium point taking rate of parasitic infection parameter is bifurcation 

parameter. All the important analytical findings are numerically verified. 
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1. Introduction 
 
The effect of disease in ecological system is an important 

issue from mathematical as well as ecological point of view. 

So, in recent time ecologists and researchers are paying 

more and more attention to the development of important 

tool along with experimental ecology and describe how 

ecological species are infected. However, the first 

breakthrough in modern mathematical ecology was done by 

Lotka and Volterra for a predator- prey competing species. 

On the other hand, most models for the transmission of 

infectious diseases originated from the classic work of 

Kermack and Mc Kendrick [1].After these pioneering works 

in two different fields, lots of research works have been 

done both in theoretical ecology and epidemiology. 

Anderson and May [2] were the first who merged the above 

two fields and formulated a predator-prey model where prey 

species were infected by some disease. In the subsequent 

time many authors [3, 4, 5, 6] proposed and studied different 

predator- prey models in presence of disease. Venturino [7], 

Haque and Venturino [8], Haque et al. [9, 10, 11], Xiao and 

Chen [12, 13], Tewa [14], Shaikh [15], Pal [16], 

Chattopadhyay et. al [17, 18] discussed the dynamics of 

prey-predator system with disease in prey population. But 

some researchers [19, 20, 21] discussed the dynamics of 

prey-predator system with disease in predator population. 

 
In this paper, predator-prey model with disease in predator is 

considered. Some similar kinds of models have appeared in 

the recent literature, but the main new distinctive feature is 

the inclusion of an infectious disease in the predator 

population and also the inclusion of susceptible predator and 

infected predator consuming prey by Holling type-III 

functional response. Under this additional effect the model 

becomes more realistic than the existing models in 

ecological as well as epidemiological point of view. 

 

2. Mathematical Model 
 
To construct the mathematical model, we make the 

following assumptions: 

1) Let x denote the population density of the prey, y the 

population density of the susceptible predator and z the 

density of the infected predator, respectively, in time t. 

2) We assume that the prey is capable of reproducing in 

logistic law with carrying capacity k and intrinsic birth 

rate r : 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥  1 −

𝑥

𝑘
 . 

3) The parasite is assumed to be horizontally transmitted. 

We further assume that the parasite attacks the predator 

population only. 

4) The susceptible predator (x) becomes infected following 

the mass action law at constant rate of infection 𝛼. 
 

Considering the above basic assumptions we can now write 

down the following dynamical system: 

 

𝑑𝑥

𝑑𝑡
= 𝑟𝑥  1 −

𝑥

𝑘
 − 𝑐

𝑥2

𝑎 + 𝑥2
 𝑦 + 𝑏𝑧 , 

𝑑𝑦

𝑑𝑡
= 𝑐

𝑥2

𝑎 + 𝑥2
 𝑦 + 𝑏𝑧 − 𝛼𝑦𝑧 − 𝑑𝑦, 

𝑑𝑧

𝑑𝑡
= 𝛼𝑦𝑧 −  𝑑 + 𝑑1 𝑧,                   (1) 

 

where „c‟ is the predation rate of susceptible predator, „bc‟ is 

the predation rate of infected predator (0<b<1) and „a‟ is the 

half saturation constant. The constant „d‟ is the parasite 

independent mortality rate of predator and d1 denotes 

additional mortality rate of infected predator due to 

infection. 

  

The system (1) has to be analyzed with the following initial 

conditions, 

 

𝑥 0 ≥ 0, 𝑦 0 ≥ 0, 𝑧 0 ≥ 0                             (2) 
 

3. Qualitative analysis 
 

3.1 Boundedness of the system 

 

Theorem-1: All the solutions of the system (1) are bounded. 

 

Proof: Consider the function  

𝑢 𝑡 = 𝑥 𝑡 + 𝑦 𝑡 + 𝑧(𝑡) 

Now using the system (1) we have 
𝑑𝑢

𝑑𝑡
=

𝑑𝑥

𝑑𝑡
+
𝑑𝑦

𝑑𝑡
+
𝑑𝑧

𝑑𝑡
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 = 𝑟𝑥  1 −
𝑥

𝑘
 − 𝑑𝑦 −  𝑑 + 𝑑1 𝑧 

Therefore,  
𝑑𝑢

𝑑𝑡
+ 𝜇𝑢 = 𝑥  𝑟 + 𝜇 −

𝑟

𝑘
𝑥 −  𝑑 − 𝜇 𝑦 −  𝑑 + 𝑑1 − 𝜇 𝑧 

≤ 𝑘
 𝑟+𝜇 2

4𝑟
, if d> 𝜇. 

Now we can choose in such a way that 𝑑 > 𝜇, then the right 

hand side of the above inequality is bounded. Then we can 

find a constant 𝑃 > 0, such that                                          
𝑑𝑢

𝑑𝑡
+ 𝜇𝑢 < 𝑃, 

 

Now by the theory of differential inequality [22] we have  

0 ≤ 𝑢 𝑡 ≤
𝑃

𝜇
 1 − 𝑒−𝜇𝑡  + 𝑢 0 𝑒−𝜇𝑡 . 

As 𝑡 → ∞,  then 0 ≤ 𝑢 𝑡 ≤
𝑃

𝜇
.  Hence u(t) is bounded 

quantity.   

 

3.2 Equilibrium Points  
 

 The equilibria 𝐸0(0,0,0) and 𝐸1(𝑘, 0,0) exists for all 

parametric values. 

 The infection free equilibrium point 𝐸2(𝑥2 , 𝑦2 , 0), where 

𝑥2 =  
𝑎𝑑

𝑐−𝑑
, 𝑦2 =

𝑟𝑥2

𝑑
 1 −

𝑥2

𝑘
  exist if 𝑐 − 𝑑 >

0 𝑎𝑛𝑑 𝑘 > 𝑥2. 
 The positive interior equilibrium point 𝐸∗ 𝑥∗, 𝑦∗, 𝑧∗ , 

where 𝑦∗ =
𝑑+𝑑1

𝛼
, 

𝑧∗ =
 𝑐−𝑑 𝑥∗

2
−𝑎𝑑  

 𝑎𝑦∗−𝑏𝑐 𝑥∗2+𝑎𝛼𝑦∗ 𝑦
∗ and 𝑥∗ is the positive root of the 

equation  

𝐴𝑥3 + 𝐵𝑥2 + 𝐶𝑥 + 𝐷 = 0, 
where 𝐴 = 𝑟 𝑏𝑐 − 𝛼𝐿 , 𝐵 = −𝑘𝑟 𝑏𝑐 − 𝛼𝐿 , 𝐶 =
𝑑𝑘𝐿 𝑏𝑐 − 𝛼𝐿 − 𝛼𝑘𝐿2 𝑐 − 𝑑 − 𝑟𝑎𝐿𝛼, 

𝐷 = 𝑟𝑘𝛼𝑎𝐿, 𝐿 =
𝑑+𝑑1

𝛼
. 

 

4. Stability Analysis 
 

4.1  𝑬𝟎 

 

The jacobian matrix of the system (1) at 𝐸0(0,0,0) is given 

by  

𝐽 𝐸0 =  
𝑟 0 0
0 −𝑑 0
0 0 −(𝑑 + 𝑑1)

  

So, eigenvalues of 𝐽 𝐸0 are 𝑟, −𝑑, −(𝑑 + 𝑑1) . So the 

equilibrium point 𝐸0 is unstable because one eigenvalue is 

positive. 

 

4.2  𝑬𝟏 

 

The jacobian matrix of the system (1) at 𝐸1(𝑘, 0,0) is given 

by  

𝐽 𝐸1 =

 
 
 
 
 −𝑟 −

𝑐𝑘2

𝑎 + 𝑘2
−

𝑏𝑐𝑘2

𝑎 + 𝑘2

0
𝑐𝑘2

𝑎 + 𝑘2
− 𝑑 0

0 0 −(𝑑 + 𝑑1) 
 
 
 
 

 

So, eigen values of 𝐽 𝐸1  are −𝑟,−(𝑑 + 𝑑1) and 
𝑐𝑘2

𝑎+𝑘2 − 𝑑 . 

Thus, the equilibrium point 𝐸1 is stable if  
𝑑(𝑎+𝑘2)

𝑐𝑘2 > 1. 

 

4.3  𝑬𝟐 

 

The jacobian matrix of the system (1) at 𝐸2 𝑥2 , 𝑦2 , 0 is 

given by  

𝐽 𝐸2 

=

 
 
 
 
 
 𝑟 −

2𝑟

𝑘
𝑥2 −

2𝑎𝑐𝑥2𝑦2

 𝑎 + 𝑥2
2 2

−
𝑐𝑥2

2

𝑎 + 𝑥2
2

−
𝑏𝑐𝑥2

2

𝑎 + 𝑥2
2

2𝑎𝑐𝑥2𝑦2

 𝑎 + 𝑥2
2 2

0 −𝛼𝑦2

0 0 𝛼𝑦2 − (𝑑 + 𝑑1) 
 
 
 
 
 

 

 

So, the eigenvalues of 𝐽 𝐸2  are  𝛼𝑦2 − (𝑑 + 𝑑1)and the 

roots of the equation 

𝜆2 +  
2𝑟

𝑘
𝑥2 +

2𝑎𝑐𝑥2𝑦2

 𝑎+𝑥2
2 2 − 𝑟 𝜆+

2𝑎𝑐𝑥2
3𝑦2

 𝑎+𝑥2
2 3 = 0, 

 

Thus, the equilibrium point 𝐸2 is stable if  
𝛼𝑦2

𝑑+𝑑1
< 1 and 

2𝑟

𝑘
𝑥2 +

2𝑎𝑐𝑥2𝑦2

 𝑎+𝑥2
2 2 − 𝑟 > 0. 

 

4.4 Stability of positive interior equilibrium point  

𝑬∗ 𝒙∗, 𝒚∗, 𝒛∗ , 
 

Theorem-2: The positive interior equilibrium is locally 

asymptotically stable if and only if  

𝑝1 > 0, 𝑝2 > 0, 𝑝1𝑝2 − 𝑝3 > 0, where 𝑝𝑖
′𝑠 are given in the 

proof of the theorem. 

 

Proof: The jacobian matrix of the system (1) around 

𝐸∗ 𝑥∗, 𝑦∗, 𝑧∗ is   

𝐽 𝐸∗ =  

−𝑚11 −𝑚12 −𝑚13

𝑚21 𝑚22 −𝑚23

0 𝑚32 0
 , 

Where 𝑚11 =  
2𝑟

𝑘
𝑥∗ + 2𝑎𝑐

𝑥∗(𝑦 ∗+𝑏𝑧∗)

 𝑎+𝑥∗2 
2 − 𝑟 > 0,𝑚12 =

𝑐
𝑥∗

2

𝑎+𝑥∗2 , 𝑚13 = 𝑏𝑐
𝑥∗

2

𝑎+𝑥∗2 ; 

𝑚21 = 2𝑎𝑐
𝑥∗(𝑦∗ + 𝑏𝑧∗)

 𝑎 + 𝑥∗2 2
, 𝑚22 = 𝑐

𝑥∗2

𝑎 + 𝑥∗2 − 𝛼𝑧∗ − 𝑑

> 0,𝑚23 =  𝛼𝑦∗, 𝑚32 = 𝛼𝑧∗. 
 

The characteristic equation of 𝐽(𝐸∗) at 𝐸∗ 

𝜌3 + 𝑝1𝜌
2 + 𝑝2𝜌 + 𝑝3 = 0, 

where𝑝1 = 𝑚11 −𝑚22 , 𝑝2 = 𝑚12𝑚21 + 𝑚23𝑚32 −
𝑚11𝑚22 ,  
𝑝3 = 𝑚13𝑚21𝑚32 + 𝑚11𝑚23𝑚32, 

𝑝1𝑝2 − 𝑝3 =(𝑚11 −𝑚22)(𝑚12𝑚21 + 𝑚23𝑚32 −
𝑚11𝑚22) − (𝑚13𝑚21𝑚32 + 𝑚11𝑚23𝑚32). 
 

By the Routh-Hurwitz criteria, all roots of the above 

equation have negative real parts if and only if 𝑝1 > 0, 𝑝2 >
0, 𝑝1𝑝2 − 𝑝3 > 0. Thus, the positive interior equilibrium 

point 𝐸∗ 𝑥∗, 𝑦∗, 𝑧∗  is asymptotically stable if and only 

if𝑝1 > 0, 𝑝2 > 0, 𝑝1𝑝2 − 𝑝3 > 0. 
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5. Numerical Simulations 
 

Table 1: A set of parameter values 
Parameter Definition Value Dimension 

r Growth rate of prey 1 1/time 

k Carrying capacity 6 mass/volume 

α The infectious rates in predator populations 0.086 1/time 

a Half saturation constants in prey population 1 - 

c Predation rate of susceptible predator 0.4 1/time 

b Constant, 0<b<1 0.8 - 

d Mortality rate of predators 0.24 1/time 

d1 Additional mortality rate of infected predator 0.1 1/time 

 

In this portion, concentrated on the occurrence and 

termination of the disease is studied. For the set of 

parametric values in Table 1, the existence conditions of the 

coexistence equilibrium point E∗ is satisfied and the 

coexistence equilibrium point E∗= (1.2553,3.9535,0.1290) is 

locally asymptotically stable with eigen values−0.01437 ± 

0.389i, −0.005045(see figure 1(a)).Next to observe the 

effects of some parameters on system (1), firstly, consider 

c= 0.23 and other set of parametric values in Table 1, 

observe that the infection free equilibrium point E2 is stable 

(Figure 1(b)). Again, if d = 0.42 and other set of parametric 

values in Table 1, the predator free equilibrium pointE1 is 

stable (Figure 1 (c)). Next, if α is increased from 0.086 to 

0.1 then it is observed that the solution of (1) changes from 

stable behavior to oscillatory behavior (see figure 2(a)) 

Finally, for a clear understanding of the dynamical changes 

of system (1) due to change the value of the parameter α 

from 0.085 to 0.095, a bifurcation diagram is plotted as 

shown in the bifurcation diagram (see figure 2(b)). 

 

 

 
Figure 1: (a) Phase diagram denotes the equilibrium point E∗ is locally asymptotically stable for the set of parameter in the 

Table 1. (b) Phase diagram denotes the equilibrium point E2 is locally asymptotically stable for c=0.23,withother set of 

parameter fixed as given in Table1.(c) Phase diagram denotes the equilibrium point E1 is locally asymptotically stable for 

d=0.42, with other set of parameter fixed as given in Table1. 
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Figure 2: (a) The figure depicts oscillatory behaviour of three species for α = 0.15, with other set of parameter fixed as given 

in Table1.(b) The bifurcation diagram of three species for α. 

 

6. Conclusions 
 
An ecological predator-prey model and an epidemiological 

model have been partially applied in this work. Through the 

analysis an eco-epidemiological predator- prey mathematical 

model has been established in which only predator 

population is affected by an infectious disease. Predator 

population is divided into two categories, namely susceptible 

predator and infected predator. In this paper, there are four 

equilibrium points, namely, one trivial equilibrium E0, 

predator free equilibrium point E1, infection free equilibrium 

point E2 and an interior equilibrium E∗. Here E0 always 

exists but unstable. Next, E1exists and it is stable under some 

conditions.  Also, E2 exists under some conditions and it is 

stable under some conditions. The interior equilibrium E∗ 

exists and it is asymptotically stable under some conditions. 

The stability switching and a Hopf-bifurcation may occur at 

the interior equilibrium taking rate of infection parameter (α) 

is bifurcation parameters. Without numerical verification the 

analytical results cannot be completed. So all important 

analytical findings are numerically verified using Matlab 

here. 
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