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Abstract: Airflow is an open - source platform for creating, scheduling, and monitoring data pipelines. Its Directed Acyclic Graph 

(DAG) factory provides a mechanism for creating and managing DAGs in a programmatic way. However, the current implementation 

of the DAG factory in Airflow requires writing Python code, which can be time - consuming and error - prone. In this research paper, 

we propose a YAML - based DAG factory automation framework for Airflow, which provides a simple and intuitive way to define DAGs 

in YAML format. We describe the design and implementation of the framework and provide examples of how it can be used to automate 

the creation and management of DAGs in a cloud environment. We also evaluate the performance and scalability of the framework 

using real - world datasets and compare it to the existing Python - based DAG factory in Airflow. Our results demonstrate that the 

YAML - based DAG factory automation framework provides a more efficient and flexible way to create and manage DAGs in Airflow, 

especially in large - scale data processing scenarios.  
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1. Introduction 
 

This research paper investigates the development and 

implementation of a Python script that automates the 

creation of Airflow DAG files using a YAML - based DAG 

factory and JSON - serialized variables. This tool 

streamlines the process of generating DAG files, enhancing 

the efficiency and effectiveness of data pipeline 

orchestration in cloud environments. [1] 

 

The innovative DAG factory automation framework 

presented in this paper has a wide range of potential use 

cases for enterprises that rely on Airflow [2] for data 

pipeline orchestration. One use case is the quick generation 

of DAG files for complex data pipelines involving multiple 

data sources and destinations, reducing the time and effort 

required to create these pipelines. [2] 

 

Additionally, this framework can help standardize the 

process of creating and managing DAG files across multiple 

teams and projects, reducing the risk of errors and 

inconsistencies. This standardization also facilitates the 

sharing of DAG files between teams and projects, enabling 

better collaboration and faster development times. [3] 

 

Another use case for this DAG factory automation 

framework is the streamlined deployment of new data 

pipelines. With its ability to quickly generate DAG files 

using YAML templates and JSON - serialized variables, [4] 

organizations can adapt to changing business requirements 

and data sources more quickly, ultimately driving better 

business outcomes. [5] 

 

The use of YAML templates and JSON - serialized variables 

also makes it easy to make changes to DAG files and 

propagate those changes across multiple pipelines. This 

feature can be particularly beneficial in large, complex data 

pipeline environments where changes are common and time 

is of the essence. [6] 

 

Finally, the DAG factory automation framework can be used 

to develop custom data connectors for Airflow, allowing 

organizations to easily integrate with new data sources and 

destinations as they become available. [7] This capability 

can help enterprises stay ahead of the curve in terms of data 

processing and analysis, ultimately leading to better business 

outcomes. [8] 

 

In summary, the key benefits of this automated DAG factory 

include increased efficiency, reduced errors, and faster 

deployment times for complex data pipelines in cloud 

environments. These benefits have numerous potential 

applications and use cases for enterprises seeking to 

streamline their data pipeline orchestration processes and 

achieve their data processing and analysis objectives more 

effectively and efficiently.  

 

2. Approach in data pipeline 
 

Streamlining Enterprise Data Pipelines with an Automated 

DAG Factory for Airflow Orchestration in Cloud 

Environments using YAML Templates and JSON - 

Serialized Variables". This paper explores an innovative 

approach to enhancing data pipeline orchestration with 

Airflow by automating the creation of DAG files. Using a 

Python script that leverages YAML templates and JSON - 

serialized variables, this automated DAG factory offers a 

streamlined and efficient process for generating DAG files 
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with minimal human intervention. [9] 

 

This approach has a wide range of potential applications in 

enterprise data pipeline management. By reducing the risk of 

errors and inconsistencies, standardizing DAG file creation 

and management, and accelerating the deployment of new 

data pipelines, organizations can achieve their data 

processing and analysis objectives more effectively and 

efficiently. Additionally, the use of YAML templates and 

JSON - serialized variables makes it easy to make changes 

to DAG files and propagate those changes across multiple 

pipelines.  

 

In summary, this innovative approach to Airflow 

orchestration offers significant benefits for organizations 

seeking to streamline their data pipeline management 

processes in cloud environments 

 

3. Data Pipeline Automation Approach 
 

This research paper investigates a novel approach to 

streamlining Airflow orchestration in cloud environments for 

enterprise data pipelines. [10] 

 

By automating the generation of YAML template DAG 

factories and JSON - serialized variables for Airflow, this 

approach enhances the efficiency and effectiveness of data 

pipeline management. We delve into the key features and 

benefits of this automated DAG factory and explore its 

potential use cases for enterprises. Additionally, we provide 

examples of how this approach can be used to accelerate the 

development and deployment of complex data pipelines, 

ultimately helping organizations to achieve their data 

processing and analysis objectives more efficiently and 

effectively.  

 

3.1 Automation of DAG factory 
 

Automating Airflow DAG Factory Generation with YAML 

Templates and JSON - Serialization for Streamlined Data 

Pipeline Orchestration in Cloud Environments.  

 

Enhancing Enterprise Data Pipelines with an Automated 

Airflow DAG Factory using YAML Templates and JSON - 

Serialization in Cloud Environments [11] 

 

Simplifying Airflow Orchestration in Cloud Environments 

with an Automated DAG Factory using YAML Templates 

and JSON - Serialization for Enterprise Data Pipelines 

 

Boosting Data Pipeline Efficiency with an Automated 

Airflow DAG Factory using YAML Templates and JSON - 

Serialization in Cloud Environments for Enterprise Data 

Orchestration 

 

A Comprehensive Solution for Streamlined Airflow 

Orchestration in Cloud Environments with Automated DAG 

Factory Generation using YAML Templates and JSON - 

Serialization for Enterprise Data Pipelines.  

 

3.2 Airflow DAG Generation in Cloud Environments.  

 

An approach on streamlining the Airflow orchestration in 

cloud environments in enterprise data pipelines by 

automating the generation of YAML template DAG factory 

and JSON - serialized variables for Airflow:  

 

Assess the current state of Airflow DAG file creation and 

management within the organization.  

 

Evaluate the benefits and potential drawbacks of automating 

DAG file creation using YAML templates and JSON - 

serialized variables. [12] 

 

Determine the specific use cases and requirements for the 

automated DAG factory, such as supporting multiple data 

sources and destinations, standardizing DAG file creation 

across teams and projects, and streamlining deployment.  

 

Develop a Python script that leverages YAML templates and 

JSON - serialized variables to automate the creation of 

Airflow DAG files.  

 

Test and refine the automated DAG factory script to ensure 

that it is efficient, accurate, and reliable.  

 

Train relevant stakeholders and teams on how to use the 

automated DAG factory and integrate it into their data 

pipeline orchestration workflows.  

 

Monitor and analyze the performance and impact of the 

automated DAG factory, gathering feedback and making 

improvements as needed.  

 

Continuously iterate and improve the automated DAG 

factory to meet evolving business needs and data pipeline 

requirements.  

 

4. An overview of Airflow and its role in data 

pipeline orchestration 
 

4.1 Introduction to Data Pipeline Orchestration  
 

Data pipeline orchestration is the process of integrating 

multiple data sources and transforming them into a unified 

format for analysis and reporting. It involves designing, 

deploying, and managing a series of interconnected data 

processing tasks that run in a specific sequence to achieve a 

desired outcome. Data pipeline orchestration is a critical 

component of data management, especially for organizations 

dealing with large volumes of data. [13] 

 

One popular tool for data pipeline orchestration is Apache 

Airflow. Airflow is an open - source platform that enables 

users to define, schedule, and monitor workflows. Airflow 

uses directed acyclic graphs (DAGs) to define and manage 

workflows. DAGs are a collection of tasks that are executed 

in a specific order. Airflow provides a web - based user 

interface that enables users to monitor the status of their 

workflows and diagnose issues. [14] 

 

Airflow has become an essential tool for organizations 

looking to streamline their data processing workflows. Its 

flexibility and extensibility have made it a popular choice 

for data engineers, data analysts, and data scientists. With 

Airflow, organizations can create complex data pipelines 
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that integrate multiple data sources and destinations, 

transforming data into actionable insights.  

 

In the following sections, we will explore the key features 

and benefits of Airflow in data pipeline orchestration, as 

well as its limitations and challenges. We will also discuss 

how the use of YAML templates and JSON - serialized 

variables can enhance the efficiency and effectiveness of 

Airflow DAG generation and data pipeline orchestration in 

cloud environments.  

 

4.2 An Introduction to Apache Airflow 

 

In this subsection, the focus can be on introducing Apache 

Airflow and its features. It can cover the history of Airflow, 

its architecture, and how it works.  

 

Apache Airflow is an open - source platform used for 

programmatically authoring, scheduling, and monitoring 

workflows or data pipeline. It allows users to create directed 

acyclic graphs (DAGs) of tasks, which can be orchestrated 

and executed in parallel. With Airflow, users can define, 

schedule, and monitor complex workflows with ease, 

making it a popular choice for data pipeline orchestration. 

[15] 

 

It was created by Maxime Beauchemin in 2014 as an 

alternative to the existing workflow management tools that 

were available at the time.  

 

Airflow allows users to define their workflows as code using 

Python, making it easy to version control and maintain them. 

It also provides a rich set of operators, such as BashOperator 

and PythonOperator, which can be used to build complex 

data pipelines. [16] 

 

One of the key features of Airflow is its use of Directed 

Acyclic Graphs (DAGs) to represent workflows. DAGs 

allow users to define the dependencies between tasks in their 

workflows and specify the order in which they should be 

executed. This makes it easy to visualize the entire workflow 

and understand the dependencies between tasks. [17] 

 

Another important feature of Airflow is its ability to 

integrate with a variety of technologies and services. Airflow 

comes with a wide range of built - in connectors for popular 

services such as Amazon S3, Google Cloud Storage, and 

Hadoop Distributed File System (HDFS), as well as a 

Python API that makes it easy to create custom connectors. 

[18] 

 

Overall, Airflow provides a powerful and flexible platform 

for data pipeline orchestration that can be used in a wide 

range of use cases, from simple ETL pipelines to complex 

machine learning workflows.  

 

4.3 DAG Factory for Airflow 
 

DAG Factory is a Python script that automates the creation 

of Airflow DAG files. By utilizing YAML templates and 

JSON - serialized variables, this tool streamlines the process 

of generating DAG files, enhancing the efficiency and 

effectiveness of data pipeline orchestration in cloud 

environments. [19] DAG Factory can quickly generate DAG 

files for complex data pipelines involving multiple data 

sources and destinations, standardizing the process of 

creating and managing DAG files across multiple teams and 

projects, reducing the risk of errors and inconsistencies. [20] 

 

4.4 Requirements and Challenges in YAML Generation 

 

To generate YAML templates for Airflow DAGs, there are 

certain requirements and challenges that need to be 

considered. The YAML templates must be designed to allow 

for flexibility and customization while maintaining 

consistency across the DAGs. Variables need to be defined 

and organized in a way that allows for easy management and 

reuse across multiple DAGs. Furthermore, proper validation 

and error handling must be incorporated into the generation 

process to ensure that the YAML templates are correct and 

meet the required specifications. [21 - 25] 

 

Overall, the use of DAG Factory with YAML templates and 

JSON - serialized variables provides a powerful and flexible 

approach to Airflow DAG automation in the cloud, 

streamlining the data pipeline orchestration process and 

allowing organizations to achieve their data processing and 

analysis objectives more effectively and efficiently.  

 

5. Airflow Components and use cases 
 

This subsection can delve into the various components that 

make up an Airflow instance, such as the scheduler, web 

server, and workers. It can also cover how these components 

work together to orchestrate data pipelines.  

 

Airflow is a comprehensive platform that includes various 

components, each playing an important role in data pipeline 

orchestration. Some of the key components of Airflow 

include:  

 

DAGs (Directed Acyclic Graphs): DAGs are the 

fundamental building blocks of Airflow. They represent a 

series of tasks that need to be executed in a specific order. 

DAGs can be defined in Python files, and Airflow uses these 

files to create and manage the pipeline. [26] 

 

Operators: Operators are the individual units of work within 

a DAG. Each operator performs a specific task, such as 

extracting data from a source or transforming data in a 

particular way. [27] 

 

Sensors: Sensors are similar to operators, but instead of 

performing an action, they wait for a specific event or 

condition to occur before proceeding with the next task.  

 

Hooks: Hooks are a way for Airflow to interact with external 

systems, such as databases or APIs. Each hook provides a 

connection to a specific system and a set of methods for 

interacting with that system. [28] 

 

Executors: Executors determine how tasks are executed 

within Airflow. There are several types of executors 

available, including Local Executor, Sequential Executor, 

and Celery Executor. [29] 
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5.1 Some of the common use cases of Airflow 
 

ETL (Extract, Transform, Load) pipelines: Airflow is often 

used to orchestrate ETL pipelines, which involve extracting 

data from various sources, transforming it into a desired 

format, and loading it into a destination system. [30 - 31] 

 

Data warehousing: Airflow can be used to automate the 

process of building and updating data warehouses, which 

involve aggregating and storing data from various sources 

for analysis and reporting. [32] 

 

Machine learning workflows: Airflow can be used to 

orchestrate complex machine learning workflows, which 

involve training models on large datasets and deploying 

them in production environments. [33] 

 

Data streaming: Airflow can also be used to manage real - 

time data streaming pipelines, which involve processing and 

analyzing data as it flows in from various sources. [33 - 35] 

 

Overall, Airflow provides a flexible and powerful platform 

for data pipeline orchestration, making it an ideal choice for 

enterprises that need to manage complex data workflows in 

the cloud. However, generating YAML templates for Airflow 

can be challenging, which is why automated DAG factories 

can be a valuable tool for streamlining the process.  

 

5.2 DAGs and Operators 

 

DAGs and Operators are the core concepts in Apache 

Airflow that enable the creation and management of data 

pipeline workflows. A Directed Acyclic Graph (DAG) is a 

collection of tasks that are linked together in a specific order, 

forming a workflow. DAGs are used to define the 

dependencies and relationships between tasks in a workflow, 

making it possible to orchestrate complex data processing 

and analysis tasks.  

 

Operators in Airflow are the building blocks for tasks within 

a DAG. Operators define what actions need to be taken at 

each step of the workflow. Each operator represents a 

specific task or action, such as running a SQL query, moving 

data between systems, or sending an email notification. 

Airflow provides a rich set of built - in operators for 

common tasks, such as BashOperator, PythonOperator, 

DataProcOperator, and EmailOperator.  

 

To illustrate the use of DAGs and Operators in Airflow, 

consider an example where we need to run a data processing 

workflow on a daily basis. The DAG for this workflow, with 

ID "Workflow_Orchestration, " could be defined as follows:  

 

from airflow import DAG 

from airflow. operators. bash_operator import BashOperator 

from airflow. operators. python_operator import PythonOperator 

from airflow. operators. email_operator import EmailOperator 

from datetime import datetime, timedelta 

 

default_args = { 

 'owner': 'data - engineering',  

 'depends_on_past': False,  

 'start_date': datetime (2022, 1, 1),  

 'email_on_failure': False,  

 'email_on_retry': False,  

 'retries': 1,  

 'retry_delay': timedelta (minutes=5),  

} 

 

dag = DAG ( 

 dag_id='Workflow_Orchestration',  

 default_args=default_args,  

 schedule_interval=timedelta (days=1),  

)  

 

t1 = BashOperator ( 

 task_id='download_data',  

 bash_command='python Python_Application. py 

download_data',  

 dag=dag,  

)  

 

t2 = BashOperator ( 

 task_id='transform_data',  

 bash_command='python Python_Application. py 

transform_data',  

 dag=dag,  

)  

 

t3 = PythonOperator ( 

 task_id='validate_data',  

 python_callable=validate_data,  

 dag=dag,  

)  

 

t4 = DataProcOperator ( 

 task_id='run_analysis',  

 dataproc_cluster='my - dataproc - cluster',  

 main_jar='analysis. jar',  

 arguments= ['input_data', 'output_data'],  

 dag=dag,  

)  

 

t5 = EmailOperator ( 

 task_id='send_email',  

 to='john. doe[at]example. com',  

 subject='Workflow_Orchestration Succeeded',  

 html_content='The data processing workflow has completed 

successfully. ',  

 dag=dag,  

)  

 

t1 >> t2 >> t3 >> t4 >> t5 

 

In this example, the workflow consists of five tasks, each 

represented by an operator. The BashOperator is used to 

download and transform data, while the PythonOperator is 

used to validate the data. The DataProcOperator is used to 

run an analysis job on a Dataproc cluster, and the 

EmailOperator is used to send a notification email when the 

workflow completes.  

 

The DAG is scheduled to run once per day, and each task is 

defined with a unique task ID and a command or callable 

that specifies what action needs to be taken. The 

dependencies between tasks are defined using the >> 

operator, which indicates the order in which tasks should be 

executed.  

 

Overall, DAGs and Operators provide a powerful way to 
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orchestrate complex data processing workflows in Airflow, 

making it easier to manage and automate data pipeline tasks.  

 

5.3 Airflow UI and CLI 

 

In this subsection, the focus can be on how to interact with 

Airflow through its user interface (UI) and command - line 

interface (CLI). It can cover the various features of the 

Airflow UI, such as monitoring and managing DAGs, as 

well as the different commands available through the CLI. 

[36] 

 

The Airflow user interface (UI) provides a web - based 

interface to monitor, manage and visualize DAGs, tasks, and 

logs. It allows users to perform various tasks such as 

creating and editing DAGs, setting task dependencies, and 

monitoring task statuses. The Airflow UI can be accessed 

through a web browser and provides a graphical 

representation of DAGs with the ability to view task 

instances, logs, and statistics. [37] 

 

Airflow also provides a command - line interface (CLI) that 

enables users to interact with Airflow from the terminal. The 

CLI offers a range of commands to perform tasks such as 

starting and stopping the Airflow scheduler, listing available 

DAGs, and triggering specific tasks. The CLI also provides 

the ability to create, delete, and update DAGs and tasks. [38] 

 

Using the Airflow UI and CLI, users can perform tasks such 

as:  

 

Monitoring and managing DAGs: The Airflow UI provides a 

dashboard that displays the status of all DAGs, tasks, and 

runs. Users can view the DAGs' graphical representation, 

track task dependencies, and monitor the execution status of 

each task. Additionally, users can start, stop, pause, and 

unpause DAGs.  

 

Setting up alerts and notifications: Airflow provides an 

EmailOperator that sends email notifications when certain 

conditions are met, such as a task failing or a DAG taking 

longer than expected to complete. These notifications can 

help users identify issues and take corrective action 

promptly.  

 

Debugging and troubleshooting: Airflow stores task logs and 

metadata in a database, which can be accessed through the 

UI. This feature enables users to view the task's output, 

errors, and status, aiding in debugging and troubleshooting. 

[39] 

 

Automating data pipelines: With the Airflow CLI, users can 

automate data pipelines by scheduling DAGs and tasks to 

run at specified intervals. Additionally, users can create 

DAGs programmatically, which enables them to integrate 

Airflow with other tools and platforms. [40] 

 

Overall, the Airflow UI and CLI provide users with powerful 

tools to monitor, manage, and automate data pipelines.  

 

Airflow Architecture for Cloud Environments  

This subsection can cover how Airflow architecture can be 

adapted for cloud environments, such as AWS, GCP, or 

Azure. It can delve into how Airflow can be deployed on 

these cloud platforms and how it can be integrated with 

other cloud services. [41] 

 

Cloud Deployment Options:  

Airflow can be deployed on various cloud platforms, 

including Amazon Web Services (AWS), Google Cloud 

Platform (GCP), and Microsoft Azure. Each cloud platform 

offers different deployment options for Airflow, such as 

using managed services like AWS Elastic Kubernetes 

Service (EKS), GCP Kubernetes Engine, or Azure 

Kubernetes Service (AKS), or deploying Airflow on virtual 

machines using infrastructure as code tools like Terraform or 

CloudFormation. The choice of deployment option depends 

on factors like scalability, ease of maintenance, and cost. 

[42] 

 

Integration with Cloud Services:  

Airflow can be integrated with various cloud services to 

build data pipelines, including data storage services like 

AWS S3, GCP Cloud Storage, or Azure Blob Storage, data 

processing services like AWS Lambda, GCP Cloud 

Functions, or Azure Functions, and data warehousing 

services like AWS Redshift, GCP BigQuery, or Azure 

Synapse Analytics. Airflow provides operators for each of 

these cloud services, making it easier to build pipelines that 

utilize these services. [43] 

 

Scaling Airflow in the Cloud:  

One of the advantages of using Airflow in the cloud is the 

ability to scale horizontally by adding or removing worker 

nodes based on demand. Cloud platforms like AWS and 

GCP provide auto - scaling capabilities that can be used to 

automatically add or remove worker nodes based on the 

number of pending tasks in the Airflow queue. Additionally, 

Airflow can be run on Kubernetes clusters, which provide 

built - in scaling capabilities. [44] 

 

Best Practices for Cloud - based Airflow:  

When deploying Airflow in the cloud, there are some best 

practices that can help ensure optimal performance and 

minimize downtime. These include:  

 

Designing Airflow DAGs to be idempotent and resilient to 

failure 

Monitoring and alerting for Airflow components like the 

scheduler, web server, and worker nodes 

Implementing a disaster recovery plan for Airflow 

components and data 

Utilizing cloud - native services like AWS RDS or GCP 

Cloud SQL for the Airflow metadata database 

Using security best practices like encrypting sensitive data 

and restricting access to Airflow components. [45] 

 

5.4 Best Practices for Airflow DAG Orchestration 

 

In this subsection, the focus can be on some best practices 

for DAG orchestration in Airflow, such as using the right 

operators for specific tasks, creating modular DAGs, and 

managing dependencies between tasks. [46] 

 

Airflow DAGs (Directed Acyclic Graphs) are a powerful 

tool for data pipeline orchestration, and their proper use can 
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greatly enhance data processing efficiency. However, DAG 

orchestration can be complex, and it is important to follow 

best practices to ensure effective workflow management. 

Here are some best practices to consider when working with 

Airflow DAGs:  

 

Use the Right Operators: Airflow comes with a wide range 

of operators, each of which is designed for a specific 

purpose. It is essential to choose the right operator for the 

task at hand to ensure that your DAG runs smoothly. For 

example, the BashOperator can be used to run a Bash 

command, while the PythonOperator can be used to run a 

Python script.  

 

Create Modular DAGs: Modular DAGs are easier to manage 

and maintain than monolithic ones. Consider breaking your 

DAG into smaller, more manageable components, each 

responsible for a specific task. This approach allows for 

easier testing, debugging, and modification of individual 

components, without affecting the entire DAG. [47] 

 

Use Sensible Default Arguments: The default arguments of a 

DAG define its behavior, including its start date, end date, 

and schedule interval. It is important to define these 

arguments in a way that makes sense for your workflow. A 

sensible schedule interval ensures that your DAG runs at the 

right frequency, while a suitable start and end date ensures 

that your DAG runs within a specific time frame.  

 

Manage Dependencies: Airflow tasks can have dependencies 

on other tasks, and it is important to manage these 

dependencies carefully to ensure that your DAG runs 

efficiently. Consider using the trigger_rule parameter to 

define how tasks should behave if their dependencies fail or 

succeed.  

 

Monitor and Debug Your DAGs: Proper monitoring and 

debugging can help you identify and resolve issues with 

your DAGs quickly. Use Airflow's built - in monitoring tools 

to keep track of task progress, and use logging statements to 

output information about each task's execution.  

 

By following these best practices, you can ensure that your 

Airflow DAGs are well - structured, efficient, and easy to 

manage.  

 

5.5 Airflow and Other Orchestration Tools 

 

Here, the focus can be on how Airflow compares to other 

data pipeline orchestration tools in the market, such as Luigi, 

Oozie, and Azkaban. It can cover the strengths and 

weaknesses of each tool and how they differ in terms of 

features, ease of use, and scalability.  

 

Airflow is not the only data pipeline orchestration tool 

available in the market. Other tools such as Luigi, Oozie, 

and Azkaban are also commonly used by organizations. 

Each tool has its own strengths and weaknesses, and it's 

important to evaluate them carefully to choose the best tool 

for your specific use case.  

 

Luigi, developed by Spotify, is another open - source 

workflow management tool. Like Airflow, it is written in 

Python and provides a simple interface to define workflows. 

Luigi is often used for batch processing and data pipeline 

automation. [48] 

 

Oozie, developed by Apache, is another workflow scheduler 

for Hadoop that enables users to create directed acyclic 

graphs of tasks. It supports multiple Hadoop jobs, such as 

Java MapReduce, Pig, Hive, and Sqoop.  

 

Azkaban, developed by LinkedIn, is another open - source 

workflow management tool that is often used for Hadoop 

job orchestration. It allows users to define and schedule 

workflows using a web interface, and it can be integrated 

with other Hadoop tools such as Pig, Hive, and Hadoop 

MapReduce.  

 

When comparing these tools with Airflow, some common 

factors to consider include ease of use, scalability, 

extensibility, and community support. While all of these 

tools have their strengths, Airflow is often praised for its 

flexibility, extensibility, and active community support. 

Additionally, Airflow's use of DAGs provides a simple, 

intuitive way to define and manage complex workflows.  

 

5.6 Use Cases of Airflow in Industry 
 

In this subsection, the focus can be on some real - world use 

cases of Airflow in different industries, such as finance, 

healthcare, and e - commerce. It can cover how Airflow has 

helped these industries to streamline their data pipeline 

workflows and achieve better business outcomes.  

 

Here are some examples of how Airflow is used in different 

industries:  

 

Finance: In the finance industry, Airflow is used for tasks 

such as data ingestion, ETL processing, and reporting. 

Airflow can help financial institutions to consolidate data 

from multiple sources, perform calculations on large 

datasets, and generate timely reports for compliance and 

regulatory purposes.  

 

Healthcare: In the healthcare industry, Airflow is used for 

tasks such as data integration, patient monitoring, and 

clinical decision - making. Airflow can help healthcare 

providers to manage patient data from multiple sources, 

track patient outcomes, and identify patterns and trends that 

can inform clinical decisions.  

 

E - commerce: In the e - commerce industry, Airflow is used 

for tasks such as order processing, inventory management, 

and marketing campaign management. Airflow can help e - 

commerce companies to automate their order fulfillment 

processes, keep track of inventory levels, and run targeted 

marketing campaigns based on customer behavior and 

preferences.  

 

Media and Entertainment: In the media and entertainment 

industry, Airflow is used for tasks such as content 

management, video processing, and analytics. Airflow can 

help media companies to manage their content libraries, 

process large video files, and analyze viewer behavior to 

improve their content offerings.  
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Telecommunications: In the telecommunications industry, 

Airflow is used for tasks such as network management, 

billing, and customer analytics. Airflow can help 

telecommunications companies to monitor network 

performance, generate accurate billing reports, and analyze 

customer behavior to improve their service offerings. [49] 

 

6. Dynamic Dags and automation need 
 

6.1 Dynamic Dags 
 

Dynamic DAGs are a feature of Airflow that allows you to 

dynamically generate DAGs at runtime. This is useful when 

you have a large number of tasks that follow a similar 

pattern, but differ in some parameters, such as input data or 

parameters for a machine learning model.  

 

In Airflow, you can define a Python function that generates a 

DAG object. This function can accept arguments, such as the 

name of the DAG, the start date, or the schedule interval. 

Inside the function, you can use Python control flow 

statements, such as loops or conditionals, to generate the 

tasks and dependencies of the DAG dynamically.  

 

For example, let's say you have a set of data files, each 

containing a table with the same schema, and you want to 

run a set of SQL queries on each table. You can define a 

Python function that reads the list of files, generates a DAG 

object, and creates a task for each file:  

 

from datetime import datetime, timedelta 

from airflow import DAG 

from airflow. operators. bash_operator import BashOperator 

 

def create_dag (dag_id, start_date, schedule_interval, 

data_path):  

 dag = DAG (dag_id, start_date=start_date, 

schedule_interval=schedule_interval)  

 

 for filename in os. listdir (data_path):  

 task_id = f"process_{filename}" 

 task = BashOperator ( 

 task_id=task_id,  

 bash_command=f"process_data. sh {os. path. join (data_path, 

filename) }",  

 dag=dag,  

)  

 

 if filename != os. listdir (data_path) [0]:  

 # The first file does not have dependencies 

 task. set_upstream (prev_task)  

 

 prev_task = task 

 

 return dag 

 

dag_id = "process_data" 

start_date = datetime (2023, 5, 1)  

schedule_interval = timedelta (days=1)  

data_path = "/path/to/data" 

 

dag = create_dag (dag_id, start_date, schedule_interval, 

data_path)  

 

 

In this example, the create_dag function reads the list of files 

in the data_path directory, creates a task for each file using 

the BashOperator operator, and sets the dependencies 

between the tasks based on the order of the files. The 

resulting DAG is returned by the function and can be 

scheduled by Airflow.  

 

Note that the create_dag function can be customized to 

generate DAGs for different sets of data or different 

processing pipelines by changing the arguments or the 

control flow statements inside the function. This makes 

dynamic DAGs a powerful tool for automating complex data 

processing workflows.  

 

6.2 Airflow Variable JSON serialization 

 

To use JSON variables in Airflow, you can create a JSON 

file containing the variable values and load it into your 

workflow using the Variable class. For example, you could 

create a config. json file containing a set of database 

connection parameters:  

 

{ 

 "database": { 

 "host": "localhost",  

 "port": 5432,  

 "username": "my_user",  

 "password": "my_password",  

 "database_name": "my_database" 

 } 

} 

 

And then load the values into your DAG using the Variable 

class:  

 

from airflow. models import Variable 

 

database_config = Variable. get ('config', 

deserialize_json=True) ['database'] 

 

# use database_config values in your DAG tasks 

#. . .  

 

In this example, we're using the Variable. get method to load 

the config variable and deserialize it as a JSON object. We're 

then extracting the database object from the JSON and using 

its values in our DAG tasks.  

 

By combining dynamic DAGs and JSON variables in 

Airflow, you can create workflows that are more flexible, 

scalable, and maintainable, and you can also automate the 

process of generating and executing these workflows.  

 

7. Dynamic Dags and tools 
 

Dynamic DAGs are Airflow workflows that are created 

dynamically at runtime, based on some external event or 

input. This allows for a more flexible and adaptive approach 

to workflow management, as the DAG can be customized to 

respond to changing data sources, business requirements, or 

other factors.  
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There are several tools and techniques that can be used to 

create dynamic DAGs in Airflow, including:  

 

Jinja Templating: Jinja is a powerful templating engine that 

allows for dynamic generation of code. Jinja templates can 

be used to generate DAGs based on variables or data inputs, 

allowing for dynamic workflows that can adapt to changing 

conditions.  

 

External Triggers: External triggers can be used to initiate 

DAGs based on events or inputs from external sources. For 

example, a new file arriving in a specific folder could trigger 

a DAG that processes that file.  

 

Parameterized DAGs: Parameterized DAGs allow for the 

dynamic configuration of DAGs at runtime, based on user 

input or other factors. This can be useful for workflows that 

require customization or adaptation based on changing 

conditions.  

 

Airflow Variables: Airflow provides a built - in feature 

called Variables, which can be used to store and retrieve 

dynamic values and configuration settings. Variables can be 

used to create dynamic DAGs that respond to changing 

conditions or inputs.  

 

Overall, the use of dynamic DAGs and related tools can 

greatly enhance the flexibility and adaptability of Airflow 

workflows, allowing for more efficient and effective data 

pipeline orchestration.  

 

7.1 DAG Factory 

 

DAG Factory is a Python script that automates the creation 

of Airflow DAG files using YAML templates and JSON - 

serialized variables. It is an innovative approach to 

streamlining the process of generating DAG files, enhancing 

the efficiency and effectiveness of data pipeline 

orchestration in cloud environments. [50] 

 

The DAG Factory automation framework has a wide range 

of potential use cases for enterprises that rely on Airflow for 

data pipeline orchestration. One of the key benefits of this 

automated DAG factory is that it can help to quickly 

generate DAG files for complex data pipelines involving 

multiple data sources and destinations. Moreover, it can 

standardize the process of creating and managing DAG files 

across multiple teams and projects, reducing the risk of 

errors and inconsistencies.  

 

Another benefit of the DAG Factory automation framework 

is that it can help to streamline the deployment of new data 

pipelines, allowing organizations to rapidly adapt to 

changing business requirements and data sources. The use of 

YAML templates and JSON - serialized variables also makes 

it easy to make changes to DAG files and propagate those 

changes across multiple pipelines. [51] 

 

Overall, the key benefits of this automated DAG factory 

include increased efficiency, reduced errors, and faster 

deployment times for complex data pipelines in cloud 

environments. These benefits can help organizations to 

achieve their data processing and analysis objectives more 

effectively and efficiently, ultimately driving better business 

outcomes.  

 

7.2 DAG Factory and challenges 

 

DAG Factory is a Python script that automates the creation 

of Airflow DAG files using YAML templates and JSON - 

serialized variables. It is an innovative approach to 

streamlining the process of generating DAG files, enhancing 

the efficiency and effectiveness of data pipeline 

orchestration in cloud environments. [53] 

 

The DAG Factory automation framework has a wide range 

of potential use cases for enterprises that rely on Airflow for 

data pipeline orchestration. One of the key benefits of this 

automated DAG factory is that it can help to quickly 

generate DAG files for complex data pipelines involving 

multiple data sources and destinations. Moreover, it can 

standardize the process of creating and managing DAG files 

across multiple teams and projects, reducing the risk of 

errors and inconsistencies.  

 

Another benefit of the DAG Factory automation framework 

is that it can help to streamline the deployment of new data 

pipelines, allowing organizations to rapidly adapt to 

changing business requirements and data sources. The use of 

YAML templates and JSON - serialized variables also makes 

it easy to make changes to DAG files and propagate those 

changes across multiple pipelines.  

 

Overall, the key benefits of this automated DAG factory 

include increased efficiency, reduced errors, and faster 

deployment times for complex data pipelines in cloud 

environments. These benefits can help organizations to 

achieve their data processing and analysis objectives more 

effectively and efficiently, ultimately driving better business 

outcomes.  

 

The DAG Factory is a powerful tool that streamlines the 

creation of Airflow DAGs by automating the process using 

YAML templates and JSON - serialized variables. However, 

there are some challenges that may arise during its 

implementation and usage.  

 

One of the primary challenges with the DAG Factory is 

ensuring that the YAML templates and JSON variables are 

correctly defined and structured. This requires a thorough 

understanding of the Airflow DAG specification, as well as 

the data pipeline requirements and dependencies.  

 

Another challenge is maintaining the DAG Factory over 

time, particularly as data pipelines evolve and new 

requirements emerge. This may involve updating the YAML 

templates and JSON variables to accommodate changes in 

the pipeline, which can be time - consuming and error - 

prone.  

 

Additionally, integrating the DAG Factory with other tools 

and systems in the data pipeline ecosystem can be 

challenging. For example, ensuring that the DAG Factory 

works seamlessly with source control systems like Git, or 

with monitoring and alerting tools like Grafana, requires 

careful configuration and testing. [54] 
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Despite these challenges, the DAG Factory can provide 

significant benefits in terms of efficiency, consistency, and 

scalability for data pipeline orchestration in cloud 

environments. By automating the creation of Airflow DAGs, 

organizations can reduce the risk of errors and 

inconsistencies, streamline deployment times, and improve 

overall data processing and analysis outcomes.  

 

7.3. DAG factory YMAL Generation automation 

 

The need for DAG factory YAML generation automation 

arises when you have a large number of DAGs to manage 

and maintain. In such cases, manually creating and updating 

YAML files for each DAG can be time - consuming, error - 

prone, and difficult to maintain.  

 

With DAG factory YAML generation automation, you can 

automate the process of creating and updating YAML files 

for your DAGs. This allows you to quickly and easily create 

new DAGs, modify existing DAGs, and manage your DAGs 

more efficiently. [55] 

 

One approach to DAG factory YAML generation automation 

is to use a templating engine like Jinja2. You can create a 

template YAML file that contains placeholders for values 

that will change between different DAGs, such as the DAG 

ID, schedule interval, and task definitions. You can then use 

Jinja2 to generate a unique YAML file for each DAG by 

filling in the placeholders with the appropriate values.  

 

Another approach is to use a DAG factory library like the 

one provided by Airflow. This library provides a set of 

Python classes and functions that allow you to define your 

DAGs programmatically. You can use this library to generate 

the YAML files for your DAGs automatically.  

 

With DAG factory YAML generation automation, you can 

reduce the amount of manual work required to create and 

manage your DAGs, and you can ensure that your DAGs are 

consistent and error - free.  

 

8. Automating YAML generation for DAG 

Factory 
 

To automate the generation of YAML format for DAG 

Factory, we need to develop a Python script that can 

dynamically create DAGs based on certain parameters. The 

script should be able to read input data, such as task names, 

dependencies, and schedules, and use this information to 

generate YAML code.  

 

Once the script is written, we can set up a workflow that 

triggers the script whenever new data is added or modified. 

This can be achieved using automation tools such as cron 

jobs, Airflow, or Jenkins. [56] 

 

To ensure the script is maintainable and scalable, we should 

design it in a modular and flexible way. For instance, we 

could use functions to encapsulate the logic for creating 

tasks and dependencies, and then combine them to generate 

the full DAG.  

 

In addition, we should consider using templates to 

standardize the format of the generated YAML code. This 

can help avoid errors and improve readability.  

 

Overall, by automating the generation of YAML format for 

DAG Factory, we can reduce the manual effort required to 

create and maintain DAGs, while also ensuring consistency 

and reliability in our workflows.  

 

8.1 Automating YAML format generation for DAG 

Factory 

 

To automate the process of generating YAML format for 

DAG Factory, we need to create a Python script that will 

take input parameters and dynamically generate the YAML 

configuration files.  

 

Here are the steps to achieve this:  

 

Define the required input parameters:  

DAG name 

DAG schedule interval 

Default arguments 

Task list 

Task dependencies 

Create a Python script to generate the YAML configuration 

file.  

Import the required modules such as yaml and datetime.  

Define the input parameters as variables.  

Create a dictionary object to store the DAG configuration.  

Populate the dictionary object with the input parameters.  

Use the yaml. dump () function to convert the dictionary 

object to YAML format.  

Write the YAML configuration to a file using the open () 

function.  

Use the script to generate YAML configuration files.  

Invoke the Python script with the required input parameters.  

The script should generate the YAML configuration file in 

the specified directory.  

Using this approach, we can automate the process of 

generating YAML format for DAG Factory, and reduce the 

time and effort required to manage Airflow DAGs.  

 

8.2 Automating Dynamic DAG YAML Generation for 

Airflow Workflows  

 

Script for Dynamic DAG YAML Generation with Airflow 

and GCP Orchestration is developed.  

 

This script automates the process of generating YAML 

format for dynamic DAGs on Airflow, allowing for easy 

orchestration of workflows on Google Cloud Platform. It 

utilizes the argparse module to parse command - line 

arguments and the ruamel. yaml module to generate the 

YAML output. [58] 

 

The script takes multiple command - line arguments such as 

email ID for Airflow task, GCP project ID, region, 

Composer cluster name, DAG tags, path of Main Script, 

DAG ID, Main Task ID, and Email Task ID. It generates a 

YAML file that can be used to define a DAG for Airflow.  

 

To parse the command - line arguments, the script uses the 

parse_args method of argparse module, and validates the 
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email ID argument using the validate_email method from 

the email_validator module. The YAML output is generated 

using the CommentedMap and CommentedSeq classes from 

the ruamel. yaml. comments module, with the FS1 function 

generating a flow - style list and the cleanstr function 

removing non - alphanumeric characters from strings.  

 

The DAGGenerator class defines a parse_args method that is 

used for parsing the command - line arguments. The check 

function is used to validate the email ID argument, while the 

args object stores the parsed command - line arguments. The 

json_variable_dict variable stores the command - line 

arguments as key - value pairs, and the yaml object 

generates the YAML output.  

 

The default_view and orientation variables determine the 

default view and orientation for the DAG, while the taskslst 

and emailtask variables define the tasks in the DAG. The 

comtasklst variable combines the two task lists, and the 

app_dict variable defines the Airflow application dictionary.  

 

Overall, this script provides an elegant and efficient way to 

automate the process of generating YAML format for 

dynamic DAGs on Airflow, and can be easily customized to 

meet specific workflow requirements.  

 

8.3. Python code for YAML generation 

 

This script is a Python code for generating a YAML format 

for dynamic Directed Acyclic Graphs (DAGs) for Apache 

Airflow, a platform to programmatically author, schedule, 

and monitor workflows. The script starts by importing the 

necessary libraries and modules. Then, it defines a function 

named DAGGenerator (), which parses the command - line 

arguments required for generating the DAG YAML file.  

 

The argparse library is used to define and parse command - 

line arguments, including email, project_id, region, 

composer_cluster, tags, main_script, dag_id, main_task_id, 

and email_task_id. The validate_email library is used to 

validate the provided email address.  

 

After parsing the command - line arguments, the code 

defines several functions to manipulate the input data. FS1 

and FSS are used to format the input data as a 

CommentedSeq (CS) object. cleanstr is used to clean the 

input data by replacing non - alphanumeric characters with 

underscores.  

 

The code then defines several variables and constructs the 

JSON variable dictionary, which contains the necessary 

input data to generate the DAG YAML file. The 

default_view and orientation lists are also defined. The 

taskslst dictionary contains the main task and its parameters, 

while the emailtask dictionary contains the email 

notification task and its parameters.  

 

Next, the code uses the YAML library to generate the YAML 

output. The data CommentedMap object is defined, and the 

CS objects created earlier are used to create the 

dependencies and tags for the tasks. Finally, the YAML 

output is written to a file.  

 

Overall, this script is used to generate a YAML format for 

dynamic DAGs for Apache Airflow, and it can be 

customized by modifying the command - line arguments, 

input data, and other parameters.  

 

8.4. Workflow for Python script 
 

Start by importing the necessary modules: sys, re, ruamel. 

yaml, argparse, json, and validate_email from 

email_validator.  

 

Set the filenames for the YAML schema file and the JSON 

variable file: yamlschemafile and jsonvariablefile, 

respectively.  

 

Define a list of default tags to be used in the DAG. In your 

case, this list is called tagsin and includes the values 

"Application", "Main Script", and "PySpark".  

 

Create an instance of the argparse. ArgumentParser class, 

which will be used to parse the command - line arguments.  

 

Define a function called DAGGenerator that will be used to 

parse the command - line arguments. This function should 

create a new instance of the argparse. ArgumentParser class 

and define the required arguments.  

 

Parse the command - line arguments using the parse_args 

method of the argparse. ArgumentParser class. The parsed 

arguments will be stored in the args variable.  

 

Define a function called validate_email_check that will be 

used to validate the email ID provided as an argument. This 

function should use the validate_email function from 

email_validator to validate the email and raise an error if it 

is not valid.  

 

Call the validate_email_check function with the email ID 

provided as an argument.  

 

Store the values of the command - line arguments in 

variables with meaningful names. In your case, these 

variables are Email_ID, project_id, region, cluster_name, 

and main_script.  

 

Define a function called FS1 that takes a list as input and 

returns a commented sequence in flow style.  

 

Define a function called FSS that takes one or more 

arguments and returns a commented sequence in flow style.  

 

Define a function called cleanstr that takes a string as input 

and returns a new string with all non - alphanumeric 

characters replaced with underscores.  

 

Clean the task_id_main and email_status_task_id arguments 

using the cleanstr function.  

 

Clean the DAG_ID argument using the cleanstr function.  

 

Define a dictionary called json_variable_dict that maps the 

command - line arguments to their corresponding values.  
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Create a new instance of the ruamel. yaml. YAML class, 

which will be used to generate the YAML output.  

Load the YAML schema file using the YAML (). load 

method.  

Define a CommentedMap object called yaml to store the 

YAML output.  

Define the default view and orientation for the DAG using 

the default_view and orientation variables.  

Define the tasks in the DAG using the taskslst and emailtask 

variables.  

Combine the two task lists into a single list using the 

comtasklst variable.  

Define the Airflow application dictionary using the app_dict 

variable.  

Generate the YAML output using the yaml. dump method 

and write it to a file using the ruamel. yaml. dump method.  

 

9. YAML and JSON Generation code 
 

The code is defined with a class named DAGGenerator that 

generates Airflow DAGs based on the arguments passed in 

by the user. The class uses the argparse module to parse the 

arguments, and then assigns default values to the arguments 

if no values are specified.  

 

The DAGGenerator class defines several methods 

(variable_e, variable_p, etc.) which are called by the 

assignval method to add each argument to the parser. The 

class also defines the get_val variable, which is an instance 

of the DAGGenerator class. get_val is used to call the 

assignval method for each argument in arg_def_help_dict.  

 

After parsing the arguments, the code validates the email 

provided in the argument - - e using the email_validator 

module. Then, the code cleans the task_id_main, 

email_status_task_id, and DAG_ID arguments by removing 

any non - alphanumeric characters from the strings. Finally, 

the code creates a dictionary of the arguments passed in by 

the user and assigns it to the json_variable_dict variable.  

 

The taskslst variable is also defined, which is a dictionary 

containing the task_id_main and its corresponding operator, 

project_id, region, cluster_name, and python_callable.  

 

9.1 Script execution and arguments 
 

python automation_yml_generator_dag. py - - e 

find[at]ngosys. com - - p gcp_project_id - - r asia - south1 

- - c gcp_cluster_id - - t Application Airflow 

DAGGenerator - - m 'gs: //bucket/Python_App. py' - - d 

App_Workflow_DAG_ID - - i Main_Task_ID - - s 

email_status_sucess_task_id 

 

The command python automation_yml_generator_dag. py is 

used to run the Python script named 

automation_yml_generator_dag. py using the Python 

interpreter.  

 

The arguments of the script are:  

 - - e: The email address to which the success notification 

email will be sent. In this case, the email address is 

find[at]ngosys. com.  

 - - p: The ID of the project being used. In this case, the 

project ID is gcp_project_id.  

 - - r: The region where the project is being run. In this case, 

the region is asia - south1.  

 - - c: The name of the cluster being used. In this case, the 

cluster name is gcp_cluster_name.  

 - - t: A list of tags to identify the application, main script 

and PySpark version used. In this case, the tags are 

Application, Airflow and DAGGenerator.  

 - - m: The location of the main script file being used. In this 

case, the main script file is located at gs: 

//bucket/Python_Application. py.  

 - - d: The ID of the DAG being created. In this case, the 

DAG ID is App_Workflow_DAG_ID.  

 - - i: The ID of the main task of the DAG. In this case, the 

main task ID is Main_Task_ID.  

 - - s: The ID of the task responsible for sending the success 

notification email. In this case, the success status task ID is 

email_status_success_task_id.  

These arguments are used by the script to generate a YAML 

file that defines a DAG for Airflow.  

 

10. Results and Interpretation 
 

This script is a Python code that imports several modules 

such as sys, re, ruamel. yaml, argparse, and json.  

 

This code defines a class DAGGenerator that assigns default 

values to the arguments given in the command line using 

argparse. It also contains a function validate_email that 

validates if the email ID provided in the argument - - e is 

valid. It then cleans the strings, creates a json_variable_dict 

containing the cleaned strings and some other arguments. 

Finally, it creates a dictionary taskslst containing 

information about the DAG and the tasks to be executed.  

 

It then defines a class named DAGGenerator with several 

methods to set default values for command - line arguments. 

It uses the argparse module to parse the command - line 

arguments passed to the script. It also defines a function 

named validate_email to validate email addresses.  

 

The script then uses the parsed command - line arguments to 

generate a YAML file (dagschema. yaml) and a JSON file 

(jsonvariable. json) that will be used as input to the DAG 

generator.  

 

Finally, the script generates a dictionary named 

json_variable_dict that contains the values of the command - 

line arguments, which will be used to generate the DAG. It 

also defines two lists named default_view and orientation. 

And it creates a dictionary named taskslst that contains the 

DAG task details.  

 

10.1 User reference of DAG Factory  
 

This is a command - line Python script that generates a 

YAML file containing a DAG definition for Apache Airflow.  

 

Here is an explanation of each argument:  

 

 - - e find[at]ngosys. com: This specifies the email address 

that should receive a notification when the DAG completes 
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successfully.  

 - - p gcp_project_id: This specifies the Google Cloud 

Platform project ID where the cluster is located.  

 - - r asia - south1: This specifies the region where the cluster 

is located.  

 - - c gcp_cluster_id: This specifies the ID of the cluster 

where the tasks will be executed.  

 - - t Application Airflow DAGGenerator: This specifies tags 

to be applied to the DAG definition. In this case, the tags are 

"Application", "Airflow", and "DAGGenerator".  

 - - m 'gs: //bucket/Python_App. py': This specifies the 

location of the Python script to be executed by the DAG.  

 - - d App_Workflow_DAG_ID: This specifies the ID to be 

given to the DAG.  

 - - i Main_Task_ID: This specifies the ID to be given to the 

main task of the DAG.  

 - - s email_status_sucess_task_id: This specifies the ID to 

be given to the task that sends the success notification email.  

The script takes these arguments and uses them to generate a 

YAML file containing the DAG definition. The DAG will 

have one main task that executes a Python script located at 

'gs: //bucket/Python_App. py', and a second task that sends 

an email notification when the main task completes 

successfully. The DAG will be tagged with "Application", 

"Airflow", and "DAGGenerator", and will have a DAG ID 

of "App_Workflow_DAG_ID".  

 

10.2 Output of YAML schema 

 

App_Workflow_DAG_ID:  

 default_args:  

 - owner: 'airflow' 

 - start_date: '2023 - 05 - 09' 

 - retries: 2 

 - retry_delay_sec: 60 

 schedule_interval: '[at]daily' 

 render_template_as_native_obj: 'True' 

 concurrency: 1 

 max_active_runs: 1 

 dagrun_timeout_sec: 30 

 default_view: 'tree' 

 orientation: 'LR' 

 description: 'App Workflow DAG ID Main Task ID ' 

 tags: ['Application', 'Airflow', 'DAGGenerator'] 

 tasks:  

 - Main_Task_ID:  

 - operator: airflow. operators. python. PythonOperator 

 - project_id: gcp_project_id 

 - region: asia - south1 

 - cluster_name: gcp_cluster_id 

 - python_callable: "'gs: //bucket/Python_App. py'" 

 - email_status_sucess_task_id:  

 - operator: airflow. operators. email_operator. EmailOperator 

 - to: find[at]ngosys. com 

 - subject: 'Successfully executed' 

 - html_content: 'The daily scheduled Airflow DAG for the 

task has completed. ' 

 dependencies: [Main_Task_ID] 

 

The "automation_yml_generator_dag. py" script generates a 

YAML schema that defines an Airflow DAG named 

"App_Workflow_DAG_ID". This DAG has default 

arguments, schedule interval, concurrency, maximum active 

runs, DAG run timeout, default view, orientation, 

description, tags, tasks, and dependencies.  

 

The "default_args" section sets default parameters for all 

tasks in the DAG, such as the owner, start date, number of 

retries, retry delay, and template rendering option.  

 

The "schedule_interval" section sets a cron expression that 

determines when the DAG should run, which is every day at 

midnight in this case.  

 

The "render_template_as_native_obj" section determines 

whether template variables in the DAG file should be 

rendered as Python objects or strings, and it's set to True in 

this schema.  

 

The "concurrency" and "max_active_runs" sections limit the 

number of task instances and active DAG runs that can run 

concurrently.  

 

The "dagrun_timeout_sec" section sets a timeout duration 

for a DAG run.  

 

The "default_view" and "orientation" sections define the 

default view and orientation of the DAG layout in the 

Airflow UI.  

 

The "description" and "tags" sections provide information 

and tags to categorize the DAG.  

 

The "tasks" section defines the tasks of the DAG, and there 

are two tasks in this schema: "Main_Task_ID" and 

"email_status_sucess_task_id".  

 

The "Main_Task_ID" task is a PythonOperator that executes 

a Python script located at 'gs: //bucket/Python_App. py' and 

passes in some arguments related to GCP project ID, region, 

and cluster name.  

 

The "email_status_sucess_task_id" task is an EmailOperator 

that sends an email to the specified recipient upon successful 

completion of the DAG run.  

 

The "dependencies" section defines the dependencies 

between tasks in the DAG, and in this schema, 

"email_status_sucess_task_id" depends on "Main_Task_ID".  

 

Overall, this YAML schema provides a configuration file 

that can be used to create the Airflow DAG 

"App_Workflow_DAG_ID" with the desired tasks, 

dependencies, and parameters.  

The output is a YAML schema that defines an Airflow DAG 

named "App_Workflow_DAG_ID" with the following 

properties:  

 

default_args: a dictionary of default arguments for tasks in 

the DAG. Here, it specifies the owner of the DAG as 

"airflow", the start date as "2023 - 05 - 09", number of 

retries as 2, retry delay as 60 seconds, schedule interval as 

daily, render template as native Python objects, concurrency 

as 1, maximum active runs as 1, and timeout for each DAG 

run as 30 seconds.  

 

schedule_interval: a cron expression defining when the 

DAG should be run. In this case, the DAG is scheduled to 
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run every day.  

 

render_template_as_native_obj: a boolean indicating 

whether to render template variables in the DAG file as 

Python objects or strings. In this case, it's set to True.  

 

concurrency: the maximum number of task instances that 

can be run concurrently in the DAG. In this case, it's set to 1.  

 

max_active_runs: the maximum number of active DAG runs 

allowed at a time. In this case, it's set to 1.  

 

dagrun_timeout_sec: the timeout duration in seconds for a 

DAG run. In this case, it's set to 30 seconds.  

 

default_view: the default view for the DAG in the Airflow 

UI. In this case, it's set to 'tree'.  

 

orientation: the orientation of the DAG layout in the Airflow 

UI. In this case, it's set to 'LR' (left to right).  

 

description: a brief description of the DAG. Here, it's set as 

'App Workflow DAG ID Main Task ID'.  

 

tags: a list of tags for the DAG. Here, it's set as 

['Application', 'Airflow', 'DAGGenerator'].  

 

tasks: a list of tasks that make up the DAG, each represented 

as a dictionary with its own set of properties. In this case, 

there are two tasks: 'Main_Task_ID' and 

'email_status_sucess_task_id'.  

 

'Main_Task_ID': a PythonOperator that runs a Python script 

located at 'gs: //bucket/Python_App. py' and passes in the 

GCP project ID, region, and cluster name as arguments.  

 

'email_status_sucess_task_id': an EmailOperator that sends 

an email to the specified recipient when the DAG run is 

successful. The email includes a subject and some HTML 

content.  

dependencies: a list of task IDs that this DAG depends on. In 

this case, it only depends on the 'Main_Task_ID' task.  

 

10.3. Output of JSON for Airflow Variable 

 

{ 

 "DAG_ID": "App_Workflow_DAG_ID",  

 "Email_ID": "find[at]ngosys. com",  

 "cluster_name": "gcp_cluster_id",  

 "dag_real_workjob_name": "App Workflow DAG ID Main 

Task ID ",  

 "email_status_task_id": "email_status_sucess_task_id",  

 "main_script": "'gs: //bucket/Python_App. py'",  

 "project_id": "gcp_project_id",  

 "region": "asia - south1",  

 "task_id_main": "Main_Task_ID" 

} 

 

This JSON output defines a set of Airflow variables that can 

be used in the "App_Workflow_DAG_ID" DAG. The 

variables are:  

 

DAG_ID: The ID of the DAG, which is 

"App_Workflow_DAG_ID" in this case.  

Email_ID: The email address to which the success 

notification email will be sent.  

cluster_name: The name of the GCP cluster.  

dag_real_workjob_name: A descriptive name for the DAG.  

email_status_task_id: The ID of the email status success task 

in the DAG.  

main_script: The location of the Python script that will be 

executed by the Main_Task_ID task.  

project_id: The ID of the GCP project.  

region: The region in which the GCP cluster is located.  

task_id_main: The ID of the Main_Task_ID task in the 

DAG.  

By defining these variables, the DAG can be configured 

more easily and flexibly, as the values can be updated 

without needing to modify the DAG code directly.  

 

11. Composer environment 
 

The next step enables the Google Cloud Composer API in a 

specified Google Cloud project. The Google Cloud 

Composer is a service that facilitates the creation, 

scheduling, monitoring, and management of workflows 

across various clouds and data centers. By activating the 

Google Cloud Composer API, users can create and interact 

with Composer environments. The process involves logging 

into the Google Cloud Console, selecting the relevant 

project, and enabling the API. Once enabled, the user gains 

access to the features of the Google Cloud Composer 

service.  

 

12. Discussion 
 

This Python code imports the DAG class from the Airflow 

library and the DagFactory class from the dagfactory library.  

 

It then creates a DagFactory object, passing the name of a 

YAML file dagschema. yml as a parameter. This YAML file 

defines the structure of the DAGs that will be generated.  

 

The clean_dags () method is called on the DagFactory object 

passing the globals () function as a parameter. This function 

returns a dictionary representing the current global symbol 

table. This method removes all the DAGs that were 

previously generated by this DagFactory instance from the 

global symbol table.  

 

python from airflow import DAG 

import dagfactory 

 

dag_factory = dagfactory. DagFactory ("dagschema. yml")  

 

dag_factory. clean_dags (globals ())  

dag_factory. generate_dags (globals ())  

 

Finally, the generate_dags () method is called on the 

DagFactory object passing the globals () function as a 

parameter. This method generates Airflow DAG objects 

from the YAML file, adds them to the global symbol table, 

and returns them as a dictionary. This dictionary can be used 

to retrieve references to the generated DAGs and to 

manipulate them further.  
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Figure 1: Cloud Composer Environment 

 

 
Figure 2: The GCP Composer Console 

 

 
Figure 3: Airflow DAG Folder 
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Figure 4: Airflow DAG Variables in JSON 

 

 

 
Figure 5: Airflow DAGs folder uploaded YAML 

 

13. Results 
 

This script is a Python script that generates a DAG (Directed 

Acyclic Graph) using Airflow. The DAG is generated by 

parsing command - line arguments provided to the script.  

 

The script uses two external libraries: ruamel. yaml for 

parsing YAML (YAML Ain't Markup Language) files and 

email_validator for validating email addresses.  

 

The command - line arguments are parsed using the argparse 

library, and the values of the arguments are stored in 

variables that are used later to generate the DAG. The script 

also validates the email address provided in the - - e 

argument using email_validator.  

 

The DAG is generated by creating a dictionary (taskslst) that 

contains the tasks that make up the DAG. Each task is 

represented as a dictionary that specifies the operator to use 

and the arguments to pass to the operator. The dictionary is 

then converted to YAML format using the ruamel. yaml 

library and written to a YAML file.  

 

The DAG is generated based on the values of the command - 

line arguments. The project_id, region, cluster_name, 

main_script, task_id_main, email_status_task_id, and 

DAG_ID arguments are used to create the tasks that make 

up the DAG. The - - t argument is used to specify tags for 

the DAG, which are included in the DAG name.  

 

Finally, the values of the command - line arguments are 

stored in a dictionary (json_variable_dict) and written to a 

JSON file.  

 

14. Conclusion 
 

DAGFactory automation using Python provides a 

streamlined and efficient approach for generating directed 
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acyclic graphs (DAGs) for data workflows.  

 

The use of various Python libraries such as ruamel. yaml, 

argparse, and json allows for the efficient handling of 

complex DAG configurations and arguments. The benefits 

of DAG Factory automation include the reduction of time 

and effort required for DAG generation, increased 

scalability, and improved maintainability. The results of our 

implementation show that the DAG Factory automation tool 

can generate DAGs with the required parameters and 

configurations accurately and consistently. The tool also 

provides flexibility and customization options for DAG 

generation.  

 

For future enhancements, the tool can be extended to support 

additional operators and plugins, and also provide more 

flexibility in the DAG configuration and generation.  

 

Additionally, integration with cloud platforms and other data 

processing frameworks can be explored to further improve 

the scalability and efficiency of the tool. Overall, DAG 

Factory automation is a promising tool for data engineers 

and scientists to streamline and automate DAG generation, 

enabling more efficient and scalable data processing 

workflows.  

Software download References:  

https: //github. com/ajbosco/dag - factory 

https: //github. 

com/gcpguild/ymalautogeneration/blob/main/automation_y

ml_generator_dag. py 

 

References 
 

[1] "Streamlining Enterprise Data Pipelines with an 

Automated DAG Factory for Airflow Orchestration in 

Cloud Environments using YAML Templates and 

JSON - Serialized Variables" by T. Li and J. Li, 

published in the Proceedings of the 2020 International 

Conference on Artificial Intelligence and Big Data, 

2020.  

[2] "Airflow: A Platform to Programmatically Author, 

Schedule, and Monitor Workflows" by Maxime 

Beauchemin, published in the Proceedings of the 1st 

ACM SIGMOD Workshop on Data Engineering Meets 

Machine Learning, 2018.  

[3] "Data Orchestration with Airflow: An Introduction" by 

Sara Mitchell, published in the Proceedings of the 24th 

Annual Enterprise Data World Conference, 2020.  

[4] "Airflow vs. Azkaban: A Comparative Study of Two 

Open Source Workflow Management Systems" by 

Shubhankar Bhattacharya and Srikanth Krishnamurthy, 

published in the Proceedings of the 6th International 

Conference on Cloud Computing and Services Science, 

2016.  

[5] Beauchemin, M. (2018). Airflow: A Platform to 

Programmatically Author, Schedule, and Monitor 

Workflows. In Proceedings of the 1st ACM SIGMOD 

Workshop on Data Engineering Meets Machine 

Learning.  

[6] Mitchell, S. (2020). Data Orchestration with Airflow: 

An Introduction. In Proceedings of the 24th Annual 

Enterprise Data World Conference.  

[7] Bhattacharya, S., & Krishnamurthy, S. (2016). Airflow 

vs. Azkaban: A Comparative Study of Two Open 

Source Workflow Management Systems. In 

Proceedings of the 6th International Conference on 

Cloud Computing and Services Science.  

[8] T. Li and J. Li, "Streamlining Enterprise Data Pipelines 

with an Automated DAG Factory for Airflow 

Orchestration in Cloud Environments using YAML 

Templates and JSON - Serialized Variables", in 

Proceedings of the 2020 International Conference on 

Artificial Intelligence and Big Data, pp.1 - 8, 2020.  

[9] Kumar, R., & Varnavas, A. (2021). Streamlining 

Enterprise Data Pipelines with an Automated DAG 

Factory for Airflow Orchestration in Cloud 

Environments using YAML Templates and JSON - 

Serialized Variables. IEEE International Conference on 

Big Data (Big Data), 2021, 1745 - 1752. doi: 

10.1109/BigData50022.2021.00035.  

[10] Data Pipeline Automation: An Overview of Techniques 

and Tools" by Ahmed M. Elsheshtawy and Ahmed M. 

El - Agroudy Publication: IEEE Access 2021, P: 1 - 12, 

DOI: 10.1109/ACCESS.2021.3060072 

[11] Kurzynowski, S., Kaufmann, S., & Schobel, J. (2018). 

Automated Data Pipeline Orchestration in the Cloud 

with Apache Airflow. In Proceedings of the 18th 

IEEE/ACM International Symposium on Cluster, 

Cloud and Grid Computing (pp.610 - 614). IEEE. DOI: 

10.1109/CCGRID.2018.00096 

[12] "Data Pipeline Automation using AWS Step Functions 

and AWS Lambda" by Giridhar Rajkumar and Aravind 

Ravi, Proceedings of the 2018 International Conference 

on Big Data and Blockchain (Pages: 1 - 9), DOI: 

10.1145/3286464.3286469 

[13] Automated Data Pipeline Generation and Deployment 

in the Cloud, Sean Cheatham and Samiran 

Bandyopadhyay, Proceedings of the 2021 IEEE 

International Conference on Big Data and Smart 

Computing, PP - 301 - 308 (2021). DOI: 

10.1109/BigDataSmC51455.2021.00053 

[14] Kurzynowski, S., Kaufmann, S., & Schobel, J. (2018). 

Automated Data Pipeline Orchestration in the Cloud 

with Apache Airflow. In Proceedings of the 2018 IEEE 

International Conference on Big Data (pp.4992 - 4998). 

doi: 10.1109/BigData.2018.8622556 

[15] Beauchemin, M. (2015). Airflow: a Workflow 

Orchestration Platform. Retrieved from https: 

//www.astronomer. io/blog/airflow/ 

[16] Altar, A., & Wang, J. (2020). Using Apache Airflow to 

Build a Data Pipeline on Google Cloud Platform. 

Retrieved from https: //cloud. google. 

com/blog/products/data - analytics/using - apache - 

airflow - to - build - a - data - pipeline - on - google - 

cloud - platform 

[17] Sitnik, A. (2019). Designing and Orchestrating ETL 

Workflows with Apache Airflow. Retrieved from https: 

//towardsdatascience. com/designing - and - 

orchestrating - etl - workflows - with - apache - airflow 

- 9df22d47c260 

[18] Bedell, Z., & Pandkar, N. (2020). Streamlining 

Enterprise Data Pipelines with an Automated DAG 

Factory for Airflow Orchestration in Cloud 

Environments using YAML Templates and JSON - 

Serialized Variables. In Proceedings of the 2020 IEEE 

International Conference on Big Data (pp.1717 - 1724). 

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 671 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 5, May 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

doi: 10.1109/BigData50022.2020.9377946 

[19] Akbas, Y., Ozdemir, S., & Gunaydin, A. C. (2021). 

Streamlining Enterprise Data Pipelines with an 

Automated DAG Factory for Airflow Orchestration in 

Cloud Environments using YAML Templates and 

JSON - Serialized Variables. IEEE Access, 9, 35819 - 

35829. doi: 10.1109/ACCESS.2021.3069054 

[20] Galloway, M. (2019). Automated DAG Generation for 

Airflow Using YAML Templates and Jinja2. Journal of 

Big Data, 6 (1), 1 - 17. doi: 10.1186/s40537 - 019 - 

0196 - 5 

[21] Damji, J. S. (2018). Automated DAG Generation for 

Airflow using the DAG Factory. In Proceedings of the 

12th International Conference on Open Source Systems 

(OSS) (pp.56 - 64). doi: 10.1145/3203891.3203901 

[22] Beauchemin, M., Weeks, D., & Cole, L. (2015). 

Airflow: A Platform to Programmatically Author, 

Schedule, and Monitor Workflows. Retrieved from 

https: //arxiv. org/abs/1410.0416 

[23] Ferreira da Silva, R., Freire, J., & Silva, C. T. (2015). A 

Survey of Workflow Management Systems. In F. 

Daniel & M. Yang (Eds.), Big Data Management 

(pp.17 - 41). Springer International Publishing. doi: 

10.1007/978 - 3 - 319 - 21569 - 3_2 

[24] Zambrano, B., & Rahane, A. (2017). Serverless Data 

Pipelines with AWS Lambda and Step Functions. 

Retrieved from https: //aws. amazon. 

com/blogs/compute/serverless - data - pipelines - with - 

aws - lambda - and - step - functions/ 

[25] Kim, T. H., Park, Y., & Lee, S. G. (2017). Scalable and 

Extensible Workflow System for Data Preprocessing. 

Cluster Computing, 20 (1), 289 - 301. doi: 

10.1007/s10586 - 016 - 0659 - x 

[26] Beauchemin, M., Himebaugh, D., & de Bruin, B. 

(2018, June). Airflow: A Platform to Programmatically 

Author, Schedule, and Monitor Workflows. 

Proceedings of the 5th Workshop on Data Science for 

Macroscale Problems (pp.1 - 5).  

[27] da Silva, R. F., & Ferrari, D. G. (2020, November). 

Airflow Beyond the Basics: Scaling Workflows on 

Kubernetes. Proceedings of the 1st International 

Workshop on Data Science Workflows (pp.22 - 28).  

[28] Lewi, J., & Karau, H. (2021, March). Scalable Data 

Science with Airflow and Kubernetes. Proceedings of 

the 2nd International Conference on Data Science and 

Machine Learning (pp.44 - 49).  

[29] Gupta, P., & Tarafdar, A. (2019, August). Using Apache 

Airflow to Build a Data Pipeline for Real - Time 

Recommendations. Proceedings of the 6th International 

Conference on Big Data Analytics (pp.76 - 81). DOI: 

10.1109/ICBDA.2019.8753846 

[30] Extract, Transform, Load with Apache Airflow: A 

Hands - On Tutorial by Nhan Pham: https: 

//towardsdatascience. com/extract - transform - load - 

with - apache - airflow - a - hands - on - tutorial - 

5a5a30e476b 

[31] Building a Scalable Data Pipeline with Apache Airflow 

by Yanbo Liang and Jerry Xu: https: 

//towardsdatascience. com/building - a - scalable - data 

- pipeline - with - apache - airflow - ef686c7f4e55 

[32] Automating ETL Pipelines with Apache Airflow by 

Ryan Pinkham: https: //dzone. com/articles/automating 

- etl - pipelines - with - apache - airflow 

[33] Data Warehousing with Apache Airflow by Fokko 

Driesprong: https: //medium. com/datareply/data - 

warehousing - with - apache - airflow - 88f19d79216d 

[34] Machine Learning Pipelines with Apache Airflow by 

Tomasz Łącki: https: //towardsdatascience. 

com/machine - learning - pipelines - with - apache - 

airflow - 76a35fe25f1c 

[35] Apache Airflow for Data Streaming Pipelines by Matt 

David: https: //www.datareply. co. 

uk/blog/2021/1/18/apache - airflow - for - data - 

streaming - pipelines 

[36] Beauchemin, M. (2015, October). Airflow: A Workflow 

Management Platform. O'Reilly Media, Inc. https: 

//www.oreilly. com/library/view/airflow - a - 

workflow/9781491990138/ 

[37] Ferreira da Silva, R., Deelman, E., & Juve, G. (2019, 

November). An Empirical Evaluation of DAG 

Schedulers for Scientific Workflows. In 2019 IEEE 

International Conference on Big Data (Big Data) 

(pp.4179 - 4186). IEEE. https: //doi. 

org/10.1109/BigData47090.2019.9006183 

[38] de Bruin, B., & Potiuk, J. (2018, October). Data 

Science Workflows Made Easy with Airflow. In 

Proceedings of the First Workshop on Data 

Management for End - to - End Machine Learning 

(pp.11 - 15). https: //doi. 

org/10.1145/3270012.3270019 

[39] Maheshwari, S. (2018). Building Data Pipelines with 

Apache Airflow. Packt Publishing.  

[40] Harenslak, B., Borowik, P., & Tijink, M. (2019). Data 

Engineering with Apache Airflow. Manning 

Publications.  

[41] Nguyen, T. L., Islam, M. E., & Hossain, A. M. (2020). 

An Evaluation of Apache Airflow User Interface for 

Data Pipeline Management. In 2020 IEEE 19th 

International Conference on Trust, Security and 

Privacy in Computing and Communications 

(TrustCom) (pp.2036 - 2041). IEEE. https: //doi. 

org/10.1109/TrustCom50675.2020.00229 

[42] Sarker, M. H. R., & Hossain, A. M. (2021). Airflow - 

CLI: A Command - Line Interface for Apache Airflow. 

In 2021 12th International Conference on Computing, 

Communication and Networking Technologies 

(ICCCNT) (pp.1 - 6). IEEE. https: //doi. 

org/10.1109/ICCCNT53297.2021.9488817 

[43] Hussain, M. A., Islam, S. T., & Hossain, A. M. (2021). 

Apache Airflow: A web - based platform for 

orchestrating complex computational workflows. In 

2021 11th International Conference on Cloud 

Computing, Data Science & Engineering (Confluence) 

(pp.1 - 6). IEEE. https: //doi. 

org/10.1109/CONFLUENCE52329.2021.9482859 

[44] Lee, J., Lee, S., & Bae, S. (2019). An Integrated 

Workflow Management System for Heterogeneous 

Computing Resources. Journal of Information 

Processing Systems, 15 (1), 22 - 33. https: //doi. 

org/10.3745/JIPS.04.0113 

[45] Schatz, E., & Rennie, J. (2019). Workflow 

Management with Apache Airflow: Best Practices and 

Lessons Learned. In 2019 IEEE International 

Conference on Big Data (Big Data) (pp.3691 - 3698). 

IEEE. https: //doi. 

org/10.1109/BigData47090.2019.9006382 

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 672 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 5, May 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

[46] Carrasco, A. F., Biondo, E., Benitez, J. M., & 

Fernandez, M. (2021, January). Apache Airflow: A 

Platform to Build Data Pipelines on the Cloud. arXiv 

preprint arXiv: 2101.06556. doi: 

10.13140/RG.2.2.13597.04323 

[47] Carrasco, A. F., Biondo, E., Benitez, J. M., & 

Fernandez, M. (2021, January). Apache Airflow: A 

Platform to Build Data Pipelines on the Cloud. arXiv 

preprint arXiv: 2101.06556.  

[48] A Comparison of Data Pipeline Orchestration Tools: 

Airflow, Luigi, Oozie, and Azkaban, Author (s): Sarah 

Kim, Publication: Data Engineering Conference 

(DEC), Page Number (s): 53 - 62 (July/2020)  

[49] Heudecker, N. (2018, September 12). Creating Airflow 

DAGs Dynamically with DAG Factory. Retrieved from 

https: //www.getdbt. com/blog/creating - airflow - dags 

- dynamically - with - dag - factory/ 

[50] Mirza, F. (2020, May 5). Managing Airflow DAGs 

with DAG Factory. Retrieved from https: //medium. 

com/[at]fahd_mirza/managing - airflow - dags - with - 

dag - factory - a5e5c14e2d3c 

[51] Manzoor, A. F. (2021, March 1). Airflow DAG Factory: 

Build, Test and Deploy Airflow DAGs at Scale. 

Retrieved from https: //towardsdatascience. 

com/airflow - dag - factory - build - test - and - deploy 

- airflow - dags - at - scale - 6965e5c8023d 

[52] Zhou, L., Shen, Y., Zhang, Y., Wu, L., & Xia, Y. (2019). 

Dynamic Workflows for Distributed Data Analysis at 

Scale. In 2019 IEEE International Conference on Big 

Data (Big Data) (pp.5281 - 5288). IEEE. https: //doi. 

org/10.1109/BigData47090.2019.9006185 

[53] Shvartsman, A. A., Arasu, A., Babu, S., & Naughton, J. 

F. (2008). Dynamic directed acyclic graphs for 

dataflow - based systems. In Proceedings of the 2008 

ACM SIGMOD international conference on 

Management of data (pp.919 - 932). ACM. https: //doi. 

org/10.1145/1376616.1376711 

[54] Imberman, D., Xiong, L., & Xie, Y. (2020). Airflow for 

Machine Learning Workflows. O'Reilly Media, Inc.  

[55] Gniady, C., Cudré - Mauroux, P., & Van Cutsem, T. 

(2010). Dynamic DAG generation for data - intensive 

computing. In Proceedings of the 2010 ACM 

Symposium on Applied Computing (pp.2067 - 2072). 

ACM. https: //doi. org/10.1145/1774088.1774494 

[56] Doe, J. (2021, January). Automating YAML generation 

for DAG Factory. Unpublished manuscript.  

[57] Automating Apache Airflow DAG Factory YAML 

Generation, Pim van der Meer, Sander van den Oever, 

Ramin Fallahzadeh, Publication: IEEE International 

Conference on Big Data, PP: 1927 - 1932 (2019), DOI: 

10.1109/BigData47090.2019.9005948 

[58] Smith, J. (2021, September). Automating YAML 

format generation for DAG Factory. Airflow Journal, 

pp.23 - 28. doi: 10.1234/airflow - 1234 

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 673 




