
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Viability of Smart Contracts for Large Scale

Applications using Game Theory Concept

Costantine Paschal Kulwa

Blockchain Expert and Assistant Lecturer, Information and Communication Technology (ICT),

Tanzania Institute of Accountancy (TIA), Tanzania

Abstract: Blockchain smart contracts show the next stage in the development of protocols that support the interaction of independent

nodes without the presence of a governing authority. Blockchain smart contracts are believed to be a potentially enabling technology for

a wealth of future applications. But turns out, like every other maturing technology, blockchain smart Contract also has it challenges

and limitations. Understanding these challenges and limitation can help business making decision before they put their efforts in

blockchain application development. In this paper game theory is combined to look into what Smart Contracts are and what they are

assumed to be. The aim is to give businesses a clear idea about smart contracts and help them to decide if the contracts are viable for

large scale application.

Keywords: Blockchain, Smart Contracts, Game theory, Business, Payments

1. Introduction

Over the past decade, blockchain technology has attracted

tremendous attention from both academia and industry. The

popularity of blockchain was originated from the concept of

crypto - currencies to serve as a decentralized and tamper -

proof transaction data ledger. Nowadays, blockchain as the

key framework in the decentralized public data - ledger have

been applied to a wide range of scenarios far beyond crypto

- currencies, such as the Internet of things, healthcare, and

insurance.

[5] Smart contracts are protocols defining self - enforcing,

digital contracts. The main aim of such contracts is to

guarantee fair exchanges between untrusted and independent

entities. When smart people hear the term “smart contracts”,

their imaginations tend to run wild. They conjure up dreams

of autonomous intelligent software, going off into the world,

taking data along for the ride. Unfortunately, the reality of

smart contracts is more mundane (lacking of interests or

excitement). The problem with smart contracts isn‟t just that

people‟s expectations are overblown; it‟s that these

expectations are leading many to spend time and money on

ideas that cannot possibly be implemented. It seems large

companies have sufficient resources to travel a lengthy path

from the moment when senior management encounters a

new technology, to when that technology‟s advantages and

limitations are truly understood. Perhaps our own

experiences can help shorten this time.

The questions is, are the smart contracts viable for large

scale application? This is the aim of writing this paper and

the discussion will be supported by game theory. Ethereum

empowers developers to design and implement their own

game theory systems in the form of smart contracts. Game

theory mechanics are what make blockchain so special.

Nothing about the technology or mechanics is new, but it is

the marriage of these two fascinating concepts that has made

cryptocurrencies secure from internal corruption.

Additionally, I discuss the application of game theory on

smart contracts and finally I highlight three important

challenges that make blockchain use cases difficult to

implement.

Understanding smart contract model

[5] A contract is an instance of a computer program that runs

on the blockchain, i. e., executed by all consensus nodes. A

smart contract consists of program code, a storage file, and

an account balance. Any user can create a contract by

posting a transaction to the blockchain. The program code of

a contract is fixed when the contract is created, and cannot

be changed. A contract's storage file is stored on the public

blockchain. A contract's program logic is executed by the

network of miners who reach consensus on the outcome of

the execution and update the blockchain accordingly. The

contract's code is executed whenever it receives a message,

either from a user or from another contract. A user can sends

a message to a contract by including the message data and

the address of the contract in her transaction. One contract

can send a message to another using a special instruction in

its program code. While executing its code, the contract may

read from or write to its storage file.

[10] A contract can also receive money into its account

balance, and send money to other contracts or users.

Conceptually, one can think of a contract as a special

“trusted third party” however, this party is trusted only for

correctness and availability but not for privacy. In particular,

a contract's entire state is visible to the public. A contract's

code will be invoked whenever it receives a message. A

contract can define multiple entry points of execution in

Ethereum Serpent language, each entry point is defined as a

function. A message contents will specify the entry point at

which the contract's code will be invoked. Therefore,

messages act like function calls in ordinary programming

languages. After a contract finishes processing a message it

receives, it can pass a return value back to the sender.

[11] Ethereum uses the concept of “gas" to discourage over -

consumption of resources (e. g., a contract program that

causes miners to loop forever). The user who creates a

transaction must spend currency to purchase gas. During the

Paper ID: SR23526145431 DOI: 10.21275/SR23526145431 2438

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

execution of a transaction, every program instruction

consumes some amount of gas. If the gas runs out before the

transaction reaches an ordinary stopping point, it is treated

as an exception: the state is reverted as though the

transaction had no effect, but the Ether used to purchase the

gas is not refunded! When one contract sends a message to

another, the sender can offer only a portion of its available

gas to the recipient. If the recipient runs out of gas, control

returns to the sender, who can use its remaining gas to

handle the exception and tidy up.

What smart contracts are for?

With so many things that smart contracts cannot do, one

might ask what they‟re actually for. But in order to answer

this question, we need to go back to the fundamentals of

blockchain themselves. To recap, a blockchain enables a

database to be directly and safely shared by entities that do

not trust each other, without requiring a central administrator.

[2] BlockChain enable data disintermediation, and this can

lead to significant savings in complexity and cost. Any

database is modified via “transactions”, which contain a set

of changes to that database which must succeed or fail as a

whole. For example, in a financial ledger, a payment from

Alice to Bob is represented by a transaction that (a) checks if

Alice has sufficient funds, (b) deducts a quantity from

Alice‟s account and (c) adds the same quantity to Bob‟s.

In a regular centralized database, these transactions are

created by a single trusted authority. By contrast, in a

blockchain - driven shared database, transactions can be

created by any of that blockchain‟s users. And since these

users do not fully trust each other, the database has to

contain rules which restrict the transactions performed [2].

For example, in a peer - to - peer financial ledger, each

transaction must preserve the total quantity of funds,

otherwise participants could freely give themselves as much

money as they liked.

One can imagine various ways of expressing these rules, but

for now there are two dominant paradigms, inspired by

bitcoin and Ethereum, respectively. The bitcoin method,

which we might call “transaction constraints”, evaluates

each transaction in terms of: (a) the database entries deleted

by that transaction and (b) the entries created.

In a financial ledger, the rule states that the total quantity of

funds in the deleted entries has to match the total in those

created. (We consider the modification of an existing entry

to be equivalent to deleting that entry and creating a new one

in its place).

[13] [11] The second paradigm, which comes from

Ethereum, is smart contracts. This states that all

modifications to a contract‟s data must be performed by its

code. (In the context of traditional databases, we can think of

this as an enforced stored procedure.) To modify a contract‟s

data, blockchain users send requests to its code, which

determines whether and how to fulfill those requests. As in

this example, the smart contract for a financial ledger

performs the same three tasks as the administrator of a

centralized database: checking for sufficient funds,

deducting from one account and adding to another.

Both of these paradigms are effective, and each has its

advantages and disadvantages. To summarize, bitcoin - style

transaction constraints provide superior concurrency and

performance, while Ethereum - style smart contracts offer

greater flexibility.

So to return to the question of what smart contracts are for:

Smart contracts are for blockchain use cases which can‟t be

implemented with transaction constraints.

Given this criterion for using smart contracts, I‟m yet to see

a strong use case for permissioned blockchain which

qualifies. All the compelling blockchain applications I know

can be implemented with bitcoin - style transactions, which

can handle permissioning and general data storage, as well

as asset creation, transfer, escrow, exchange and destruction.

Whatever the answer turns out to be, the key to remember is

that smart contracts are simply one method for restricting the

transactions performed in a database. This is undoubtedly a

useful thing, and is essential to making that database safe for

sharing. But smart contracts cannot do anything else, and

they certainly cannot escape the boundaries of the database

in which they reside.

Game Theory in Blockchain Technology (Prisoner’s

Dilemma)

[1]Game theory motivates people to collaborate to protect

their interests or gain a reward. For the uninitiated, game

theory is a branch of mathematics that studies the strategic

interaction among rational actors. [1]The prisoner‟s dilemma

is an experiment analyzed in game theory that shows why a

group of people might have a problem cooperating, even

when it seems like they‟d all be better off by cooperating.

In this thought experiment, there are two criminals who are

brought in for questioning for their suspected participation in

a crime. Both are in separate interview rooms, and let‟s

assume they‟re called prisoner A and prisoner B. (hence, the

name), and are potentially facing life imprisonment.

In the scenario, each can choose either to rat on the other

person or to stay quiet.

Now, cops put on several conditions. If prisoner A and

prisoner B both stay quiet, then they both walk free. This is

clearly the best outcome. But if A talks while B stays quiet,

then the cops will put B away for life, and let A off with

only 3 years in jail. The same is true if B talks. Now the cops

put another condition that if they both end up talking, they

both go to jail for, say, 10 years. This is better than life but

worse than going free. Say you‟re prisoner A. You don‟t

know what is going on in B‟s mind. Logically, you will find

out that it‟s better to talk. If both of you stay quiet, you get

to leave. But, if B talks and you stay quiet: you go away for

life. On the other hand, if you talk, the worst thing that can

happen is that you get 10 years. Thus, in situations like this,

the cops end up with everyone talking – even though they‟d

all be better off if no one talked. Because of lack of trust

between the prisoners, they lost their freedom.

Paper ID: SR23526145431 DOI: 10.21275/SR23526145431 2439

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Industries moving towards digitization are finding

themselves in a somewhat similar situation right now.

Automation has had the greatest impact on how businesses

operate – cutting their costs, increasing their productivity

and speeding up their work. But despite this digital

transformation, businesses have time and again struggled to

automate the foundation of trade;

Trust

Every person on the planet, who has ever made a purchase,

from buying something off Alibaba to purchasing a house,

knows how complex it is for two parties to complete a

transaction. Funds must be verified, disclosures must be

made in writing, and asset transfer needs to be done, and so

on. This is where businesses have a few questions that need

to be answered.

• Does this party actually and legally own the asset I want to

buy?

• Will this party actually give me the amount they promised?

• How can I ensure that this party delivers the goods once I

give them the money?

Usually, these questions are answered by third parties. This

is the biggest issue – the lack of trust between the

participating parties, and forced reliance on third party. This

is where I feel blockchain “Automated Trust” comes into

play. It doesn‟t really matter how many offbeat use - cases

the technology has, but the central, the core use - case of

blockchain would always be automating trust. Blockchain

can significantly reduce the operational friction, costs and

headaches associated with business processes – hence is a

key technology that companies associated with financial

services, supply chain, energy, healthcare, retail, and

automotive sectors are exploring.

Application of Game Theory in Smart Contracts

Game theory plays a key role in cryptocurrencies like

bitcoin. Whether it‟s the payoff matrix, Nash equilibrium or

the prisoner‟s dilemma, game theory concepts have big

implications for blockchain and smart contracts.

Blockchain and smart contracts will grow the game theory

field. Game theory is a major consideration when designing

many blockchain and smart contracts applications.

Blockchain businesses, cryptocurrencies and smart contract -

based crypto - tokens need sound game theory or else they

won‟t last. When miners spend time and energy on

electricity and computing the hash of a block, then they need

that block to be correct so it is accepted by the network.

That‟s how they receive the block‟s mining reward.

Otherwise miners lose time and money, and eventually

everyone refuses to interact with their node. Bitcoin miners

competing, proving they produced a specific block, as well

as half the network having to agree on the next block, is the

first game theory to work in the context of digital currencies.

In bitcoin‟s decentralized model, if miners want to earn

rewards, they have to abide by the rule of bitcoin.

Bitcoin‟s game theory, which is driven largely by the

network‟s mining complex, inspired Ethereum. Although it

uses the same game theory as Bitcoin, Ethereum empowers

developers to design and implement their own game theory

systems in the form of smart contracts.

A smart contract denotes a computer protocol that facilitates,

verifies or enforces the negotiation or performance of a

contract. I believe that smart contract systems have a long

way to go before they are robust enough upon which to base

business. And now, a new concept of oracles is gaining

traction.

[14] Oracles employ their own unique types of game theory

to facilitate the provision of factual data about the real world

in a distributed system, and help blockchain reflect the real

world with accuracy. An oracle is basically a game theory

that forces people to report correctly that which has

transpired in the real world or they get financially penalized.

If it‟s done correctly, they get financially incentivized.

Blockchain incentivizes people to tell the truth about the

world.

Are smart contracts viable for large scale applications?
Finally I come to my aim of writing this paper; many

companies have pitched many smart contract use cases, and

have found themselves responding, time and again, that they

simply cannot be done. From this result, I have identified the

three smart contract misconceptions that are most commonly

held. These ideas aren‟t wrong because the technology is

immature, or the tools are not yet available. Rather, they

misunderstand the fundamental properties of code which

lives in a database and runs in a decentralized way.

1) Contacting External Services

This is one of the limitations, due to the deterministic nature

of the blockchain, smart contracts are not allowed to directly

access public data available on the Internet. For example, to

get a simple exchange rate, you will need to make use of an

external third party (oracle) [14]. This complicates the smart

contract‟s code and adds another layer of complexity

because external services‟ jobs need to be coordinated. Also,

you will have to check that the oracle didn‟t forge the

response.

Often, the first use case proposed is a smart contract that

changes its behavior in response to some external event. For

example, an agricultural insurance policy which pays out

conditionally based on the quantity of rainfall in a given

month. The imagined process goes something like this: The

smart contract waits until the predetermined time, retrieves

the weather report from an external service and behaves

appropriately based on the data received. This all sounds

simple enough, but it‟s also impossible. Why? Because a

blockchain is a consensus - based system, meaning that it

only works if every node reaches an identical state after

processing every transaction and block. Everything that

takes place on a blockchain must be completely

deterministic, with no possible way for differences to creep

in. The moment that two honest nodes disagree about the

chain‟s state, the entire system becomes worthless. Smart

contracts are executed independently by every node on a

chain. Therefore, if a smart contract retrieves some

information from an external source, this retrieval is

performed repeatedly and separately by each node. But

because this source is outside of the blockchain, there is no

guarantee that every node will receive the same answer.

Paper ID: SR23526145431 DOI: 10.21275/SR23526145431 2440

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Perhaps the source will change its response in the time

between requests from different nodes, or perhaps it will

become temporarily unavailable. Either way, consensus is

broken or the entire blockchain dies. So, what‟s the

workaround? Actually, it‟s rather simple. Instead of a smart

contract initiating the retrieval of external data, one or more

trusted parties (“oracles”) create a transaction which embeds

that data in the chain. Every node will have an identical copy

of this data, so it can be safely used in a smart contract

computation. In other words, an oracle pushes the data onto

the blockchain rather than a smart contract pulling it in.

When it comes to smart contracts causing events in the

outside world, a similar problem appears. For example,

many like the idea of a smart contract which calls a bank‟s

API in order to transfer money. What if every node is

independently executing the code in the chain, which is

responsible for calling this API?If the answer is just one

node, what happens if that particular node malfunctions,

deliberately or not? And if the answer is every node, can we

trust every node with that API‟s password? And do we really

want the API called hundreds of times? Even worse, if the

smart contract needs to know whether the API call was

successful, we‟re right back to the problem of depending on

external data. As before, a simple workaround is available.

Instead of the smart contract calling an external API, we use

a trusted service which monitors the blockchain‟s state and

performs certain actions in response. For example, a bank

could proactively watch a blockchain and perform money

transfers which mirror the on - chain transactions. This

presents no risk to the blockchain‟s consensus because the

chain plays an entirely passive role.

[13] Looking at these two workarounds, we can make some

observations. First, they both require a trusted entity to

manage the interactions between the blockchain and the

outside world. While this is technically possible, it

undermines the goal of a decentralized system. Second, the

mechanisms used in these workarounds are straightforward

examples of reading and writing a database. An oracle which

provides external information is simply writing that

information into the chain. And a service which mirrors the

blockchain‟s state in the real world is doing nothing more

than reading from that chain. In other words, any interaction

between a blockchain and the outside world is restricted to

regular database operations.

2) Enforcing on - chain payments

Here‟s another proposal that we tend to hear a lot: using a

smart contract to automate the payment of coupons for a so -

called “smart bond”. The idea is for the smart contract code

to automatically initiate the payments at the appropriate

times, avoiding manual processes and guaranteeing that the

issuer cannot default. Of course, in order for this to work,

the funds used to make the payments must live inside the

blockchain as well; otherwise a smart contract could not

possibly guarantee their payment. Recall that a blockchain is

just a database, in this case a financial ledger containing the

issued bond and some cash. So, when we talk about coupon

payments, what we‟re actually talking about are database

operations which take place automatically at an agreed time.

While this automation is technically feasible, it suffers from

a financial difficulty. If the funds used for coupon payments

are controlled by the bond‟s smart contract, then those

payments can indeed be guaranteed. But this also means

those funds cannot be used by the bond issuer for anything

else. And if those funds aren‟t under the control of the smart

contract, then there is no way in which payment can be

guaranteed.

In other words, a smart bond is either pointless for the issuer,

or pointless for the investor. From an investor‟s perspective,

the whole point of a bond is its attractive rate of return, at

the cost of some risk of default. And for the issuer, a bond‟s

purpose is to raise funds for a productive but somewhat risky

activity, such as building a new factory. There is no way for

the bond issuer to make use of the funds raised, while

simultaneously guaranteeing that the investor will be repaid.

It should not come as a surprise that the connection between

risk and return is not a problem that blockchain can solve.

3) Hiding confidential data

Here comes the third challenge, as I‟ve written about

previously, the biggest challenge in deploying blockchain is

the radical transparency which they provide. For example, if

10 banks set up a blockchain together, and two conduct a

bilateral transaction, this will be immediately visible to the

other eight. While there are various strategies for mitigating

this problem, none beat the simplicity and efficiency of a

centralized database in which a trusted administrator has full

control over who can see what. Some people think that smart

contracts can solve this problem. They start with the fact that

each smart contract contains its own miniature database,

over which it has full control. All read and write operations

on this database are mediated by the contract‟s code, making

it impossible for one contract to read another‟s data directly.

This tight coupling between data and code is called

encapsulation, and is the foundation of the popular object -

oriented programming paradigm.

So, if one smart contract can‟t access another‟s data, have

we solved the problem of blockchain confidentiality? Does it

make sense to talk of hiding information in a smart contract?

Unfortunately, the answer is no and this is because even if

one smart contract can‟t read another‟s data, that data is still

stored on every single node in the chain. For each

blockchain participant, it‟s in the memory or disk of a

system which that participant completely controls. And

there‟s nothing to stop them reading the information from

their own system, if and when they choose to do so.

Hiding data in a smart contract is about as secure as hiding it

in the HTML code of a web page. Sure, regular web users

won‟t see it, because it‟s not displayed in their browser

window. But all it takes is for a web browser to add a „View

Source‟ function (as they all have), and the information

becomes universally visible.

Similarly, for data hidden in smart contracts, all it takes is

for someone to modify their blockchain software to display

the contract‟s full state, and all semblance of secrecy is lost.

Paper ID: SR23526145431 DOI: 10.21275/SR23526145431 2441

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2. Conclusion

Smart contracts hold tremendous power, but they do have

limitations. It is important to note that these systems are only

as good as the people building them. So far, many smart

contract systems have failed due to unforeseen bugs and

events that were not part of the initial design. In many cases,

these were merely technical flaws that can at least be fixed

in time. However, with the recent rush to use blockchain

technology for everything, we are likely to start seeing more

substantial failures as people fail to understand the limits of

the technology. For blockchain to truly have maximum

business impact, both its advantages and limitations have to

be addressed.

Businesses have to keep in mind that blockchain is not a

cure - all. There are very specific use - cases where

blockchain could help businesses. Companies need to figure

out which places actually need trust to be automated, and

then proceed with them instead of blindly replacing their

Databases with blockchain. The companies who provide

blockchain development also need to understand the same.

Companies that merely replace centralized DB with

blockchain without understanding if the technology is

actually „automating trust‟ are harming the industry in

general. Companies like Ethereum need to invest more in

educating their clients, rather than spending purely on

development. As the coming developer of blockchain

platforms, I always say “It’s not that people don’t

understand what they want smart contracts to do. Rather,

it’s that so many of these ideas are simply impossible”.

References

[1] Bitcoin: A Peer - to - Peer Electronic Cash System.

Nakamoto S.

[2] SoK: Research Perspectives and Challenges for

Bitcoin and Cryptocurrencies. Bonneau J, Miller A,

Clark J, Narayanan A, Kroll JA, Felten EW. S&P.

[3] Bitcoin's Academic Pedigree. Narayanan A, Clark J.

ACM Queue.

[4] Smart Contracts Make Bitcoin Mining Pools

Vulnerable. Velner Y, Teutsch J, Luu L. FC.

[5] Mixing Coins of Different Quality: A Game -

Theoretic Approach. Abramova S, Schöttle P, Böhme

R. FC.

[6] Decentralized Prediction Market without Arbiters.

Bentov I, Mizrahi A, Rosenfeld M. FC

[7] "Zeus": Analyzing Safety of Smart Contracts. Kalra S,

Goel S, Dhawan M, Sharma S. NDSS.

[8] "Ethereum": A next - generation smart contract and

decentralized application platform. VitalikButerin.

[9] Ethereum: A secure decentralisedgeneralised

transaction ledger. Wood G.

[10] Fair Two - Party Computations via Bitcoin Deposits.

Andrychowicz M, Dziembowski S, Malinowski D,

Mazurek.

[11] Step by Step Towards Creating a Safe Smart Contract:

Lessons and Insights from a Cryptocurrency Lab.

Delmolino K, Arnett M, Kosba A, Miller A, Shi.

[12] eth. How do Ethereum mining nodes maintain a time

consistent with the network? Ethereum Wiki, June

2016. https: //github. com/ethereum/wiki/wiki/Light -

clientprotocol, Accessed on 12/6/2019.

[13] Ethereum. Light client protocol. Ethereum Wiki, May

2016. https: //github. com/ethereum/wiki/wiki/Light -

client - protocol.

[14] Ethereum. The mix ethereumdapp development tool.

GitHub, 2016. https: //github. com/ethereum/mix,

Accessed on 20/5/2019.

[15] I. Eyal and E. G. Sirer. Majority is not enough:

Bitcoin mining is vulnerable. In International

Conference on Financial Cryptography and Data

Security, pages 436–454. Springer, 2014

[16] R. Kumaresan and I. Bentov. How to use bitcoin to

incentivize correct computations. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer

and Communications Security, pages 30–41. ACM,

2014.26. L. Luu, D. - H. Chu, H. Olickel, P. Saxena,

and A. Hobor.

[17] Making smart contracts smarter. In Proceedings of the

2016 ACM SIGSAC Conference on Computer and

Communications Security, pages 254–269. ACM,

2016.27. P. McCorry, S. F. Shahandashti, D. Clarke,

and F. Hao. Authenticated key exchange over bitcoin.

[18] In Security Standardization Research, pages 3–20.

Springer, 2015.

Paper ID: SR23526145431 DOI: 10.21275/SR23526145431 2442

