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Abstract: A delayed SEIR epidemic model with self-protection is considered. The local asymptotic stability of the disease free 

equilibrium is ensured for R0 < 1 and it is unstable otherwise. Whereas, for R0 > 1, the proposed model  has the unique endemic 

equilibrium point. For delay values, the local asymptotic stability of the unique endemic equilibrium is established under some 

parametric constraints. Further, the occurrence of Hopf bifurcation is also observed when the delay crosses some parameter threshold. 

The analytical findings are supported by the numerical observations. 
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1. Introduction 
 

Researchers [1, 2, 3, 4, 5, 6] have designed different 

epidemiological models such as SI, SIS, SIR, SIER, SIERS 

etc. Kermack and McKendrick [7] formulated a SIR in 1927, 

to study the outbreak of the Great Plague in London during 

1965-1966, and the outbreak of plague in Mumbai in 1906. 

The dynamic behavior of the SIR epidemic model is 

investigated by scholars [8, 9, 10, 11, 12]. The author [13] 

studied a vaccine induced epidemic SIRS model with natural 

immunities. They obtained that the system undergoes a 

backward bifurcation at a certain level of immunization. The 

SEIR model contains one more compartment additionally to 

SIR model called exposed compartment (E). These are the 

people who are infected but the symptoms of the disease are 

not yet visible. They cannot either communicate the disease 

and are in latent period. SEIR models can represent many 

human infectious diseases such as measles, pox, flu and 

dengue. 

 

Recently, Diaz et al. [14] studied the modified SEIR model 

for the Ebola disease in Western Africa. They proposed 

several metrics to figure out the countries which are in most 

noteworthy need of extra resources to combat the 

contamination of infection spread. Sun et al. [15] studied the 

transmission and control dynamics of cholera disease. 

Mishra et al. [16] discussed the dynamics of bacteriophage 

infection in cholera disease in the region around a water 

body. Li [17] discussed the spread of hemorrhagic fever and 

showed that in China it exhibits monthly periodic outbreak. 

 

For any community, the source of treatment for a disease is 

sometimes limited, so the constant removal rate which is 

discussed by Wang and Ruan [18] and further improved by 

Zhou and Fan [19] as a Holling type II treatment. Dubey et 

al.[20] studied the SEIR model with two different types of 

treatment rates. They  observed that the existence and 

stability of equilibria depend on both the basic reproduction 

number as well as treatment rate. Further, Dubey et al. [21] 

introduced a model using Crowley-Martin and Holling type 

III responses to describe the epidemiological situation. 

Moreover, various epidemiological models have been studied 

using different treatment rates [22, 23, 24, 25]. 

 

In this manuscript, we consider an SEIR model with 

Crowley–Martin incidence rate and Holling type II and III 

treatment rates depending upon competency of the 

community. For any outbreak of epidemic disease, the 

treatment capacity of Holling type II is initially very slow 

and after that stage it develops gradually with change of 

accessibility of treatment assets such as effective medicines 

and hospital’s conditions. 

 

2. The Mathematical Model 
 

Human infectious diseases namely measles, pox, flu and 

dengue as an important role are formed by the SEIR model. 

The mathematical structure of the generic SEIR epi-

demiological model is constructed. The incidence rate as 

Crowley-Martin (CM) type and treatment rate of infection 

via Holling type II is considered. The Crowley and Martin 

[26] functional functional responses are both prey and 

predator abundance because of predator interference. It is 

assumed that predator-feeding rate decreases by higher 

predator density even when prey density is high. Therefore, 

the effect of predator interference on the feeding rate remains 

important all the time whether an individual predator is 

handling or searching for a prey at a given instant of time. 

Recently, many researchers have studied the virus dynamics 

for models with Crowley-Martin infection rate (see [27, 28]). 

 

In  this  article,  consider  a  nonlinear  Crowley-Martin 

incidence rate 
𝛼𝑆𝐼

 1+𝛽𝑆 (1+𝛾𝐼))
,  which  can  be  used to interpret 

the case of varicella (chickenpox) dynamic. Here α, β and γ 

are positive parameters that describe the effects of contact 

rate, social awareness rate among susceptibles and 

magnitude of interference among infective population, 

respectively. 

 

In order to construct the model, our assumptions are stated 

as follows: 

 

 The entire population N is divided into four groups as: 

S-susceptible, E-exposed, I-Infective and R-recovered 

population. So, N = S + E + I + R. 

 Each population of SEIR well mixed and interact 

homogeneously with each other [29, 30]. 
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 The susceptible population is recruited at any time t at 

the constant rate A of new born and decreases due to 

natural death rate d. 

 Disease is transmitted from infected to susceptible 

population by Crowley-Martin incidence rate 
𝛼𝑆𝐼

 1+𝛽𝑆 (1+𝛾𝐼 ))
                     (13) 

 

The individuals from class S move to class E and only after 

latency period it becomes infective and move to class I and 

µ is the time delay due to latent period of the disease. 

 The infected population is recovered by saturated 

treatment function 
𝛼𝑢𝐼

1+𝛿𝑢𝐼
 where u is the treatment control 

and a and δ are positive quantities, respectively [31]. 

 m is information induced self-protection from susceptible 

to removed class. 

 The recovery is not permanent and m1R become 

susceptible. 

 d1 is the disease related extra mortality rate of infective 

class. 

 

Considering the above basic assumptions we have the 

following mathematical model: 
𝑑𝑠

𝑑𝑡
= 𝐴 −

𝛼𝑆𝐼

 1 + 𝛽𝑆 (1 + 𝛾𝐼)
− 𝑑𝑆 − 𝑚𝑆 + 𝑚1𝑅, 

 
𝑑𝐸

𝑑𝑡
= 𝐴 −

𝛼𝑆𝐼

 1 + 𝛽𝑆 (1 + 𝛾𝐼)
− 𝑑𝐸 − 𝜇𝐸 (𝑡 − 𝜏), 

 
𝑑𝑙

𝑑𝑡
= 𝜇𝐸  𝑡 − 𝜏 −  𝑑 + 𝑑1 𝐼 −

𝛼𝑢𝐼

 1 + 𝛿𝑢𝐼 
, 

 
𝑑𝑅

𝑑𝑡
=

𝛼𝑢𝐼

 1 + 𝛿𝑢𝐼 
+ 𝑚𝑆 − (𝑑 + 𝑚1)𝑅 

(1) 

With 

S (0) > 0, E (0) > 0, I (0) > 0, R (0) > 0       (2) 

 

3. Qualitative analysis of the system 
 
3.1 Boundedness of the System 

 
Theorem 1: All the solutions of the system (1) are bounded.  

 

Proof: Consider the function U (t) = S(t) + E(t) + I(t) + R(t).  

 

Now using the equations (1), we have 
𝑑𝑈

𝑑𝑡
=  

𝑑𝑠

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝑙

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
 

 

= 𝐴 − 𝑑𝑆 − 𝑑𝐸 − (𝑑 + 𝑑 ) − 𝑑𝑅 

 

If we take η = 𝑚𝑖𝑛 {𝑑, 𝑑 + 𝑑1}, then for each η ≥ 0 the above 

inequality becomes 

 
𝑑𝑈

𝑑𝑡
+ 𝜂𝑈 <  𝐴 

 

Now by the theory of differential inequality [32] we have, 

 

As t → ∞, then 0≤𝑈(𝑡) ≤ 
𝐴

𝜂
. Hence U (t) is a bounded 

quantity.  

 

Thus all the solutions of the system (1) are bounded. 

 

3.2 Basic reproduction number 

 
We observe that the system (1) has a disease free equilibrium 

(DFE) E1( S1, 0, 0, R1), where 

 

𝑆1 =  
𝐴 (𝑑 + 𝑚1)

 𝑑 + 𝑚  𝑑 + 𝑚1 − 𝑚𝑚1

, 𝑅

=
𝐴 

 𝑑 + 𝑚  𝑑 + 𝑚1 − 𝑚𝑚1

 

 

and it is exist if (d + m)(d + m1) > m1m. 

 

Introducing the basic reproduction number by R0 and is 

defined as the number secondary infected individuals 

caused by a single infected individuals during the whole 

time of period. To find the expression for R0, using the 

technique which is introduced by Driessche and Watmough 

[33]. 

 

The system (1) can be written as 
𝑑𝑋

𝑑𝑡
=  𝐹(𝑋  −  𝐺(𝑋),   

𝑤ℎ𝑒𝑟𝑒 𝑋  = (𝑆, 𝐸, 𝐼, 𝑅)
T
,
 
𝐹(𝑋) = [𝛼𝑆𝐼 0], 

 

G (X) =   𝑑 + 𝜇 𝐸 𝑑 +  𝑑1 +
𝑎𝑢𝐼

1+𝛿𝑢𝐼
− 𝜇𝐼  

 

F1 = Jacobian of F at (DFE)=  

 0 
𝛼𝑆0

1 + 𝛽𝑆0

  0    0  

 

 
And  

 
 

Again, the spectral R0 of the matrix 𝐹1𝐺1
−1 is the basic 

reproduction number of the model 

 
 

3.2 Equilibria and their stability analysis 

 

The system (1) has a disease free equilibrium (DFE) E1( S1, 

0, 0, R1 ), which is already discussed.  

 

The system (1) has another one positive interior equilibrium 

point E*( S*, E*, I*, R*
 
), where 
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And 𝐼* is the positive root of the equation  

 
and the coefficient are given by 

 

 

 

 

 

 

 

 

 

 
 
Theorem 2. The disease-free equilibrium E1 of model (2) is 

1) Absolutely stable if R0 < 1, 

2) Linearly neutrally stable if R0 = 1, and 

3) Unstable if R0  > 1. 

 

Proof: The variational matrix of the system (1) around the disease-free equilibrium point E1 is 

 

 
 
Eigen values of the variational matrix are λ1 = - µ, λ1 = - (𝑑 + 𝑚 + 𝑚1) and the roots of the equation 

 
It is clear that if R0 < 1, the roots of the above equation have negative real parts. So the disease free equilibrium E1 is locally 

asymptotically stable when τ = 0. 

 

Case II: when τ > 0, let λ = iω be the roots of the equation (4), then 

 

 
 
Separating real and imaginary parts, we get 
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Squaring and adding the above two equations, we have 

 

 

 
 

It is clear that ω 2 is negative when R0< 1. Which implies that the equation (3) has no purely imaginary root for τ > 0. Thus by 

Definition (3) and lemma 3.5(i) [34], the disease free equilibrium E1 is absolutely stable for τ ≥ 0. 

 

3.3 Stability analysis of the positive interior equilibrium 

 

The variational matrix of the system (1) at E* (S*, E*, I*, R*) is 

 

 

 
The eigen values of V* at E* are the roots of the equation 

 
Where 

 

 
Case-I: When τ = 0, equation (7) becomes 
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Thus, by the Routh–Hurwithz theorem, if the condition (H1) Equations (8)–(10) holds, then the positive equilibrium E* (S*, 

E*, I*, R*) of system (1) without time delay is locally asymptotically stable. 

 

 
 

Case-II: When τ≠0, 

 

Let λ = iω be the roots of the equation (7), then 

 
 

Separating real and imaginary parts, we get 

 

(B1ω − B3ω
3
) sin 𝑠𝑖𝑛 ωτ + (B0 − B2ω

2
) 𝑐𝑜𝑠ωτ = ω

4 
− A2ω

2 
+ A0            (12) 

 

(B2ω
2 

− B0) sin 𝑠𝑖𝑛 ωτ  + (B1ω − B3ω
3
) 𝑐𝑜𝑠ωτ  = −A3ω

3 
− A1ω             (13) 

Squaring and adding the above two equations we have 

 

Ω
8 

+ Q1ω
6 

+ Q2ω
4 

+ Q3ω
2 

+ Q
4    = 0,          (14) 

Where  

 
Let 𝜔2 =  𝜐, 𝑤𝑒 ℎ𝑎𝑣𝑒, 
 

V
4
 + Q1 v

3
 + Q2 v

2
 +Q3 v

4
+ Q4 = 0,             (15) 

 
Thus, in order to obtain the main result in this paper, we 

make the following assumptions. 

 

H21 Equation (14) has at least one positive root. Then there 

exists a positive root of (15) ν
1 such that equation (7) has a 

pair of purely imaginary roots ±𝑖ω1 = ±  𝜈1. Then from 

equations (12) and (13), we can obtain the corresponding 

critical value of the delay for ω1 

 
Where  

𝑝1 =  𝐴3𝐵3 − 𝐵1 , 𝑝2

=  𝐵0 + 𝐴2𝐵2 + 𝐴0𝐵0 −  𝐴3𝐵1 − 𝐴1𝐵3 , 
 

𝑝3 =  𝐴1𝐵1 − 𝐴2𝐵0 − 𝐴0𝐵2  , 𝑝4 =  𝐴0𝐵0 , 𝑞1 = 𝐵3
2 , 𝑞2

= 𝐵2
2 − 2𝐵3𝐵1 , 

 

𝑞3 = 𝐵1
2 − 2𝐵0𝐵2 , 𝑄4 = 𝐴0

2 − 𝐵0
2 

 

Substituting the value of λ (τ) in (3) and differentiating w.r.t. 

τ we have 

 
Which leads to 

 

Where 

 
 
Thus if the conditions 

 
 

According to the Hopf bifurcation theorem in [35], we have 

the following for the system (1), 

 

Theorem3: If the conditions H21 − H22 holds, then 

1) the positive equilibrium of (1) is asymptotically stable 

for τ ∈ [0, τ1], 

2) System (1) undergoes a Hopf bifurcation at the positive 

equilibrium E*
 
when τ = τ1  

 

4. Numerical Simulations 
 

Table 1: A set of parameter values 

Parameter Default Value 

A 1 

α 0.14 

β 0.1 

γ 0.2 

𝑚1 0.07 

m 0.02 

a 0.09 

µ 0.025 
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u 1 

d 0.011 

𝑑1 0.1 

δ 0.01 

 

In this part, numerically supported the theoretical analysis 

for the set hypothetical parameters values in table 

 

1. For the set of parameters, from the system (1) we get, R0 

= 2.76, endemic equilibrium point E*
 
= (16.6570, 15.8870, 

29.9727, 19.3451). By direct computation, we Have Det1 > 

0, Det2 > 0, Det3 > 0, Det4 > 0. Clearly, the conditions H1 

holds. So E*
 
is asymptotically stable (see in Figure 1). If u = 

2.5 and other parameter fixed, then from the system (1) we 

get R0 = 0.9196 and disease free equilibrium point E1 = 

(72.9096, 0, 0, 18.0018) is asymptotically stable (see in 

Figure 2). 

For τ > 0, using Matlab software, show that the conditions 

H2 and H3 hold. Then, we get 

ω = 0.0886, τ ≥ 15.2919. From the theorem 1, we can 

deduce that E*
 
is asymptotically stable when 

τ ∈ [0, 15.2919) and a Hopf bifurcation occurs at the critical 

values τ ≥ 15.2919 (describe in Figure4). 

 

 
Figure 1: The equilibrium point E*

 
is locally asymptotically stable for the set of parameter in the Table 1. 

 

 
Figure 2: The figures depicts that the disease free equilibrium point E1 is stable for α = 0.039, u = 2.5 and other set of 

parameter fixed in Table 1. 
 

 
Figure 3 (a) 
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Figure 3 (b) 

Figure 3: The figure 3(a) show that E*
 
is locally asymptotically stable for the set of parameter in the Table 1 and τ = 0; the 

figure 3(b) show that all species are oscillatory behavior for the set of parameter in the Table 1 and τ = 22. 

 
Figure 4: The bifurcation diagram of all the populations with tau (τ) as the bifurcation parameter. 

 

5. Conclusion 
 

This paper is concerned with a delayed SEIR epidemic 

model with saturated incidence and saturated treatment 

function. The effect of the delays on the model is 

investigated and the main results are given in terms of local 

stability and local Hopf bifurcation. It has been shown that 

the model is stable when the value of the bifurcation 

parameter is below the critical value, which means that the 

disease can be controlled easily. However, when the value of 

the bifurcation parameter is above the critical value, a Hopf 

bifurcation will occur. In this condition, the disease is out of 

control. Accordingly, we should shorten the delay in the 

model as much as possible so that we can predict and control 

the disease propagation. Finally, some numerical simulations 

are carried out to support our theoretical results. 
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