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Abstract:

The purpose of this paper is to present a uniform Haar wavelet method for approximating the

solution of a system of partially singularly perturbed problems numerically. The approximate

solution is considered on non-uniform grids. Linear and second-order system of partially

singularly perturbed problems are considered for different meshes to reduce the issues of singular

behavior and provides an approximate solution up to the specified order. By performing the

computation on present numerical algorithm, our scheme produces better results than the

non-uniform method, the parameter uniform method, and the classical finite difference operator

method. The approach is shown to be uniformly convergent in terms of the singular perturbation

parameter and error estimation. The effectiveness of the present scheme is examined through

some test examples.
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1 Introduction
The primary goal of this article is to describe a specific case of a system of partially singularly

perturbed problem with a small perturbation parameter in one equation. Here, the class ofε

linear and second order system of singularly perturbed (SP) initial and boundary value problems

(BVP)as below:
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Perturbation parameter associated in the singularly perturbed problems (SPPs) is relatively a

small parameter: The small perturbation parameter , (0< ) multiplied with the highestε≪1. ε ε≪1

differential operator in the system of first order (initial value) and second order boundary value

problems with partial singular perturbations. Perturbation parameter leads to the change in the

behavior of the Haar solution to the corresponding singularly perturbed initial value problems

(SPIVPs). It is generally known that SPP frequently features interior layers with thin boundary

layers and layers where the solution varies quickly., yet away from the layers, solution behaves

regularly and varies slowly. x is an independent variable, The functions for i=1,2,3,4 is𝑢
𝑖

𝑥( )  

unknown. Which are continuous and differentiable on an interval [0, 1] of the real number axis x, for iα
𝑖

= 1, 2, 3, 4 are the constant coefficients, are given functions of the independent variable x. 𝑟
1

𝑥( ), 𝑟
2

𝑥( ) 

Further assume that the functions with the coefficients for i = 1,𝑟
1

𝑥( ), 𝑟
2

𝑥( ),  𝑢
𝑖

𝑥( ),  𝑖 = 1, 2, 3,  𝑎𝑛𝑑 4 α
𝑖
 

2, 3, 4 takes the real values. The following systems can be found in a variety of fields, including

radiology, biophysics, chemical reactions, psychology, semiconductor inputs, neurosciences,

circuit study, geophysics, diffusion processes, pattern reorganization problems, and mathematical

miniatures in water waves. The study of diffusion process generated by chemical reaction is one

use of this system of linear singularly perturbed boundary value problems (SPBVPs) in

electro-analytic chemistry, combustion theory, semiconductor devices, heat transfer,

semiconductor modelling, optimal control, and hydrodynamics. The diffusion coefficient of the

substances is defined by small parameters multiplied with the highest derivatives.
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For the study of systems of partially singularly perturbed problems authors refer (Lambert (1991)

and Doolan et al., 1980). For extensive study of such problems, various schemes have been

developed, such as Matthews et al., (Matthews et al., 2006) gave a parameter-uniform numerical

technique with asymptotic convergence independent of singular perturbation parameters, The

system of several novel methods for somewhat singularly perturbed initial and boundary value

issues is addressed in (Das et al., 2017, Umesh and Kumar (2020) and Kumar and Deswal (2021)

explained the numerical approach using wavelets to solve two-point SPPs. Singh et. al., (2023)

solved fourth order SPBVPs via uniformly convergent scheme.

However, for a system of singularly perturbed concerns, there are just a few results given in the

literature. Therefore, in this paper, piece-wise Shishkin mesh, p-mesh and q-mesh are considered

to solve the system of linear initial and BVPs that are slightly singularly perturbed. Uniform

Haar wavelet scheme has been taken to solve the linear system of initial and second order system

of partially SPBVPs. Furthermore, uniform Haar wavelet methodology outperforms parameter

uniform methods, non-uniform methodology and traditional numerical difference operator

theory, and demonstrated the uniform Haar wavelet method’s better efficiency with two test

problems. The structure of this research is as follows: The Uniform Haar Wavelet Method

(UHWM) and its integrals has been described in Section 2. The method of the approximation

function for the Haar wavelet is described in the next section. The piece-wise non-uniform fitted

mesh/grids are defined and suggests a numerical technique for the system of singularly perturbed

initial (first order) and boundary value (second order) is given in section 4. Section 5 gave

convergence analysis and error analysis of the present method. Section 6 discusses the findings

and conclusions as to demonstrate the suggested method’s correctness, and validity. Finally,

section 7 provides a summary of the paper's conclusions.

2 Uniform Haar Wavelet Method
Chen and Hsiao (1997) developed the Haar Wavelet Method (HWM) for the solution of

parametric systems with lumped and distributed parameters, which is a fully distributed model

that takes into account fluid property fluctuation. Following a series of papers studied by Lepik

(2011). Haar wavelets are gaining prominence in the field of differential equations. Many

researchers were drawn to Haar wavelet-based approaches because of their accuracy, low

processing cost, and superiority to alternative numerical methods. Researchers were drawn to
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new ideas in Lepik and Hein (2014), (Singh at al., 2019), (Swati at al., 2020), and (Islam et al.,

2010). In this study, a partial system of singularly perturbed initial/boundary value problems is

numerically solved using the wavelets approach. The following are the major features of Haar

wavelets that are relevant in numerical findings:

● The Haar basis function’s complexity allows for an approach to creating a set of solutions

while requiring less time and calculation.

● It’s computationally convenient method that uses constructive algorithms to manage a

numerous initial and boundary conditions.

2 Uniform Haar Wavelet Method and their integrals
Approximation of any square integrable function at different levels of resolution discussed in

Lepik (2008) and Clavero and Jorge (2016), The mother wavelet is a great wavelet-based effort

that incorporates translation and dilation of signal function and defined over the given interval x

belongs to [A, B] as follows:

ℎ
𝑖
𝑊 𝑥( ) = {  1,  − 1,     0,      𝑖𝑓    ϑ

1
(𝑖)≤𝑥 < ϑ

2
(𝑖)   𝑖𝑓  ϑ

2
(𝑖)≤𝑥 < ϑ

3
(𝑖) 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                                    

Where:

ϑ
1

= 𝑘
𝑚 ,    ϑ

2
= 2𝑘+1

2𝑚 ,    ϑ
3

= 𝑘+1
𝑚 ,       

where i=

2𝑗+𝑘+1,  ϑ
1

𝑖( ) = 𝐴 + 2𝑘µ∆𝑥,   ϑ
2

𝑖( ) = 𝐴 + 2𝑘 + 1( )µ∆𝑥,   ϑ
3

𝑖( ) = 𝐴2 𝑘 + 1( )µ∆𝑥,  µ = 𝑀
𝑚 ,  

and , For the value of i=1, Haar function is the scaling parameter function for family∆𝑥 = 𝐵−𝐴
2𝑀  ℎ

𝑖
𝑊 𝑥( )

of Haar wavelets and is described as:

ℎ
1
𝑊 𝑥( ) = {  1,    𝑖𝑓  0≤𝑥 < 1 0,       𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                                                       (8)

0

1
∫ ℎ

𝑖
𝑊 𝑥( ) ℎ

𝑙
𝑊 𝑥( ) =

{  2−𝑗,    𝑖𝑓 𝑖 = 𝑙 = 𝑘 + 2𝑗 0,                𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                          (9)
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for i = 2, the function is known as the mother wavelet for the family of Haar wavelet, andℎ
2
𝑊 𝑥( )

is described as

ℎ
2
𝑊 𝑥( ) = {  1,  − 1,     0,      𝑖𝑓    ϑ

1
(𝑖)≤𝑥 < ϑ

2
(𝑖)   𝑖𝑓  ϑ

2
(𝑖)≤𝑥 < ϑ

3
(𝑖) 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                                    

Here, the integer m= , parameter k=0,1,2…, m-1. Consider a minimum2𝑗 𝑤𝑖𝑡ℎ 𝑗 = 0, 1, 2… 𝐽

index of i=1 for the Haar function, select m=1, k=0. The highest value that the index number can

takes i=2M= if wavelet every level is included. Parameter, J represents the maximum level2𝑗+1,

of resolution. The highest degree at which uniform Haar solutions are computed using the

numerical analysis algorithm. The highest resolution signifies the most accurate approximation

of Haar solution. The Parameter (J) usually associated with the index of the Haar function.

In addition, is the mother Haar wavelet, which spans the full range (0,1), or theℎ
2
𝑊 𝑥( )

fundamental square wave. Similar to this, all future curves are produced using the Haar wavelet

algorithm utilizing two operations: dilation and translation followed by Raza and Khan (2021).

The Haar operational matrices of integration will then use to calculate the numerical solution to

the system of partially SPPs.

The operational matrix for Haar of order of order m × m is created by integrating the Haar𝑃
𝑖,ς

wavelet family using the integral as the basis and defined as below:

𝑃
𝑖,ς

=
𝐴

𝑥

∫
𝐴

𝑥

∫ ………
𝐴

𝑥

∫ ℎ
𝑖
𝑤 𝑡( )𝑑𝑡ς = 1

(ς−1)
𝐴

𝑥

∫ (𝑥 − 𝑡)ς−1ℎ
𝑖
𝑤 𝑡( )𝑑𝑡,                                                   11( )

Where:

ς = 1, 2, ...., and m=2𝑗 𝑤𝑖𝑡ℎ  𝑗 = 0 𝑎𝑛𝑑 1, 2…, 𝐽,   𝑖 =  1,  2...,  2𝑚.

The explicit form of integrals in equation 11 can be written as:

𝑃𝑤
𝑖,ς

𝑥( ) = {    0,                                                                𝑖𝑓  0 ≤𝑥 <  ϑ
1

𝑖( )                                    
𝑥−ϑ

1( )ς

ξ! ,                            

To determine the findings of a system of partially SP initial (first order) and boundary value

(second order) problems by the HWM, the following integrals are used as:
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𝑖,ς

𝑥( ) =
0

𝑥
∫ ℎ

𝑖
𝑤 𝑡( )𝑑𝑡.             

(13)

The function of Haar wavelet complies with the following characteristic.:

𝑃𝑤
𝑖,ς

𝑥( ) = {  (𝑥 − σ
0
),  (σ

2
− 𝑥),     0,      𝑖𝑓    δ

0
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1
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𝑥( )𝑑𝑡,   ς = 1, 2, …                             
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(16)𝐶𝑤
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0

1

∫  𝑃𝑤
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𝑖,ς

𝑥( )

𝑃𝑤
𝑖,2

𝑥( ) = {    0,                                𝑖𝑓   0≤𝑥 <  ϑ
1
(𝑖)                                                         

𝑥−ϑ
1( )ς

2! ,                         𝑖𝑓 ϑ
1
(𝑖)

(17)

The fact that Haar functions constitute an orthogonal basis, i.e.,

(18)
0

1

∫ ℎ
𝑖
𝑤 𝑥( )ℎ

ἷ
𝑤𝑑𝑡 =  δ

𝑖,ἷ
,

Where represents the Kronecker delta which Mallet describes in reference Mallet (1989) inδ
𝑖,ἷ

detail. Additionally, any randomly chosen twice f(x) on [0,1] is an integrable function that has

been conceivably approximated as piece-wise constant function in each sub-interval.

(19)
𝑖=1

∞

∑ 𝑎
𝑖
ℎ

ἷ

𝑤 = 𝑓(𝑥)
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The series comes to an end at 2M terms to approximate the solution. The coefficients of Haar𝑎
𝑖

wavelet are assessed as:

𝑎
𝑖

=< ℎ𝑤 𝑥( ), 𝑦(𝑥) >  =
0

1

∫ 𝑦 𝑥( ). ℎ𝑤 𝑥( )𝑑𝑥.

(20)

3 Construction of Haar Wavelet in Uniform Manner

This section describes the study for finding the approximation of solution of linear initial value

problem system with partial singular perturbation.

3.1 Scheme for Initial Value Problem with first-Order Partially Singular Perturbation

(21)ε𝑢
1
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3
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2
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2
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With initial conditions

(23) 𝑢
1

0( ) = 𝑎
1
,  𝑢

2
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2
,

Presume that in order to solve the above system,

(24)𝑢
1

' 𝑥( ) =
𝑖=1

2𝑁

∑ [𝑞
𝑖
1𝐻

𝑖
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(25) 𝑢
2

' 𝑥( ) =
𝑖=1

2𝑁

∑ [𝑞
𝑖
2𝐻

𝑖
𝑊 𝑥( )],

Following results of the Haar solution for system of partially SPIVP are obtained using

integration equation (24) and (25):

(26)𝑢
1

𝑥( ) =
𝑖=1

2𝑁

∑ [𝑞
𝑖
1𝑃
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Taking the value of , , , and from equation (24)-(27) and𝑢
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(𝑥) 𝑢
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(𝑥) 𝑢

2
'(𝑥)

plugging them into equation (21) and (22), the system of equations is as follows:

-
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0
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𝑖
2(𝑃

𝑖
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𝑥( )𝑢
1
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-
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∑ 𝑞
𝑖
1(ε𝐻

𝑖
𝑊 𝑥( ) + α

0
(𝑥) 𝑃

𝑖
𝑊 𝑥( )) + α

1
(𝑥) 

𝑖=1

2𝑁

∑ 𝑞
𝑖
1(𝑃

𝑖
𝑊 𝑥( )) = 𝑟

2
𝑥( )

(0,1]. (29)α
2

𝑥( )𝑢
1

0( )− α
3

𝑥( )𝑢
2

0( ) Ɐ 𝑥 ∈

The equations (28) and (29) are linear equations with uniform Haar wavelet coefficients and𝑞
𝑖
1 𝑞

𝑖
2

that are unknown and solved using the gauss elimination method. The uniform Haar wavelet

coefficients values and is accordingly inserted in equations (26) and (27), which is uniform𝑞
𝑖
1 𝑞

𝑖
2

Haar approximate solution of the system of first-order linear partially SPIVPs.

3.2 Scheme for Finding the Approximate Solution of Second-Order Partially Singularly

Perturbed Boundary Value Problem

(30)− ε𝑢
1
'' 𝑥( ) + α

0
𝑢

1
(𝑥) + α

1
𝑢

2
(𝑥) = 𝑟

1
𝑥( ),

(31)  𝑢
2
'' 𝑥( ) + α

2
𝑢

1
𝑥( ) + α

3
𝑢

2
𝑥( ) = 𝑟

2
𝑥( ),  Ɐ 𝑥∈(0, 1],

with respect to boundary conditions:

(32)𝑢
1

0( ) = 𝑎
1
,   𝑢

2
0( ) = 𝑎

2
,   𝑢

1
1( ) = 𝑎

3
,   𝑢

2
(1) = 𝑎

4
,   

For this system, consider

(33)𝑢
1

'' 𝑥( ) =
𝑖=1

2𝑁

∑ [𝑞
𝑖
1𝐻

𝑖
𝑊 𝑥( )],

(34)𝑢
2

'' 𝑥( ) =
𝑖=1

2𝑁

∑ [𝑞
𝑖
2𝐻

𝑖
𝑊 𝑥( )],

Integrating (33) from 0 to x gives us
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(35)𝑢
1
' 𝑥( ) =

𝑖=1

2𝑁

∑ [𝑞
𝑖
1𝑃

𝑖
𝑊 𝑥( )) + 𝑢

1
0( )],

In the same way integrating equation (34)

(36)𝑢
2
' 𝑥( ) =

𝑖=1

2𝑁

∑ [𝑞
𝑖
2𝑄

𝑖
𝑊 𝑥( )) + 𝑢

2
0( )],

Equations (37) and (38) are obtained when integrate equations (35) and (36) from 0 to x,

respectively

(37)𝑢
1

𝑥( ) =
𝑖=1

2𝑁

∑ (𝑞
𝑖
1𝑄

𝑖
𝑊 𝑥( )) + 𝑥𝑢

1
' 0( ) + 𝑢

1
0( ),

And,

(38)𝑢
2

𝑥( ) =
𝑖=1

2𝑁

∑ (𝑞
𝑖
2𝑄

𝑖
𝑊 𝑥( )) + 𝑥𝑢

2
' 0( ) + 𝑢

2
0( ),

In addition, by integrating equations (33) and (34) from 0 to 1, and are shown𝑢
1
' 0( ) 𝑢

2
' 0( )

below:

(39)𝑢
1
'(0) = 𝑢

1
1( ) − 𝑢

1
0( ) −

𝑖=1

2𝑁

∑ 𝑞
𝑖
1 * 𝑂

𝑖
𝑥( ),

And,

(40)𝑢
2
' 0( ) = 𝑢

2
1( ) − 𝑢

2
0( ) −

𝑖=1

2𝑁

∑ 𝑞
𝑖
2 * 𝑂

𝑖
𝑥( ),  

Here,

O(x)= .
0

1

∫ 𝑃(𝑥)𝑑𝑥

(41)

By substituting and values from equations (39) and (40) into equations𝑢
1
' 0( ),  𝑢

2
' 0( ) 

(37) and (38), then the Haar solutions of partially SPBVPs are as follows:

(42)𝑢
1

𝑥( ) =
𝑖=1

2𝑁

∑ 𝑞
𝑖
1(𝑄

𝑖
𝑊 𝑥( )) + 𝑥(𝑢

1
0( ) − 𝑢

1
1( ) +

𝑖=1

2𝑁

∑ 𝑞
𝑖
1𝑂

𝑖
𝑥( ))+ 𝑢

1
0( ),
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(43)𝑢
2

𝑥( ) =
𝑖=1

2𝑁

∑ 𝑞
𝑖
2(𝑄

𝑖
𝑊 𝑥( )) − 𝑥(𝑢

2
0( ) − 𝑢

2
1( ) +

𝑖=1

2𝑁

∑ 𝑞
𝑖
2𝑂

𝑖
𝑥( ))+ 𝑢

2
0( ),

By inserting the expressions of and from equations (33), (34),𝑢
1

𝑥( ) 𝑢
2

𝑥( ),   𝑢
1

'' 𝑥( ) 𝑎𝑛𝑑 𝑢
2

'' 𝑥( )

(42) and (43) in equations (30) and (31), the following system of linear equations as shown

below:

+ =
𝑖=1

2𝑁

∑ 𝑞
𝑖
1(− ε𝐻

𝑖
𝑊 𝑥( ) + α

0
𝑥( )(𝑄

𝑖
𝑥( ) − 𝑥𝑂

𝑖
𝑥( ))

𝑖=1

2𝑁

∑ 𝑞
𝑖
2α

1
(𝑥)( (𝑄

𝑖
𝑥( ) − 𝑥𝑂

𝑖
𝑥( )) 𝑟

1
𝑥( ) −

(44)α
0
(𝑥)(𝑥(− 𝑢

1
0( ) + 𝑢

1
1( )) + 𝑢

1
0( )) − α

1
(𝑥)(𝑥(𝑢

2
1( ) − 𝑢

2
0( )) − 𝑢

2
0( )),

and,

+
𝑖=1

2𝑁

∑ 𝑞
𝑖
2(𝐻

𝑖
𝑊 𝑥( )) + α

3
𝑥( )(𝑄

𝑖
𝑥( ) − 𝑥𝑂

𝑖
𝑥( ))

𝑖=1

2𝑁

∑ 𝑞
𝑖
1α

2
(𝑥)( (𝑄

𝑖
𝑥( ) − 𝑥𝑂

𝑖
𝑥( )) = 𝑟

2
𝑥( ) − α

2
(𝑥)(𝑥(− 𝑢

1
0( ) + 𝑢

1
1( )) + 𝑢

1
0( ))

− α
3
(𝑥)(𝑥(− 𝑢

2
0( ) + 𝑢

2
1( ) . (45)

The system of linear equations that are represented in equations (44) and (45) has uniform Haar

wavelet coefficients and . Moreover, any approach accessible in the literature can be used to𝑞
𝑖
1 𝑞

𝑖
2

find the unknowns, such as using the Gauss elimination method (row reduction algorithm). On

substitution of these unknown in equation (42) and in equation (43) to locate the𝑞
𝑖
1 𝑞

𝑖
2

second-order linear partially SPBVP system's uniform Haar wavelet approximation.

4 Creation of Non-Uniform Meshes
A piece-wise mesh is a Shishkin mesh (multidimensional variant of a tensor-product mesh). The

selection of the referred to as transition parameter(s), or the location(s), where the mesh size

drastically alters, is what sets a Shishkin mesh is distinct from other piecewise meshes. Shishkin

(1988). Term "Shishkin mesh" is one that many numerical analysts have heard of, however,

Some of them might not completely comprehend how the choice of transition parameter(s), and

therefore, the mechanism of this mesh, delivers accuracy regardless of how little the solitary

perturbation parameter is. Shishkin mesh, which is refined inside layers, is added in order to
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resolve the layer in the solution of given problem. The strength and position of the layers serve

as the foundation for this mesh. For a thorough description of its qualities, see (Roos et al.,

2008).

4.1 Grid Structure
The following are the several types of non-uniform meshes used in this study for which the Haar

wavelet approach is applied:

Mesh I Generate a non-uniform mesh see Lepik (2014), in x-direction and similarly create ς
𝑥

𝑁
𝑥

the mesh in y-direction with =2M and =2M respectively, total number of x and y ς
𝑦

𝑁
𝑦 𝑁

𝑥
𝑁

𝑦

directional points.

Mesh I generation algorithm The piece-wise uniform and non-uniform fitting mesh/grids are

discussed here:

The definition of the p-mesh, or non-uniform grid is:

= j=0,1,2….M,𝑥
𝑗
  1−𝑝𝑖

1−𝑝𝑀 ,  

x(j) = j=1,2….M,−𝑥 𝑗( )−𝑥 𝑗−1( )

𝑝𝑀−1
,  

Mesh II (Shishkin Mesh) Create the Shishkin mesh, also known as the x-direction, which is

likewise, create the mesh , and likewise, create the mesh, in direction of y, with =2M ς
𝑥

𝑁
𝑥  ς

𝑦
𝑁

𝑦 𝑁
𝑥

and =2N respectively, total number of x and y directional points.𝑁
𝑦

4.2 Algorithm for Generation Mesh II

• Configure the transitional parameter as where based on theρ
𝑥

ρ
𝑥

= 𝑚𝑖𝑛⁡{ 1
4 , 𝑘

𝑥
ε log 𝑙𝑜𝑔 𝑀

𝑥
} ,  𝑘

𝑥

coefficient of the response term.

• Create three subintervals from the interval [0, 1] as [0, ], [ , 1 − ] and [1 − , 1].ρ
𝑥

ρ
𝑥

ρ
𝑥

ρ
𝑥
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• Locate mesh points within every sub-interval [0, ] and [1 − , 1] the mesh spacing is
𝑀

𝑥

4 ρ
𝑥

ρ
𝑥

such that contain in these subintervals . Put points in [ , 1 − ]. As a result, the∆𝑡
𝑖

4ρ
𝑥

𝑁
𝑥

𝑁
𝑥

2 ρ
𝑥

ρ
𝑥

mesh distance in this interval is .∆𝑡
𝑖

2(1−2ρ
𝑥
)

𝑀
𝑥

• Consider the mesh point to be

∆𝑡
𝑖

= {  𝑖∆𝑡
𝑖
,  ρ

𝑡
+ 𝑖 −

𝑀𝑡

4( )∆𝑡
𝑖
,     1 − ρ

𝑥
+ 𝑖 −

3𝑀𝑥

4( )∆𝑡
𝑖
,    𝑖 = 0, 1,..,

𝑁𝑥

4 ,

    𝑖 =
𝑀𝑥

4 + 1, …,
3𝑀𝑥

4 ,     𝑖 =
3𝑀𝑥

4
(46)

To obtain the mesh . ς
𝑥

𝑁
𝑥 = {𝑡

𝑖
}

0

1

• Finally, define the collocation points as follows using these grid points: , i=1, 2, .
𝑥̇

𝑖−1
+𝑥̇

𝑖

2 …𝑁
𝑥

5 Convergence and Uniform Haar Wavelet Scheme Error Analysis

The 2D Haar wavelet technique's convergence analysis is in the -norm. As upper bound of𝐿2

integral is higher than the lower bound, conclude that the convergence theorem must be𝑝
𝑖,1

(𝑥)

derived from the bound.

Theorem 1 Consider the integral of the Haar function as described in (11) and (16) ℎ
𝑖
𝑊 𝑥( )

respectively as and , based on the range [0, 1]. The upper limits for these 𝑃𝑤
𝑖,1

𝑥( ) 𝑃𝑤
𝑖,2

𝑥( )

integrals are therefore provided as follows:

and K= ℎ
𝑖
𝑊 𝑥( )≤1, 𝑃𝑤

𝑖,2
𝑥( )≤𝐾 ( 1

2𝑗+1
)

2
,  𝑖 > 1, 𝑃𝑤

𝑖,1
𝑥( ) ≤ 1

2𝑗+1
,   𝑤𝑖𝑡ℎ 𝑖 > 1, 8

⌊(ς+1/2⌋!)2 .

Proof: For the proof of Theorem 1, authors refer Wichailukkana et al., (2016) and Deswal et al.,

(2022).
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Definition 1. The -norm of the approximation at the highest degree of resolution J is given𝐿2

by: = Here, (x, y) is in D and D is the rectangular domain||𝑒
𝐽
𝑟(𝑥,  𝑦) || 

2
{∫

𝐷
∫  𝑒

𝐽
𝑟 𝑥,  𝑦( )

2
𝑑𝑥 𝑑𝑦} 

1
2

.

that is said to be the -norm of the average error.𝐿2

Theorem 2 Assume that y′ and y′′ are real and enclosed by [a, b]. Whenever J = 0, 1, or 2 for

any M = , and α = 0, 1, 2, 3....P, where P is the positive number, y be the exact solution and2𝐽 𝑌
𝑀
α̇

is the Haar solution and then:

on (a, b) , J→∞, and P→∞.|| 𝑌
𝑀
α − 𝑦|| 𝐿

∞
≤𝑂 1

𝑀2( )
(47)

(a, b) be the interval (a, b)'s infinity norm.𝐿
∞

Proof: For the proof of the Theorem 2, see (Deswal et al., (2022) and Liu at al., (2022)).

Theorem 3 Haar integral in (11) and (15) on [0, 1] are defined. Then the maximum𝑃𝑤
α,𝑖

𝑥( )

possible upper bound of is as below:𝑃𝑤
α,𝑖

𝑥( )

if i>1,𝑃𝑤
α,1

𝑥( )≤1,  𝑃𝑤
0,𝑖

𝑥( )≤1/2,  𝑃𝑤
α,𝑖

≤1/α!  ,  𝑃𝑤
1,𝑖

𝑥( ) ≤ 1

2𝑗+1

Where C ( .α) =  8
(3(⌊(α+1)/2⌋)

Proof: For the detailed proof of the Theorem 3, see Wichailukkana at al., (2016).

Assumption 1. For the sake of this study, assume that .ε≤ 1
𝑁

Theorem 4 Wichailukkana at al., (2016). If assumption 1 is accurate, Shishkin mesh with σ

, there is ||y- || ( ), where, y is an exact solution of problem and≥𝑘 + 1 𝑦
𝐴𝑝𝑝
𝑁 ≤𝐶 1

𝑁𝑘 𝑙𝑛 𝑁)𝑘 𝑦
𝐴𝑝𝑝
𝑁

represents the approximate solution.

Proof: The triangle inequality and Lemma 1 easily lead to the conclusion.
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Lemma 1: If presumption 1 is correct, the results for Shishkin mesh are as follows.

Algorithm for numerical study of partially singularly perturbed problems via Uniform

Haar Wavelet Method

Consider J∈ N,

Step I. Compute the uniform Haar matrix from equation (7) as the Haar function is ℎ
𝑖
𝑊 𝑥( ) 

given as below:

ℎ
𝑖
𝑊 𝑥( ) = {  1,  − 1,     0,      𝑖𝑓    ϑ

1
(𝑖)≤𝑥 < ϑ

2
(𝑖)   𝑖𝑓  ϑ

2
(𝑖)≤𝑥 < ϑ

3
(𝑖) 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                                    

Step II. Compute the and , from equation (11) and equation (16) by creating𝑃𝑤
𝑖,1

𝑥( ) 𝑃𝑤
𝑖,2

𝑥( )

the Haar wavelet family using the integral as below:

𝑃
𝑖,ς

=
𝐴

𝑥

∫
𝐴

𝑥

∫ ………
𝐴

𝑥

∫ ℎ
𝑖
𝑤 𝑡( )𝑑𝑡ς = 1

ς−1
𝐴

𝑥

∫ (𝑥 − 𝑡)ς−1ℎ
𝑖
𝑤 𝑡( )𝑑𝑡,                                                   

Where:

ς = 1, 2, ...., and i = 1, 2..., 2m, m=2𝑗,  𝑗 = 0, 1, 2…, 𝐽.

Step III. Construct the scheme for first-order SPIVPs given by (21)-(29) and construct the

scheme for scheme for second order partially SPBVPs given by equation (30) to equation (45).

Step IV. Select the grid points from the grid structure.

Step V. Using the steps III to IV, construct the LHS of linear algebraic expression for the

approximate Haar solution of singularly perturbed initial/boundary value problems as below.

- [0,1],𝑟
1

𝑥( ) α
0

𝑥( )𝑢
1

0( )− α
1

𝑥( )𝑢
2

0( ) Ɐ 𝑥 ∈

and,

- (0,1].𝑟
2

𝑥( ) α
2

𝑥( )𝑢
1

0( )− α
3

𝑥( )𝑢
2

0( ) Ɐ 𝑥 ∈

Similarly construct the expression

𝑟
1

𝑥( ) − α
0
(𝑥)(𝑥(− 𝑢

1
0( ) + 𝑢

1
1( )) + 𝑢

1
0( )) − α

1
(𝑥)(𝑥(𝑢

2
1( ) − 𝑢

2
0( )) − 𝑢

2
0( )),

and,

.𝑟
2

𝑥( ) − α
2
(𝑥)(𝑥(− 𝑢

1
0( ) + 𝑢

1
1( )) + 𝑢

1
0( )) − α

3
(𝑥)(𝑥(− 𝑢

2
0( ) + 𝑢

2
1( )) − 𝑢

2
0( ))
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Step VI. To approximation the Haar solutions and on non-uniform grids, evaluate the linear𝑢
1

𝑢
2

algebraic system of equations provided in step V.

6 Results and Discussion

To demonstrate the UHWM on various meshes, in this paper, numerical problem of a linear

partially singularly perturbed system of initial value problems (first-order) as well as one

numerical problem of a partially SPBVP (second-order) has been taken to the study. To show the

uniform Haar wavelet method on various meshes, the maximum absolute residual errors with the

maximum absolute values are listed and compared to Raza and Khan (2021) and Matthews at al.,

(2002), the conventional finite difference operator method and the uniform parameter scheme,

respectively.

Problem-1 Consider an initial value problem with a partial system of singularly perturbed

problem given below:

(48)ε𝑢
1
' 𝑥( ) + 𝑥 + 2( )𝑢

1
𝑥( ) − 𝑥

2 + 1( )𝑢
2

𝑥( ) = 5𝑥 + 1
2 ,

(49)𝑢
2
' 𝑥( ) − 𝑥 + 1( )𝑢

1
𝑥( ) − 𝑥 + 2( )𝑢

2
𝑥( ) = exp 𝑒𝑥𝑝 𝑥( ) * 𝑥 , Ɐ 𝑥∈(0, 1],    

with initial conditions:

and . (50)𝑢
1

0( ) = 2 𝑢
2

0( ) = 2

Solution: The Uniform Haar Wavelet Method in discretized form is expressed as

2] -(1+ε
𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝐻

𝑖
𝑊 𝑥( ))] + (2 + 𝑥)

𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝑃

𝑖
𝑊 𝑥( )) + 𝑥

2 ) 𝑞
𝑖
1(𝑃

𝑖
𝑊 𝑥( ) + 2 = 5𝑥 + 1

2

(51)

and,

𝑖=1

2𝑁

∑ [𝑞
𝑖
2(𝐻

𝑖
𝑊 𝑥( ))] − (1 + 𝑥)[

𝑖=1

2𝑁

∑ 𝑞
𝑖
1(𝑃

𝑖
𝑊 𝑥( ) + 2] + (2 + 𝑥) )[

𝑖=1

2𝑁

∑ 𝑞
𝑖
2(𝑃

𝑖
𝑊 𝑥( ) + 2]

(52)= 𝑥 * 𝑒𝑥𝑝⁡(𝑥).

After simplifying the system (51) and (53)
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ε
𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝐻

𝑖
𝑊 𝑥( ))] + 2

𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝑃

𝑖
𝑊 𝑥( ))] + 𝑥

𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝑃

𝑖
𝑊 𝑥( ))] −

𝑖=1

2𝑁

∑ [𝑞
𝑖
2(𝑃

𝑖
𝑊 𝑥( ))]

-6-2t− 𝑥
2

𝑖=1

2𝑁

∑ 𝑞
𝑖
2 𝑃

𝑖
𝑊 𝑥( )( ) = 5𝑥 + 1

2

(53)

and,

𝑖=1

2𝑁

∑ [𝑞
𝑖
2(𝐻

𝑖
𝑊 𝑥( ))] −

𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝑃

𝑖
𝑊 𝑥( ))] − 2 − 𝑥 − 𝑥[𝑞

𝑖
1(𝑃

𝑖
𝑊 𝑥( ))] + 2𝑥 + 2

𝑖=1

2𝑁

∑ [𝑞
𝑖
2𝑃

𝑖
𝑊 𝑥( )

    + 4 + 𝑥
𝑖=1

2𝑁

∑ [𝑞
𝑖
2(𝑃

𝑖
𝑊 𝑥( ))] = 𝑥 * 𝑒𝑥𝑝⁡(𝑥).

(54)

ε
𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝐻

𝑖
𝑊 𝑥( ))] + 2

𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝑃

𝑖
𝑊 𝑥( ))] + 𝑥

𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝑃

𝑖
𝑊 𝑥( ))] −

𝑖=1

2𝑁

∑ [𝑞
𝑖
2(𝑃

𝑖
𝑊 𝑥( ))]  − 𝑥

2
𝑖=1

2𝑁

∑ 𝑞
𝑖
2 𝑃

𝑖
𝑊 𝑥( )( )  = 3𝑥 + 11

2( ),          

(55)
and,

𝑖=1

2𝑁

∑ [𝑞
𝑖
2(𝐻

𝑖
𝑊 𝑥( ))] −

𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝑃

𝑖
𝑊 𝑥( ))] + 2 + 4𝑥 − 𝑥

𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝑃

𝑖
𝑊 𝑥( ))] + 2

𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝑃

𝑖
𝑊 𝑥( ))] + 𝑥

𝑖=1

2𝑁

∑ [𝑞
𝑖
2(𝑃

𝑖
𝑊 𝑥( ))]

=(56)

The numerical computed results based on UHWM for the partially SPIVP with different meshes and

different parameters , J are reported in the Tables 1-2 and Table-4. Tables reports the maximum residualε

error for different non uniform grids which clearly indicates that the present method gives good accuracy

as comparison with existing techniques such as non- uniform HWM and finite difference operator

method. Figures 1-15 show the numerical solutions for and and corresponding maximum absolute𝑢
1

𝑢
2

residual error in 2- dimensional for the different values of parameters , J, , and , i = 1, 2, 3. Thisε 𝑀
𝑥

𝑀
𝑦

ϑ
𝑖

shows that the accuracy has been improved with comparison to the other existing schemes. Different level

of resolution has been carried out to examine the accuracy of UHWM on different meshes.
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Results of maximum absolute residual error for different values of 2N with Shishkin-mesh is

shown in Table-3 by non- uniform HWM and recoded the maximum absolute residual error

therein are 3.5749e-14 and 6.6391e-14 respectively for 2N= 128 and 2N=256 with .Theε = 1

26

maximum residual error of present algorithm is listed in Table-2 with residual error 2.8649e-15

and 6.0455e-15 for the same collocation point and perturbation parameter. For other values of

2N, a marginal increase in accuracy is shown.

Fig.1: Uniform Haar solution for , J=5 on p-mesh. Fig.2: Residual error for , J=5 on p-mesh.ε = 1

28 ε = 1

28
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Fig.3: Uniform Haar solution for , J=6 on p-mesh. Fig.4: Residual error for , J=6 on p-mesh.ε = 1

28 ε = 1

28

Fig.1 illustrates the uniform Haar solution for J=5 and 2M=64 for Problem-1 on p-mesh with

. By using the numerical technique described in Section 5, the Haar solutions andε = 1

28 𝑢
1

𝑢
2

are drawn on various grid points. With mesh points of 2M=64 and a resolution level of J=5, the

corresponding maximum absolute residual error is shown in Fig.2. The uniform Haar solutions

and are presented in Fig.3 for J=6 and 2M=128 for . The uniform Haar solution can𝑢
1

𝑢
2

ε = 1

28

be more closely approximated by increasing the mesh points and lowering the value of epsilon.

On p-mesh, Fig.4 illustrates the corresponding maximum absolute residual error occurs in the

uniform Haar solution for level of resolution J=6, and mesh point 2M=128 with perturbation

parameter . Fig.2 and Fig.4 make it abundantly evident that the maximum absoluteε = 1

28

residual error is less when the mesh point is increased in the numerical algorithm of the uniform

Haar wavelet approach.
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Fig.5: Uniform Haar solution for , J=5 on p-mesh. Fig.6: Residual error for , J=5 on p-mesh.ε = 1

26 ε = 1

26

p-mesh.

Fig.7: Residual error for , J=5 on p-mesh. Fig.8: Residual error for , J=6 on p-mesh.ε = 1

210 ε = 1

210
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Fig.9: Residual error for , J=7 on p-mesh. Fig.10: Residual error for , J=8 on p-mesh.ε = 1

210 ε = 1

210

Fig.5 shows the graph of uniform Haar wavelet solutions and for J=5, and 2M=64 on𝑢
1

𝑢
2

p-mesh with . The corresponding residual error on the uniform Haar solution is given inε = 1

26

Fig.6 for the same values of mesh points and level of resolution. For and J=5, theε = 1

210

residual error is given in Fig.7. On increasing the level of resolution from J=5 to J=6 and

decreases the value of epsilon from to , the maximum absolute residual errorε = 1

26 ε = 1

210

decreases as it has been shown in Fig.6 and Fig.8. Fig.9 shows the maximum absolute residual

error for J=7 and . The maximum residual error further decreases while increasing theε = 1

210

mesh points in the method for and J=8 on p-mesh as seen in Fig.10.ε = 1

210

For the values of different perturbation parameter, Tables 1, 2, and 4 compare the UHWM's

maximum absolute residual errors with various levels of resolution with those calculated by the

traditional difference operator scheme and the non-uniform HWM for p-mesh. Additionally,

Figures 1-10 provide a graph Haar wavelet solution in uniform manner and corresponding

residual error. For , and J=5,6,7,8 the maximum residual error is 2.1719e−15,ε = 1

210

2.8649e−15, 6.0455e−15, 7.2646e−15 respectively.
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Fig.11: Uniform Haar solution for , J=8 on Fig.12: Residual error for , J=8 on Shishkinε = 1

216 ε = 1

216

Shishkin mesh. mesh.

Fig. 11 and Fig.12 illustrates the uniform Haar solution and the accompanying maximum

residual error on the Shishkin mesh caused by calculating the numerical technique described

above for level of resolution J=8and , with residual error 1.6229 Fig.12 shows thatε = 1

216 𝑒−12.

UHWM performs very well on p-mesh then the Shishkin mesh for same values of level of

resolution J=8, and perturbation parameter ε = 1

216 .
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Fig.13: Uniform Haar solution for , J=7 on Fig.14: Residual error for , J=7 on Shishkinε = 1

216 ε = 1

216

Shishkin mesh. mesh.

Fig.13 and Fig.14 illustrates the numerical solution and corresponding maximum absolute

residual errors on Shishkin mesh for the perturbation parameter's value , with level ofε = 1

216

resolution J=7 which draws the conclusion that on increasing the resolution level or the mesh

points in the method the accuracy is improved further.
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Fig.15: Residual error for , J=8 on Shishkin-mesh.ε = 1

234

On Shishkin mesh, the accompanying maximum absolute residual error with and levelε = 1

234

of resolution J=8 is given in Fig.15. Fig. 15 shows the stability of the UHWM for small values of

perturbation parameter . For Shishkin mesh with perturbation parameter and the levelε ε = 1

216  

of resolution J = 7 the maximum residual error decreased to 1.6229e−12. For particular case of

J=8 and , the residual error has been 3.2587e−6.ε = 1

234

Table 1: Uniform Haar Wavelet method on p-mesh, the calculation of maximum absolute residual errors
for various values of .ε

ε   𝐽
64

(𝑥
𝑗
)  𝐽

128
(𝑥

𝑗
)  𝐽

256
(𝑥

𝑗
)  𝐽

512
(𝑥

𝑗
)  𝐽

1024
(𝑥

𝑗
)  𝐽

2048
(𝑥

𝑗
)

2.5041e−15 2.7860e−15 4.4892e−15 8.1365e−15 1.1256e−14 2.7267e−131

28

2.1719e−15 2.8649e−15 6.0455e−15 7.2646e−15 1.0853e−14 1.4999e−12  1

210

1.8076e−15 2.7998e−15 5.0810e−15 8.2123e−15 9.4842e−15 1.5477e−121

212

2.8649e−15 3.4504e−15 5.2363e−15 7.5731e−15 9.0513e−15 1.5477e−121

214

2.8103e−15 2.7270e−15 3.6329e−15 7.3643e−15 4.9925e−12 3.6597e−121

216

1.6480e−15 3.8246e−15 4.9273e−15 5.8066e−15 1.0564e−14 7.5797e−121

218

4.7011e−15 5.8204e−15 8.6092e−15 1.3666e−14 2.6653e−15 8.2536e−111

220

3.2344e−15 3.8242e−15 1.1978e−14 1.0505e−14 2.7449e−11 4.0708e−111

222

2.1320e−15 3.7088e−15 5.3087e−15 6.7364e−15 2.8213e−11 4.3110e−111

224
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1.7842e−15 3.1563e−15 4.7926e−15 6.8136e−15 2.8385e−11 4.4727e−111

226

6.1956e−15 5.7645e−15 6.6856e−15 1.5061e−14 2.8827e−11 4.5758e−11  1

228              

8.4273e−15 1.0492e−14 1.0320e−14 1.3319e−14 2.8260e−11 4.4787e−111

230

1.7764e−15 1.8128e−15 2.3878e−15 2.6320e−14 2.8895e−11 8.1765e−111

232

2.2569e−15 2.6819e−15 2.3332e−15 3.5774e−15 2.8591e−11 4.4877e−111

234

2.4911e−15 2.7721e−15 2.1862e−15 3.1407e−15 2.8591e−11 4.4827e−111

236

1.9221e−15 2.6073e−15 3.2032e−15 3.6655e−15 2.8871e−11 4.5883e−111

238

2.3107e−15 2.2794e−15 2.5162e−15 4.5042e−15 2.8853e−11 4.7851e−111

240

Table 2: Uniform Haar Wavelet method on Shishkin-mesh, the calculation of maximum absolute residual
errors for various values of .ε

ε   𝐽
32

(𝑥
𝑗
)  𝐽

64
(𝑥

𝑗
)  𝐽

128
(𝑥

𝑗
)  𝐽

256
(𝑥

𝑗
)  𝐽

512
(𝑥

𝑗
)  𝐽

1024
(𝑥

𝑗
)

9.5063e−16 1.7850e−15 3.8385e−15 4.7998e−15 9.3260e−15 1.0837e−141

22

8.9165e−16 2.5041e−15 2.7860e−15 4.4892e−15 8.1365e−15 1.1256e−141

24   

1.7555−15 2.1719e−15 2.8649e−15 6.0455e−15 7.2646e−15 1.0853e−131

26

2.5828e−14 2.3849e−14 2.9345e−14 2.7714e−14 2.3627e−14 2.3657e−141

28

6.4320e−14 6.5475e−14 6.1132e−14 6.4143e−14 6.3099e−14 6.4824e−14  1

210

3.5034e−13 3.5781e−13 3.5680e−13 3.5675e−13 3.5829e−13 3.5792e−131

212

7.6351e−13 7.7651e−13 7.7847e−13 7.8022e−13 7.7947e−13 1.5477e−121

214

1.5921e−12 1.6133e−12 1.6234e−12 1.6234e−12 1.6229e−12 1.6259e−121

216

3.1812e−12 3.2284e−12 3.2437e−12 3.2484e−12 3.2485e−12 7.5797e−121

218

6.1287e−12 6.2209e−12 6.2516e−12 6.2595e−12 6.2592e−12 6.2552e−121

220

4.3606e−10 4.4327e−10 4.4557e−10 4.4557e−10 4.4568e−10 4.4571e−101

222

6.7552e−10 6.8665e−10 6.8949e−10 6.9020e−10 6.9038e−10 6.9042e−101

224

1.8065e−08 1.8348e−08 1.8419e−08 1.8442e−08 1.8443e−08 4.4727e−111

226

e−07 1.8820e−07 1.8849e−07 1.8856e−07 1.8858e−07  1

228             1. 8706

4.5727e−11
1.5672e−07 1.5769e−07 1.5793e−07 1.5799e−07 1.5800e−07 4.4787e−111

230
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1.9171e−06 1.9290−06 1.9320e−06 1.9327e−06 1.9329e−06 1.9330e−061

232

3.2325e−06 3.2522e−06 3.2571e−06 3.2583e−06 3.2587e−06 3.2587e−061

234

5.2326e−06 5.2638e−06 5.2716e−06 5.2736e−06 5.2741e−06 4.4827e−111

236

Table 3: Table of the absolute error calculated by non-uniform HWM (Raza and Khan (2021)) at various
resolution levels and for various perturbation parameters ϵ for Problem 1 on Shishkin mesh.

ε   𝐽
64

(𝑥
𝑗
)  𝐽

128
(𝑥

𝑗
)  𝐽

256
(𝑥

𝑗
)  𝐽

512
(𝑥

𝑗
)  𝐽

1024
(𝑥

𝑗
)

 𝐽
2048

(𝑥
𝑗
)

2.153e−14 6.661e−15 1.509e−14 1.620e−14 1.509e−14 3.685e−141

22

2.087e−14 4.440e−15 1.909e−14 1.554e−14 5.040e−14 7.593e−141

24

2.198e−14 3.574e−14 6.639e−14 2.531e−14 9.126e−14 5.890e−131

26

9.592e−14 2.349e−13 1.430e−13 2.504e−13 2.802e−13 1.068e−121

28

4.447e−13 5.875e−13 3.237e−13 8.477e−13 1.095e−12 5.885e−12  1

210

6.747e−13 1.802e−12 3.347e−12 4.218e−12 5.893e−12 1.138e−111

212

5.481e−12 8.047e−13 7.956e−12 2.048e−11 3.311e−11 7.304e−111

214

5.390e−11 1.591e−11 1.599e−11 8.026e−11 3.311e−11 7.304e−111

216

1.153e−10 6.964e−11 1.599e−11 8.026e−11 3.311e−11 7.304e−111

218

6.172e−10 7.896e−10 7.781e−10 2.867e−09 1.194e−09 2.214e−091

220

1.286e−09 2.692e−09 4.159e−09 2.429e−09 5.760e−09 1.098e−081

222

5.708e−09 1.377e−08 8.824e−09 1.012e−08 2.939e−08 3.297e−081

224

4.6880e−08 1.9145e−08 6.1711e−08 9.7442e−08 9.8635e−08 1.0465e−071

226

9.8958e−08 1.0455e−07 1.3310e−07 1.5702e−07 3.4662e−07 1.0747e−06  1

228           

1.8406e−07 4.8247e−07 3.5228e−07 1.6018e−06 1.9999e−06 3.4653e−061

230

2.2135e−06 1.9222e−13 1.089e−12 1.2280e−11 2.8895e−11 8.1765e−111

232

1.7542e−14 1.8163e−13 1.0154e−12 1.2091e−11 2.8591e−11 8.4877e−111

234

1.9096e−14 1.8829e−13 1.0154e−12 1.2091e−11 2.8591e−11 4.4827e−111

236

1.7764e−14 1.8097e−13 1.2020e−12 1.2412e−11 2.8871e−11 4.5883e−111

238

3.8636e−14 1.4766e−13 1.1727e−12 1.2459e−11 2.8853e−11 4.4534e−111

240
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Table-1 and Table-2 shows for Problem 1 using the uniform Haar wavelet approach on p-mesh

and Shishkin mesh, the maximum residual errors for various perturbation parameters ( ) andε

levels of resolution (J). Tables 1 and 2 clearly show that the uniform Haar wavelet approach

gives a superior approximation than the Shishkin mesh for a different value of and J byε

comparing the produced maximal residual errors for various p-meshes. Also, Table-3 shows the

maximum residual error on p-mesh by non-uniform HWM. Table-2, Table-3 reflects that, for the

value of perturbation parameter , and same level of resolution, the uniform Haarε = 2−16 2−20

wavelet approach performs better on Shishkin mesh than the non-uniform HWM. The authors

draw the conclusion that the non-uniform Haar wavelet approach is ineffective for the SPIVP for

Problem 1. This problem has been resolved for small values of ε (highly perturbed problems) on

p-mesh and Shishkin mesh using the uniform Haar wavelet approach based on the provided

numerical methodology. Tables 2 and 3 show that the numerical methodology of the uniform

Haar wavelet approach produces a smaller maximum residual error than the non-uniform HWM.

For and 2N=64, the maximum residual error jump to by the UHWM andε = 2−16 1. 5921−12

by the non-uniform HWM on Shishkin mesh. This reflects the better efficiency of the5. 3906−11

proposed scheme.

Table 4: Table of Maximum absolute residual errors on the Shishkin-mesh for different values ε

calculated by the uniform Haar Wavelet technique.

ε  𝐽
32

(𝑥
𝑗
)   𝐽

64
(𝑥

𝑗
)  𝐽

128
(𝑥

𝑗
)  𝐽

256
(𝑥

𝑗
)  𝐽

512
(𝑥

𝑗
)

 𝐽
1024

(𝑥
𝑗
)

10−3 6.4320e-14 6.5475e-14 6.1132e-14 6.3099e-14 6.4823e-14 1.3487e-12

10−5 1.2422e-11 1.1596-13 1.1643e-11 1.1660e-11 1.1663e-11 1.1662e-11

10−7 3.3175e-9 3.3711e-9 3.3849e-9 3.3883e-9 3.3891e-9 3.3894e-9

Table- 4 shows the maximum absolute residual errors on Shishkin mesh for perturbation

parameter obtained by UHWM. Table-4 draws a conclusion that, onε = 10−3,  10−5, 10−7
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increasing the values of perturbation parameters, the maximum absolute residual errors

decrease for same number of grid points. Further, Table-4 shows the stability of the present

scheme for the values of small perturbation parameter ( The uniform Haar wavelet method'sε).

precision has been tested using a variety of mesh locations.

Table 5: Table of Maximum absolute residual errors on the Shishkin-mesh for different values ε

calculated by the non-uniform Haar Wavelet technique.

ε  𝐽
32

(𝑥
𝑗
)   𝐽

64
(𝑥

𝑗
)  𝐽

128
(𝑥

𝑗
)  𝐽

256
(𝑥

𝑗
)  𝐽

512
(𝑥

𝑗
)

 𝐽
1024

(𝑥
𝑗
)

10−3 2.240e-13 4.509e-13 7.458e-13 1.164e-13 3.262e-13 3.921e-12

10−5 2.794e-11 3.088-11 2.548e-11 1.085e-10 3.765e-11 5.273e-11

10−7 1.002e-08 3.236e-09 4.537e-09 5.118e-09 1.468e-08 5.084e-08

Maximum absolute residual errors obtained by the non-uniform HWM on Shishkin Mesh for

is given in Table-5 with different mesh points. Table-4 presents betterε = 10−3,  10−5, 10−7

accuracy in Maximum absolute residual errors for same values of perturbation parameter andε

level of resolution (J). The accuracy of UHWM gets improved by compare the Table-4 and

Table-5.

Table 6: Table of Maximum absolute residual errors on the Shishkin-mesh for different values of ε

calculated by the conventional finite difference operator scheme.

ε  𝐽
32

(𝑥
𝑗
)   𝐽

64
(𝑥

𝑗
)  𝐽

128
(𝑥

𝑗
)  𝐽

256
(𝑥

𝑗
)  𝐽

512
(𝑥

𝑗
)

 𝐽
1024

(𝑥
𝑗
)

10−3 3.400e-02 1.810e-02 1.117e-02 7.180e-02 4.270e-03 1.370e-02

10−5 3.400e-02 1.810e-02 1.117e-02 7.180e-02 4.270e-03 1.370e-02

10−7 3.400e-02 1.810e-02 1.117e-02 7.180e-02 4.270e-03 1.370e-02

Table-6 presents the maximum absolute residual errors obtained by the finite difference operator

method for different values of on Shishkin mesh. The maximum absolute residual error isε

evaluated on respectively on different grid points. On compare the Table-4ε = 10−3,  10−5, 10−7
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with Table-5 and Table-6, the uniform Haar wavelet yields improved results in comparison to the

existing method such as non-uniform HWM and finite difference method.

As a result of its superior interpolation capabilities, the UHWM has been used to this instability

problem. For various perturbation parameters and resolution levels, the Haar wavelet technique

produces a fast-convergent solution. When the translation parameter is increased over a certain

point, the current methods lose their ability to maintain the convergence order. With more points

contributing, the precision of the current system is also more effective. As shown in Table-4, the

uniform Haar wavelet approach is used to solve this problem for various 2N on Shishkin mesh

values. In contrast to the non-uniform HWM and finite difference operator technique, the results

based on the uniform Haar wavelet-based methodology give stable and convergent solutions.

Problem-2 The singularly perturbed boundary value problem (second order) is given below as

follows:

- (57)ε𝑢''
1

𝑥( ) + 2(𝑥 + 1)2𝑢
1

𝑥( ) − (𝑥3 + 1)𝑢
2

𝑥( ) = 2 * 𝑒𝑥𝑝⁡(𝑥)

(58)𝑢''
2

𝑥( ) − 2 cos 𝑐𝑜𝑠 п𝑥
4( ) 𝑢

1
𝑥( ) + 2 * 2𝑒 1−𝑥( )𝑢

2
𝑥( ) = 10𝑥 + 1 Ɐ 𝑥∈(0, 1],

with the boundary conditions:

, , . (59)𝑢
1

0( ) = 0 𝑢
1

1( ) = 0,  𝑢
2

0( ) = 0 𝑢
2

1( ) = 0

Solution: The Uniform Haar wavelet Method in its discretized version on problem 2 is

expressed as:

− ε
𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝐻

𝑖
𝑊 𝑥( ))] +  2 𝑥 + 1( )2 *

𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝑄

𝑖
𝑊 𝑥( ))] + 𝑥𝑢

1
' 0( )] −

(𝑥3 + 1)[
𝑖=1

2𝑁

∑ 𝑞
𝑖
2(𝑄

𝑖
𝑊 𝑥( )) + 𝑥𝑢

2
' 0( )] =,

and,

2*2exp(1-x)
𝑖=1

2𝑁

∑ [𝑞
𝑖
2(𝐻

𝑖
𝑊 𝑥( ))] − 2 * cos 𝑐𝑜𝑠 п𝑥

4( ) + [
𝑖=1

2𝑁

∑ [𝑞
𝑖
1 𝑄

𝑖
𝑊 𝑥( )( ) + 𝑥𝑢

1
' 0( ) + 𝑢

1
0( )] +

[ =10x+1, (59)
𝑖=1

2𝑁

∑ 𝑞
𝑖
2 * (𝑄

𝑖
𝑊 𝑥( )) + 𝑥𝑢

2
' 0( ) + 𝑢

2
0( )]

Simplifying the system of equation (58) and (59),
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-

ε
𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝐻

𝑖
𝑊 𝑥( ))] +  2 𝑥 + 1( )2 *

𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝑄

𝑖
𝑊 𝑥( ))] + 2 𝑥 + 1( )2 * [𝑥𝑢

1
' 0( )] − (𝑥3 + 1) * [𝑥𝑢

2
' 0( )] = 2 * 𝑒𝑥𝑝⁡(𝑥)

, (60)

and,

𝑖=1

2𝑁

∑ [𝑞
𝑖
2(𝐻

𝑖
𝑊 𝑥( ))] − 2 * cos 𝑐𝑜𝑠 п𝑥

4( ) + [
𝑖=1

2𝑁

∑ [𝑞
𝑖
1 𝑄

𝑖
𝑊 𝑥( )( ) + 𝑥

𝑖=1

2𝑁

∑ [− 𝑞
𝑖
2* 𝑂

𝑖
(𝑥) ] +

2*2exp(1-x) [ =10x+1
𝑖=1

2𝑁

∑ 𝑞
𝑖
2 * (𝑄

𝑖
𝑊 𝑥( )) + 𝑥 *

𝑖=1

2𝑁

∑ [− 𝑞
𝑖
2* 𝑂

𝑖
(𝑥) ]

(61)

Equation (60) and equation (61) are simplified to produce the linear system of equation (62)-

(63),

-ε
𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝐻

𝑖
𝑊 𝑥( ))] +  2 𝑥 + 1( )2 *

𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝑄

𝑖
𝑊 𝑥( ))] + 2 𝑥 + 1( )2 * [𝑥 * (− 𝑞

𝑖
1(𝑂

𝑖
𝑊 𝑥( )))]

-−  (𝑥3 + 1) * [𝑞
𝑖
2(𝑄

𝑖
𝑊 𝑥( ))] (𝑥3 + 1) * [𝑥(− 𝑞

𝑖
2(𝑄

𝑖
𝑊 𝑥( ))] = 2 * exp 𝑒𝑥𝑝 𝑥( ) ,

(62)
and,

𝑖=1

2𝑁

∑ [𝑞
𝑖
2(𝐻

𝑖
𝑊 𝑥( ))] − 2 * cos 𝑐𝑜𝑠 п𝑥

4( ) +
𝑖=1

2𝑁

∑ [𝑞
𝑖
1(𝑄

𝑖
𝑊 𝑥( ))] − 2 * cos 𝑐𝑜𝑠 п𝑥

4( ) *

 𝑥
𝑖=1

2𝑁

∑ − 𝑞
𝑖
2(𝑂

𝑖
𝑊 𝑥( )) + 2 * 2

(63)

and, the piecewise uniform and non-uniform fitting mesh/grids are the Shishkin -mesh, or
non-uniform grid, is:

= j=0,1,2….M,𝑥
𝑗
  1−𝑝𝑖

1−𝑝𝑀 ,  

= = where j=1,2….M,𝑥
𝑗

 −𝑥 𝑗( )−𝑥 𝑗−1( )

𝑝𝑀−1
,

Grid formation for q-mesh is defined as

● Set and , where (J: Maximum resolution level).𝑁' = 𝑁
2 σ = 5−ε

5𝑁' 𝑁 = 2𝐽

● Evaluate δ = 1−2σ𝑁'

(−2𝑁'+1)𝑁' .
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● Specify the grid points as , = ,i:1,2…,2N’.𝑡'
0

= 0 𝑡'
𝑖

− δ + 𝑖 σ − δ 𝑖(𝑖−1)
2

● Set where i:1, 2…,2N’.𝑡
0

= 0,  𝑡
𝑖

= 1
2 (− 𝑡'

2𝑁'−𝑖
+ 1)

● In similar manner, set i: 1+2N’,2+2N’,…,4N’.𝑡 =− 𝑡'
4𝑀'−𝑖

+ 1,

● Lastly, define the collocation points as using these grid points . 𝑡
𝑖

=
 𝑡

𝑖−1
+ 𝑡

𝑖

2

Table 7: Table of Maximum absolute residual errors on the Shishkin-mesh for different values of ε

calculated by the uniform Haar wavelet method.

ε  𝐽
16

(𝑥
𝑗
)   𝐽

32
(𝑥

𝑗
)  𝐽

64
(𝑥

𝑗
)  𝐽

128
(𝑥

𝑗
)  𝐽

256
(𝑥

𝑗
)  𝐽

512
(𝑥

𝑗
)

 𝐽
1024

(𝑥
𝑗
)

1.9516e−16 3.8511e−16 4.3238e−16 8.7473e−16 1.0632e−15 1.5339e−152−2

2.4865e−15
1.2197e−17 2.4069e−17 2.7024e−17 5.4671e−17 6.6451e−17 9.5807e−172−6

1.5541e−16
5.9631e−19 7.6233e−19 1.5043e−18 1.6890e−18 3.4169e−18 4.1532e−182−10

9.7128e−18
4.7646e−20 9.4021e−20 1.0556e−19 2.1356e−19 2.5958e−19 3.7448e−192−14

6.0705e−19
2.9779e−21 5.8763e−21 6.5970e−21 1.3347e−20 1.6223e−20 2.3405e−20  2−18

3.7941e−20
3.6467e−14 3.7366e−14 3.7595e−14 3.7653e−14 3.7667e−14 3.7667e−142−22 

3.7671e−14
2.2792e−15 2.3354e−15 2.3497e−15 2.2533e−15 2.3542e−15 2.3542e−15  2−26  

2.3545e−15
1.4245e−16 1.4596e−16 1.4686e−16 1.4708e−16 1.4714e−16 1.4714e−16  2−30

1.4715e−16
8.9030e−18 8.9030e−18 9.1226e−18 9.1785e−18 9.1925e−18 9.1969e−18  2−34

9.1971e−18
1.0028e−14 1.0080e−14 1.0093e−14 1.0097e−14 1.0097e−14 1.0097e −14  2−38

1.0098e−14
3.9039e−14 39043e−14 3.9044e−14 3.9044e−14 3.9044e−14 3.9044e−14  2−42

3.9044e−14
1.0621e−14 1.0616e−14 1.0614e−14 1.0614e−14 1.0614e−14 1.0614e−14  2−46

1.0641e−14
6.6381e−16 6.6348e−16 6.6339e−16 6.6337e−16 6.6336e−16 6.6336e−16  2−50

6.6336e−16
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4.1488e−17 4.1467e−17 4.1462e−17 4.1461e−17 4.1460e−17 4.1460e−17   2−54     
4.1460e−17

For problem 2, Table-7 illustrates the maximum absolute residual error by the numerical

algorithm applied with the UHWM on Shishkin mesh with different values of perturbation

parameter and level of resolution (J). From the Table-7, it can be seen that present method(ε)

works effectively while increasing the grid points in the method. Table-7 draw a conclusion that,

on Shishkin mesh the uniform Haar wavelet scheme performs very well for small values of

perturbation parameter ( ). In compared to other methods, such as the parameter uniformε

technique and the non-uniform HWM, the uniform Haar wavelet method's accuracy increases.

Table 8: Non-uniform Haar wavelet method on Shishkin-mesh, the calculation of maximum absolute
residual errors for various values of .ε

ε   𝐽
32

(𝑥
𝑗
)  𝐽

64
(𝑥

𝑗
)  𝐽

128
(𝑥

𝑗
)  𝐽

256
(𝑥

𝑗
)  𝐽

512
(𝑥

𝑗
)  𝐽

1024
(𝑥

𝑗
)

1.5543e−14 8.8818e−15 9.3259e−15 9.7700e−15 3.4639e−142−2

3.2863e−14
1.5099e−14 1.0658e−14 1.1102e−14 9.7700e−15 3.7303e−14 3.4639e−142−6

3.3751e−14 3.2863e−14 1.4655e−14 1.9096e−14 2.8422e−14 1.3323e−142−10

1.7764e−14 1.4566e−14 2.7089e−14 1.4211e−14 2.4869e−14 1.4211e−142−14

1.8652e−14 3.7748e−14 1.7764e−14 4.3077e−14 2.3981e−14 5.3291e−14  2−18

2.5313e−14 1.2434e−14 2.9310e−14 4.1744e−14 3.3307e−14 3.9524e−142−22

1.9096e−14 1.1990e−14 3.7303e−14 3.4195e−14 3.9524e−14 2.6201e−142−26

1.9540e−14 1.1102e−14 4.0412e−14 1.3767e−14 2.8422e−142−30

4.8400e−14
2.4869e−14 1.2434e−14 3.5971e−14 1.2434e−14 3.1086e−142−34

2.4869e−14
2.0428e−14 1.1990e−14 3.8636e−14 1.2434e−14 2.9310e−142−38

2.3093e−14
2.3093e−14 1.0658e−14 3.5971e−14 1.2434e−14 2.0428e−142−42

4.4853e−14
2.1760e−14 1.1102e−14 3.3307e−14 1.2434e−14 2.9310e−142−46

2.3093e−14
2.2204e−14 1.1990e−14 3.6859e−14 1.2434e−14 2.5313e−142−50

4.6185e−14

Table-8 presents the maximum absolute residual errors obtained by non-uniform HWM on

Shishkin mesh for various values of perturbation parameter ). And different values of grid(ε
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points in the numerical method of non-uniform Haar wavelet method. Maximum absolute

residual errors have been tabulated for different increasing resolution level (J) and decreasing

perturbation parameter ( ). The results of maximum absolute residual error of UHWM as givenε

in Table-7 is very effective for various such as on Shishkin mesh as the residual errorε ε = 2−18

is improved then the residual error produced in non-uniform HWM is given in Table-8.

Table 9 Parameter uniform method on Shishkin-mesh, the calculation of maximum absolute residual
errors for various values of perturbation parameter ( and resolution level (J).ε)

ε   𝐽
08

(𝑥
𝑗
)  𝐽

16
(𝑥

𝑗
)  𝐽

32
(𝑥

𝑗
)  𝐽

64
(𝑥

𝑗
)  𝐽

128
(𝑥

𝑗
)        𝐽

256
(𝑥

𝑗
)

2.6110e−03 6.5500e−04 1.6440e−04 4.1100e−05 1.0270e−0520

2.5670e−06
2.5760e−03 6.4630e−04 1.6170e−04 4.0440e−05 1.0110e−05 2.5260e−062−2

2.7920e−03 7.0150e−04 1.7660e−04 4.4170e−05 1.1040e−05 2.7580e−062−4

2.9200e−03 7.2900e−03 1.8240e−04 4.5620e−05 1.1410e−05 2.8490e−062−6

3.0350e−03 7.5260e−04 1.8830e−04 4.7070e−05 1.1770e−05 2.9390e−06  2−8

3.1160e−03 7.8060e−04 1.9390e−04 4.8420e−05 1.2300e−05 3.0550e−062−10

3.1520e−03 7.9670e−04 1.9810e−04 4.9350e−05 1.2300e−05 3.0550e−062−12

24869e−04 1.2434e−04 3.1630e−03 8.0310e−04 2.0040e−04 4.9930e−052−14

3.1670e−03 8.0520e−04 2.0120e−04 5.0210e−05 1.2520e−052−16

3.1130e−06
3.1680e−03 8.0570e−04 2.0150e−04 5.0320e−05 1.2550−052−18

3.1240e−06
3.1680e−03 8.0590e−04 2.0160e−04 5.0370e−05 1.2570e−052−20

3.1330e−06
3.1680e−03 8.0590e−04 2.0160e−04 5.0370e−15 1.2580e−052−22

3.1350e−06
3.1680e−03 8.0590e−04 2.0160e−04 5.0380e−05 1.2580e−052−24

3.1360e−06
3.1680e−03 8.0590e−04 2.0160e−04 5.0370e−05 1.2550e−052−26

3.0960e−06
3.1680e−03 8.0590e−04 2.0160e−04 5.0380e−05 1.2560e−052−28

3.1120e−06

Table-9 shows the maximum absolute residual errors obtained by parameter uniform method on

Shishkin mesh for various values of and J. The maximum absolute residual errors decrease asε

the values of resolution level in the parameter uniform approach increase and perturbation

parameter values decrease. In addition, Table-7 and Table-9 provide the findings of the
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maximum absolute residual errors generated by UHWM. For a range of perturbation parameter

values ), the UHWM performs exceptionally well such as based on the findings of(ε ε = 2−18

the parameter uniform technique as shown in Table 9 on the Shishkin mesh.

Table 10: Maximum absolute residual errors obtained by uniform Haar wavelet method on q-mesh for
various values of .ε

ε  𝐽
16

(𝑥
𝑗
)   𝐽

32
(𝑥

𝑗
)  𝐽

64
(𝑥

𝑗
)  𝐽

128
(𝑥

𝑗
)  𝐽

256
(𝑥

𝑗
)  𝐽

512
(𝑥

𝑗
)

 𝐽
1024

(𝑥
𝑗
)

3.4694e−18 3.4694e−18 8.6736e−19 8.6736e−19 1.3010e−18 0 02−2

2.1684e−19 2.1684e−19 5.4210e−20 5.42101e−20 8.1315e−20 0 02−6

e−20 1.3553e−20 3.3881e−21 3.3881e−21 5.0822e−21 02−10     1. 3553
0

8.4703e−22 8.4703e−22 2.1176e−22 2.1176e−22 3.1764e−22 0 02−14    
5.2940e−23 5.2940e−23 1.3235e−23 1.3235e−23 1.9852e−23 0 02−18

1.9852e−23 2.6470e−23 8.2718e−25 1.6544e−25 1.2408e-24 8.2718e−252−22 
8.2718e−25

1.2408e−24 1.6544e−24 5.1699e−26 1.0340e−25 7.7548e−26 5.1699e−252−26  
5.1699e−26

7.7548e−26 1.0340e−25 3.2312e−27 6.4623e−27 4.8468e−27 3.2312e−272−30

3.2312e−27
4.8468e−27 6.4623e−27 2.0195e−28 4.0390e−28 3.0292e−28 2.0195e−282−34

2.0195e−28
5.6372e−22 1.3538e−24 4.5817e−27 2.0195e−28 2.2404e−28 1.6408e −282−38

4.8909e−29
2.0153e−16 4.1497e−17 5.4130e−18 6.9071e−19 8.7217e−20 1.0957e−202−42

1.3730e−21
3.2097e−16 1.3831e−16 6.3955e−17 3.0719e−17 1.5050e−17 7.4482e−182−46

3.7050e−18
2.0061e−17 8.6443e−18 3.9972e−18 1.9119e−18 9.4062e−19 4.6551e−192−50

2.3156e−19
e−18 5.4027e−19 2.4982e−19 1.200e−19 5.8789e−20 2.9095e−202−54    1. 2538

4.1460e−20

On Shishkin mesh and q-mesh, Tables 7 and 10 compare the maximum absolute residual errors

produced by the uniform Haar wavelet method. When using different values of the perturbation

parameter, the uniform Haar wavelet approach compares its results with those produced using

the parameter uniform method and the non-uniform Haar wavelet method.
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The outcomes of Problem 2 concur with the theoretical findings presented in Section 3 of this

article. These conclusions were reached using various perturbation parameter values and J

resolution levels. Authors found that the uniform Haar wavelet-based approach is more accurate

and fast converges when compared the highest absolute residual error on Shishkin mesh and

q-mesh, which is presented in Tables 7 and 10, with the residual errors caused by current

methods, which are given in Tables 8, 9, and 11.

Table 11: Maximum absolute residual errors obtained by non-uniform Haar wavelet method on q-mesh
for various values of .ε

ε  𝐽
16

(𝑥
𝑗
)   𝐽

32
(𝑥

𝑗
)  𝐽

64
(𝑥

𝑗
)  𝐽

128
(𝑥

𝑗
)  𝐽

256
(𝑥

𝑗
)  𝐽

512
(𝑥

𝑗
)

 𝐽
1024

(𝑥
𝑗
)

5.3291e−15 4.4409e−15 7.1054e−15 5.7732e−15 8.4377e−15 3.3751e−142−6

-
5.3291e−15 3.9968e−15 6.6613e−15 5.7732e−15 8.4377e−15 3.4639e−142−10

-
5.3291e−15 3.5527e−15 7.1054e−15 5.3291e−15 8.8818e−15 3.5083e−142−14

-
5.3291e−15 4.4409e−15 7.1054e−15 5.3291e−15 8.8818e−15 3.5083e−14  2−18

-
5.3291e−15 4.4409e−15 7.1054e−15 5.7732e−15 8.8818e−15 3.5083e−142−22

-
5.3291e−15 4.4409e−15 7.1054e−15 5.7732e−15 8.8818e−15 3.6415e−142−26

-
5.3291e−15 4.4409e−15 7.1054e−15 6.2172e−15 8.8818e−15 3.5971e−142−30

-
5.3291e−15 3.9968e−15 7.1054e−15 5.7732e−15 8.8818e−15 3.5527e−142−34

-
5.3291e−15 3.9968e−15 6.6613e−15 5.7732e−15 8.8818e−15 3.5527e−142−38

-
5.3291e−15 3.9968e−15 6.6613e−15 5.7732e−15 8.8818e−15 3.5083e−142−42

-
5.3291e−15 4.4409e−15 7.1054e−15 5.7732e−15 8.8818e−15 3.5083e−142−46

-
4.8850e−15 3.9968e−15 6.6613e−15 5.7732e−15 8.8818e−15 3.5083e−142−50

-
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Table-10 illustrates the maximum absolute residual error obtained by uniform Haar wavelet

method on q-mesh for various values of perturbation parameter and level of resolution. Table-10

shows that, on increasing the grid points in the uniform Haar wavelet method, the maximum

absolute residual error decreases. Tables 10 and 11 show that, for specific values of ( ) theε 2−34

maximum absolute residual errors are more stabilized when compared to the non-uniform Haar

wavelet approach with q-mesh. Table-10 clearly demonstrates the uniform convergence of the

current scheme.

In their analysis of the Haar solution for Shishkin mesh and q-mesh, the authors come to the

conclusion that the obtained maximum residual errors represent the increased accuracy. As can

be seen from Tables 7 and 10, the maximum absolute residual error is higher close to the

transition points than it is in the rest of the domain.

Authors conclude that, the greatest absolute residual error for Shishkin mesh is 8.9030e-18 for ε=

and J=16. On q-mesh, however, it will be 4.8468e-27 for the same perturbation parameter2−34 

value. Therefore, for Problem 2, the uniform Haar wavelet scheme converges on the q-mesh

faster than the Shishkin-mesh.

Fig.16: Residual error for , J=8 on Shishkin-mesh. Fig.17: Residual error for , J=8 on Shishkin-ε = 1

246 ε = 1

254

mesh.

For Problem 2, the maximum absolute residual error on Shishkin mesh caused by calculating the

numerical algorithm described in Section 5. In addition, a graph of the maximum residual error

in uniform Haar wavelet solution is shown in Fig.16 and Fig.17 with residual error 1.1978e−14
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and 4.1573e−17 for J = 8 and perturbation parameter and . To plot graphs (Fig.:ε = 1

246 ε = 1

254

16-17), authors take , and with J=8 and draw the conclusion that, on decreasingε = 1

246 ε = 1

254

the value of , the maximum residual error decrease for Shishkin mesh.ε

7 Conclusion

In the current study, uniform Haar wavelet scheme has been used on various meshes, including

Shishkin mesh, p-mesh, and q-mesh to solve the system of partially singularly perturbed initial

and boundary value problems. In fact, the maximum absolute residual error occurred, and

tabulated for non-uniform grid. Furthermore, figures 1–10 clearly demonstrate that the Haar

wavelet is uniform on non-uniform grid points. Accuracy, convergence of the present scheme for

small values of perturbation parameter as well as computational complexity are the majorε

research gaps with the existing schemes. Improvement on accuracy, convergence of the present

scheme for small values of perturbation parameter as well as computational complexity of theε

uniform Haar wavelet scheme has been carried out by performing the simulation on different

mesh to bridge the gap in error analysis as given in section-5. The present method approximates

the numerical solution of system of partially singularly perturbed initial (first-order) and

boundary value problems (second order) on a non-uniform grid. The uniform Haar wavelet

method limited to the strong and weak variation of the perturbation parameter that affects theε

boundary layer width and the uniform Haar solutions. Thus, care should be used while selecting

the transition parameters. The proposed scheme provides the better approximation with less

computational cost then the non-uniform Haar wavelet method, parameter uniform method and

finite difference operator method: it is due to the sparsity of the transition matrix and small Haar

wavelet coefficients. It is worth mentioning that uniform Haar wavelet method provides excellent

results for small and large values of perturbation parameter. In light of this, uniform Haar

wavelet method is quite effective for solving partially singularly perturbed initial and boundary

value problems numerically. Additionally, the uniform Haar wavelet method has been applied

directly on all type of differential equations, linear or non-linear, homogeneous or

non-homogeneous either constant coefficient or with variable coefficients directly. Further, the
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proposed method can used to resolve partially singularly perturbed initial and boundary value

problems that are parabolic, hyperbolic, nonlinear and also for the fractional differential

equations that involves in various physical applications specially in theoretical analysis for the

future research work. The technique introduced here is easy to apply as well as yields more

accurate results.

Nomenclature:

UHWM: Uniform Haar Wavelet Method.

SPIVP: Singularly Perturbed Initial Value Problem.

: Small perturbation parameter.ε

ϑi, i = 1, 2, 3: End points of the sub-intervals.

αi, i = 1, 2, 3: Constant coefficients.

, i = 1, 2, 3, 4: Real valued continuous functions.𝑢
𝑖

(x), (x): Arbitrary functions.𝑟
1

𝑟
2

: Transitional parameter.ρ
𝑥

: Haar wavelet function.𝐻
𝑖
𝑤 𝑥( )

J: Highest level of resolution.

j: Resolution level at various levels.

m: Representation of scaling parameter.

M: Fixed finite number.
k: Parameter of translation.

i: Index of Haar function.

: Haar operational matrix.𝑃𝑤
𝑖,ς

ai, i = 1, 2…,2M Haar coefficient.

Uniform Haar wavelet coefficients.𝑞
𝑖
1, 𝑞

𝑖
1:

: Kronecker delta. δ
𝑖,𝑖

ODE: Ordinary Differential Equation.
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HWM: Haar Wavelet Method.

Φ: Unknown function.

s: Space variable.

t: Time variable.

: Constant parameter, i=1.µ
𝑖

: Haar wavelet function.𝐻
𝑖
(𝑠)

a, : Some real numbers.ς
1
, ς

2
, ς

3
, ς

4
, 𝑏

C: Integral of from a to b.𝑃𝑤
𝑖,1

: Unknown Haar wavelet coefficients.λ
𝑖

i: − 1.

Collocation points.𝑋
𝑙
:

: Time discretizing unit.δ
𝑡

(x, τ): Haar wavelet representation ofΦ
𝑀

Φ.

: Error term due to Haar wavelet approximation.𝐸
𝑟

P: Positive number.

Declaration:

Conflict of Interest: There are no conflicts of interest declared by the authors.

Data availability statement: Data sharing not applicable to this paper as no datasets were created or

processed during the current study.

Acknowledgement:

I would like to express my sincere thanks to Late Professor Manoj Kumar, Department of

Mathematics, MNNIT Allahabad, for serving as my study's most important inspiration. I am

grateful for his suggestions, support, and help.

Paper ID: SR23514154953 DOI: 10.21275/SR23514154953 1202 

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 5, May 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 



References

Ahsan, M., Bohner, M., Ullah, A., Khan, A.A. and Ahmad, S. (2023) "A Haar wavelet multi

resolution collocation method for singularly perturbed differential equations with integral

boundary conditions", Mathematics and Computers in Simulation Vol. 204, pp. 166-180.

Cengizci, S., Kumar, D., Atay, M. (2023),"Semi-Analytic Method for Solving Singularly

Perturbed Twin-Layer Problems with a Turning Point", Mathematical Modelling and Analysis,

Vol. 28, No. 1, pp. 102–117.

Chen, C.F. and Hsiao, C.H. (1997), "Haar wavelet method for solving lumped and distributed

parameter systems", IEE Proceedings - Control Theory and Applications, Vol. 144, No. 1, 87-94.

Clavero, C. and Jorge, J.C. (2016) “Uniform convergence and order reduction of the fractional

implicit Euler method to solve singularly perturbed 2D reaction-diffusion problems”, Applied

Mathematics and Computation, Vol. 287-288, pp. 12-27.

Das, P. and Natesan, S. (2004) "Optimal error estimate using mesh equidistributional technique

for singularly perturbed system of reaction-diffusion boundary-value problems", Applied

Mathematics and Computation, Vol. 249, pp.265-277.

Das, P. and Aguiar, J.V. (2017), "Parameter uniform optimal order numerical approximation of a

class of singularly perturbed system of reaction diffusion problems involving a small

perturbation parameter", Journal of Computational and Applied Mathematics, Vol. 24, No. 3.

Kumar, D., and Deswal, K. (2021) "Wavelet-based approximation for two-parameter singularly

perturbed problems with Robin boundary conditions", Journal of Applied Mathematics and

Computing, Vol. 68, pp. 125-149.

Deswal, K., Kumar, D. and Aguiar, J.V. (2022), "Three-dimensional Haar wavelet method for

singularly perturbed elliptic boundary value problems on non-uniform meshes", Journal of

Mathematical Chemistry, Vol. 60 pp. 1314-1336.

Doolan, E. P., Miller, J. J. H. and Schillers, W. H. A., (1980), "Uniform Numerical Methods for

Problem with Initial and Boundary Layers" Boole Press.

Hsiao, C.H. (1997), "State analysis of the linear time delayed systems via Haar wavelets",

Mathematics and Computers in Simulation Vol. 44, No. 5, pp. 457-470.

Islam, S., Aziz, I. and Sarler, B. (2010), "The numerical solution of second order boundary value

problems by collocation method with Haar wavelets", Mathematical and Computer Modelling,

Vol. 50, pp. 1577-1590.

Paper ID: SR23514154953 DOI: 10.21275/SR23514154953 1203 

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 5, May 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 



Lambert, J.D. (1991), "Numerical Methods for Ordinary Differential Equations", Wiley,

Chichester.

Lepik, U. (2011), "Solving PDEs with the aid of two-dimensional Haar wavelets", Computers

and Mathematics with Applications Vol. 61, pp. 1873-1879.

˚Lepik, U and Hein, H. (2014), "Haar Wavelets Applications" (Springer International Publishing,

Switzerland.

Lepik, U. (2008), "Solving integral and differential equations by the aid of non-uniform Haar

wavelets", Applied Mathematics and Computation, Vol. 198, pp. 326-332.

Liu, L., Ahsan, M., Ahmad, M., Nisar, M., Liu, X., Ahmad, I., and Ahmad, H. (2021)

"Applications of Haar wavelet-finite difference hybrid method and its convergence for

hyperbolic nonlinear Schrödinger equation with energy and mass conversion", Energies Vol. 14,

No. 23.

Matthews, S. (2000) "parameter robust numerical methods for a system of two coupled

singularly perturbed reaction diffusion equations", Master Thesis, School of Mathematical

Sciences, Dublin City University.

Majak, J., Shvartsman, B., Kirs, M., Pohlak, M., and Herranen, H. (2015) Convergence theorem

for the Haar wavelet-based discretization method Compos. Struct. Vol. 126 pp. 227–232.

Mandel Zweig, V.B. and Tabakin, F. (2001), "Quasi linearization approach to nonlinear problems

in physics with application to nonlinear ODEs", Computer Physics Communications. Vol. 141

No. 2, pp. 268-281.

Matthews, S., O’Riordan, E. and Shishkin, G.I. (2002) "A numerical method for a system of

singularly perturbed reaction-diffusion equations", Journal of Computational and Applied

Mathematics, Vol.145, pp. 151-166.

Mallat, S.G. (1989) "Multiresolution approximations and wavelet orthonormal bases of L2(R)",

Transactions of the American Mathematical Society, Vol. 315, pp. 69-87.

Matthews, S., O’Riordan, E. and Shishkin, G.I. (2006), "A numerical method for a system of

singularly perturbed reaction-diffusion equations Journal of Computational and Applied

Mathematics" Vol. 145, pp. 151-166.

Matthews, S., O’Riordan, E. and Shishkin, G.I. (1996), "Fitted numerical methods for singular

perturbation problems", world Scientific, Singapore.

Paper ID: SR23514154953 DOI: 10.21275/SR23514154953 1204 

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 5, May 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 



Meenakshi, M.P., Valarmathi, S. and Miller, J.J.H. (2010), "Solving a partially singularly

perturbed initial value problem on Shishkin meshes", Applied Mathematics and Computation,

Vol.215, pp. 3170- 3180.

O’Riordan, E. and Stynes, M. (1986), "A uniformly accurate Finite-element method for a

singularly perturbed one-dimensional reaction-diffusion problem", Mathematics of Computation,

Vol. 47, No.176, pp. 555–570.

Pandit, S. and Kumar, M. (2012), "Wavelet Transform and Wavelet-based Numerical Methods",

International Journal of Nonlinear Science, Vol. 13, pp. 325-345.

Qureshi, S., Soomro, A., Hincal, E., Lee, J.R., Park, C., Osman, M.S. (2022), "An efficient

variable step size rational method for stiff, singular and singularly perturbed problems",

Alexandria Engineering Journal, Vol. 61(12), pp. 10953-10963.

Raza, A. and Khan, A. (2019), "Haar Wavelet series solution for solving neutral delay

differential equations", Journal of King Saud University-Science, Vol. 31, pp. 1070-1076.

Raza, A. and Khan, A. (2021), "Solution of Partially Singularly Perturbed System of Initial and

Boundary Value Problems Using Non-Uniform Haar Wavelet", TWMS Journal of Applied and

Engineering Mathematics, Vol. 11, No.4, pp. 1246-1259.

Roos., H.G., Stynes, M. and Tobiska, L. (1996), "Numerical methods for singularly perturbed

differential equations", Springer-Verlag.

Roos, H.G., Stynes, M. and Tobiska, L. (2008), "Robust Numerical Methods for Singularly

Perturbed Differential Equations, Springer Series in Computational Mathematics", Springer

Series in Computational Mathematics, Vol. 24.

Sahoo, S.K., and Gupta, V. (2023), “A robust uniformly convergent finite difference scheme for

the time-fractional singularly perturbed convection-diffusion problem”, Computers &

Mathematics with Applications, Vol. 137, pp. 129-146.

Shishkin, G.I. (1988), "A difference scheme for a singularly perturbed equation of parabolic type

with a discontinuous boundary condition", Mat. Fiz., Vol. 28, pp. 1649-1662.

Singh, R., Garg, H., and Galería, V. (2019), "Haar wavelet collocation method for Lane–Emden

equations with Dirichlet, Neumann and Neumann–Robin boundary Conditions", Journal of

Computational and Applied Mathematics Vol. 346, pp. 150-161.

Paper ID: SR23514154953 DOI: 10.21275/SR23514154953 1205 

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 5, May 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

https://www.sciencedirect.com/journal/computers-and-mathematics-with-applications
https://www.sciencedirect.com/journal/computers-and-mathematics-with-applications
https://www.sciencedirect.com/journal/computers-and-mathematics-with-applications/vol/137/suppl/C


Singh, S., Kumar, D., Shanthi, V., (2023) “Uniformly convergent scheme for fourth-order

singularly perturbed convection-diffusion ODE”, Applied Numerical Mathematics, Vol. 186, pp.

334-357.

Simos, T.E., and Famelis, I.T. (2022)," A neural network training algorithm for singular

perturbation boundary value problems", Neural Computing and Applications, Vol. 34, pp.

607–615.

Swati, Singh, K., Verma, A.K., Singh, M. (2020), "Higher order Emden–Fowler type equations

via uniform Haar Wavelet resolution technique", Journal of Computational and Applied

Mathematics Vol. 376.

Umesh, and Kumar, M. (2021), "Numerical solution of Lane-Emden type equations using

Adomian- decomposition method with unequal step-size partitions", Engineering Computations,

Vol. 38, pp. 1-18.

Valarmathi, S. and Miller, J.J.H. (2009), "A parameter-uniform finite difference method for a

singularly perturbed initial value problem: a special case", Lecture notes in Computational

Science and Engineering, Vol. 29, Springer-Verlag, pp. 267–276.

Wichailukkana, N., Novaprateep, B., and Boonyasiriwat, C. (2016) "A convergence analysis of

the numerical solution of boundary-value problems by using two-dimensional Haar wavelets",

Science Asia Vol. 42, pp. 346-355.

Xu, Z., Xu, L., Li. W., Shi, S. (2023), "Renormalization Group Method for Singular Perturbation

Initial Value Problems with Delays", Mediterranean Journal of Mathematics Vol. 20.

Zhang, J., Xiaoqi, M., and Liv, V. (2021) "Finite element method on Shishkin mesh for a

singularly perturbated problems with an interior layer", Applied Mathematics Letters, Vol. 121.

Paper ID: SR23514154953 DOI: 10.21275/SR23514154953 1206 

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 5, May 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 




