
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Streamlining Enterprise Data Pipelines with an

Automated DAG Factory for Airflow Orchestration

in Cloud Environments using YAML Templates and

JSON - Serialized Variables

Ramamurthy Valavandan
1
, Balakrishnan Gothandapani

2
, Savitha Ramamurthy

3

1, 2, 3Nature Labs - Research Centre, Namakkal, Tamil Nadu, India

1Corresponding author Email: find[at]ngosys.com

Abstract: Airflow is an open - source platform for creating, scheduling, and monitoring data pipelines. Its Directed Acyclic Graph

(DAG) factory provides a mechanism for creating and managing DAGs in a programmatic way. However, the current implementation

of the DAG factory in Airflow requires writing Python code, which can be time - consuming and error - prone. In this research paper,

we propose a YAML - based DAG factory automation framework for Airflow, which provides a simple and intuitive way to define DAGs

in YAML format. We describe the design and implementation of the framework and provide examples of how it can be used to automate

the creation and management of DAGs in a cloud environment. We also evaluate the performance and scalability of the framework

using real - world datasets and compare it to the existing Python - based DAG factory in Airflow. Our results demonstrate that the

YAML - based DAG factory automation framework provides a more efficient and flexible way to create and manage DAGs in Airflow,

especially in large - scale data processing scenarios.

Keywords: Airflow, Directed Acyclic Graph, DAG factory, YAML, automation, Python, CLI tool, schema file, GCP, Composer, JSON,

dictionary, task status, DAG tasks, template generation, variable

1. Introduction

This research paper investigates the development and

implementation of a Python script that automates the

creation of Airflow DAG files using a YAML - based DAG

factory and JSON - serialized variables. This tool

streamlines the process of generating DAG files, enhancing

the efficiency and effectiveness of data pipeline

orchestration in cloud environments. [1]

The innovative DAG factory automation framework

presented in this paper has a wide range of potential use

cases for enterprises that rely on Airflow [2] for data

pipeline orchestration. One use case is the quick generation

of DAG files for complex data pipelines involving multiple

data sources and destinations, reducing the time and effort

required to create these pipelines. [2]

Additionally, this framework can help standardize the

process of creating and managing DAG files across multiple

teams and projects, reducing the risk of errors and

inconsistencies. This standardization also facilitates the

sharing of DAG files between teams and projects, enabling

better collaboration and faster development times. [3]

Another use case for this DAG factory automation

framework is the streamlined deployment of new data

pipelines. With its ability to quickly generate DAG files

using YAML templates and JSON - serialized variables, [4]

organizations can adapt to changing business requirements

and data sources more quickly, ultimately driving better

business outcomes. [5]

The use of YAML templates and JSON - serialized variables

also makes it easy to make changes to DAG files and

propagate those changes across multiple pipelines. This

feature can be particularly beneficial in large, complex data

pipeline environments where changes are common and time

is of the essence. [6]

Finally, the DAG factory automation framework can be used

to develop custom data connectors for Airflow, allowing

organizations to easily integrate with new data sources and

destinations as they become available. [7] This capability

can help enterprises stay ahead of the curve in terms of data

processing and analysis, ultimately leading to better business

outcomes. [8]

In summary, the key benefits of this automated DAG factory

include increased efficiency, reduced errors, and faster

deployment times for complex data pipelines in cloud

environments. These benefits have numerous potential

applications and use cases for enterprises seeking to

streamline their data pipeline orchestration processes and

achieve their data processing and analysis objectives more

effectively and efficiently.

2. Approach in data pipeline

Streamlining Enterprise Data Pipelines with an Automated

DAG Factory for Airflow Orchestration in Cloud

Environments using YAML Templates and JSON -

Serialized Variables". This paper explores an innovative

approach to enhancing data pipeline orchestration with

Airflow by automating the creation of DAG files. Using a

Python script that leverages YAML templates and JSON -

serialized variables, this automated DAG factory offers a

streamlined and efficient process for generating DAG files

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 656

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

with minimal human intervention. [9]

This approach has a wide range of potential applications in

enterprise data pipeline management. By reducing the risk of

errors and inconsistencies, standardizing DAG file creation

and management, and accelerating the deployment of new

data pipelines, organizations can achieve their data

processing and analysis objectives more effectively and

efficiently. Additionally, the use of YAML templates and

JSON - serialized variables makes it easy to make changes

to DAG files and propagate those changes across multiple

pipelines.

In summary, this innovative approach to Airflow

orchestration offers significant benefits for organizations

seeking to streamline their data pipeline management

processes in cloud environments

3. Data Pipeline Automation Approach

This research paper investigates a novel approach to

streamlining Airflow orchestration in cloud environments for

enterprise data pipelines. [10]

By automating the generation of YAML template DAG

factories and JSON - serialized variables for Airflow, this

approach enhances the efficiency and effectiveness of data

pipeline management. We delve into the key features and

benefits of this automated DAG factory and explore its

potential use cases for enterprises. Additionally, we provide

examples of how this approach can be used to accelerate the

development and deployment of complex data pipelines,

ultimately helping organizations to achieve their data

processing and analysis objectives more efficiently and

effectively.

3.1 Automation of DAG factory

Automating Airflow DAG Factory Generation with YAML

Templates and JSON - Serialization for Streamlined Data

Pipeline Orchestration in Cloud Environments.

Enhancing Enterprise Data Pipelines with an Automated

Airflow DAG Factory using YAML Templates and JSON -

Serialization in Cloud Environments [11]

Simplifying Airflow Orchestration in Cloud Environments

with an Automated DAG Factory using YAML Templates

and JSON - Serialization for Enterprise Data Pipelines

Boosting Data Pipeline Efficiency with an Automated

Airflow DAG Factory using YAML Templates and JSON -

Serialization in Cloud Environments for Enterprise Data

Orchestration

A Comprehensive Solution for Streamlined Airflow

Orchestration in Cloud Environments with Automated DAG

Factory Generation using YAML Templates and JSON -

Serialization for Enterprise Data Pipelines.

3.2 Airflow DAG Generation in Cloud Environments.

An approach on streamlining the Airflow orchestration in

cloud environments in enterprise data pipelines by

automating the generation of YAML template DAG factory

and JSON - serialized variables for Airflow:

Assess the current state of Airflow DAG file creation and

management within the organization.

Evaluate the benefits and potential drawbacks of automating

DAG file creation using YAML templates and JSON -

serialized variables. [12]

Determine the specific use cases and requirements for the

automated DAG factory, such as supporting multiple data

sources and destinations, standardizing DAG file creation

across teams and projects, and streamlining deployment.

Develop a Python script that leverages YAML templates and

JSON - serialized variables to automate the creation of

Airflow DAG files.

Test and refine the automated DAG factory script to ensure

that it is efficient, accurate, and reliable.

Train relevant stakeholders and teams on how to use the

automated DAG factory and integrate it into their data

pipeline orchestration workflows.

Monitor and analyze the performance and impact of the

automated DAG factory, gathering feedback and making

improvements as needed.

Continuously iterate and improve the automated DAG

factory to meet evolving business needs and data pipeline

requirements.

4. An overview of Airflow and its role in data

pipeline orchestration

4.1 Introduction to Data Pipeline Orchestration

Data pipeline orchestration is the process of integrating

multiple data sources and transforming them into a unified

format for analysis and reporting. It involves designing,

deploying, and managing a series of interconnected data

processing tasks that run in a specific sequence to achieve a

desired outcome. Data pipeline orchestration is a critical

component of data management, especially for organizations

dealing with large volumes of data. [13]

One popular tool for data pipeline orchestration is Apache

Airflow. Airflow is an open - source platform that enables

users to define, schedule, and monitor workflows. Airflow

uses directed acyclic graphs (DAGs) to define and manage

workflows. DAGs are a collection of tasks that are executed

in a specific order. Airflow provides a web - based user

interface that enables users to monitor the status of their

workflows and diagnose issues. [14]

Airflow has become an essential tool for organizations

looking to streamline their data processing workflows. Its

flexibility and extensibility have made it a popular choice

for data engineers, data analysts, and data scientists. With

Airflow, organizations can create complex data pipelines

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 657

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

that integrate multiple data sources and destinations,

transforming data into actionable insights.

In the following sections, we will explore the key features

and benefits of Airflow in data pipeline orchestration, as

well as its limitations and challenges. We will also discuss

how the use of YAML templates and JSON - serialized

variables can enhance the efficiency and effectiveness of

Airflow DAG generation and data pipeline orchestration in

cloud environments.

4.2 An Introduction to Apache Airflow

In this subsection, the focus can be on introducing Apache

Airflow and its features. It can cover the history of Airflow,

its architecture, and how it works.

Apache Airflow is an open - source platform used for

programmatically authoring, scheduling, and monitoring

workflows or data pipeline. It allows users to create directed

acyclic graphs (DAGs) of tasks, which can be orchestrated

and executed in parallel. With Airflow, users can define,

schedule, and monitor complex workflows with ease,

making it a popular choice for data pipeline orchestration.

[15]

It was created by Maxime Beauchemin in 2014 as an

alternative to the existing workflow management tools that

were available at the time.

Airflow allows users to define their workflows as code using

Python, making it easy to version control and maintain them.

It also provides a rich set of operators, such as BashOperator

and PythonOperator, which can be used to build complex

data pipelines. [16]

One of the key features of Airflow is its use of Directed

Acyclic Graphs (DAGs) to represent workflows. DAGs

allow users to define the dependencies between tasks in their

workflows and specify the order in which they should be

executed. This makes it easy to visualize the entire workflow

and understand the dependencies between tasks. [17]

Another important feature of Airflow is its ability to

integrate with a variety of technologies and services. Airflow

comes with a wide range of built - in connectors for popular

services such as Amazon S3, Google Cloud Storage, and

Hadoop Distributed File System (HDFS), as well as a

Python API that makes it easy to create custom connectors.

[18]

Overall, Airflow provides a powerful and flexible platform

for data pipeline orchestration that can be used in a wide

range of use cases, from simple ETL pipelines to complex

machine learning workflows.

4.3 DAG Factory for Airflow

DAG Factory is a Python script that automates the creation

of Airflow DAG files. By utilizing YAML templates and

JSON - serialized variables, this tool streamlines the process

of generating DAG files, enhancing the efficiency and

effectiveness of data pipeline orchestration in cloud

environments. [19] DAG Factory can quickly generate DAG

files for complex data pipelines involving multiple data

sources and destinations, standardizing the process of

creating and managing DAG files across multiple teams and

projects, reducing the risk of errors and inconsistencies. [20]

4.4 Requirements and Challenges in YAML Generation

To generate YAML templates for Airflow DAGs, there are

certain requirements and challenges that need to be

considered. The YAML templates must be designed to allow

for flexibility and customization while maintaining

consistency across the DAGs. Variables need to be defined

and organized in a way that allows for easy management and

reuse across multiple DAGs. Furthermore, proper validation

and error handling must be incorporated into the generation

process to ensure that the YAML templates are correct and

meet the required specifications. [21 - 25]

Overall, the use of DAG Factory with YAML templates and

JSON - serialized variables provides a powerful and flexible

approach to Airflow DAG automation in the cloud,

streamlining the data pipeline orchestration process and

allowing organizations to achieve their data processing and

analysis objectives more effectively and efficiently.

5. Airflow Components and use cases

This subsection can delve into the various components that

make up an Airflow instance, such as the scheduler, web

server, and workers. It can also cover how these components

work together to orchestrate data pipelines.

Airflow is a comprehensive platform that includes various

components, each playing an important role in data pipeline

orchestration. Some of the key components of Airflow

include:

DAGs (Directed Acyclic Graphs): DAGs are the

fundamental building blocks of Airflow. They represent a

series of tasks that need to be executed in a specific order.

DAGs can be defined in Python files, and Airflow uses these

files to create and manage the pipeline. [26]

Operators: Operators are the individual units of work within

a DAG. Each operator performs a specific task, such as

extracting data from a source or transforming data in a

particular way. [27]

Sensors: Sensors are similar to operators, but instead of

performing an action, they wait for a specific event or

condition to occur before proceeding with the next task.

Hooks: Hooks are a way for Airflow to interact with external

systems, such as databases or APIs. Each hook provides a

connection to a specific system and a set of methods for

interacting with that system. [28]

Executors: Executors determine how tasks are executed

within Airflow. There are several types of executors

available, including Local Executor, Sequential Executor,

and Celery Executor. [29]

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 658

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5.1 Some of the common use cases of Airflow

ETL (Extract, Transform, Load) pipelines: Airflow is often

used to orchestrate ETL pipelines, which involve extracting

data from various sources, transforming it into a desired

format, and loading it into a destination system. [30 - 31]

Data warehousing: Airflow can be used to automate the

process of building and updating data warehouses, which

involve aggregating and storing data from various sources

for analysis and reporting. [32]

Machine learning workflows: Airflow can be used to

orchestrate complex machine learning workflows, which

involve training models on large datasets and deploying

them in production environments. [33]

Data streaming: Airflow can also be used to manage real -

time data streaming pipelines, which involve processing and

analyzing data as it flows in from various sources. [33 - 35]

Overall, Airflow provides a flexible and powerful platform

for data pipeline orchestration, making it an ideal choice for

enterprises that need to manage complex data workflows in

the cloud. However, generating YAML templates for Airflow

can be challenging, which is why automated DAG factories

can be a valuable tool for streamlining the process.

5.2 DAGs and Operators

DAGs and Operators are the core concepts in Apache

Airflow that enable the creation and management of data

pipeline workflows. A Directed Acyclic Graph (DAG) is a

collection of tasks that are linked together in a specific order,

forming a workflow. DAGs are used to define the

dependencies and relationships between tasks in a workflow,

making it possible to orchestrate complex data processing

and analysis tasks.

Operators in Airflow are the building blocks for tasks within

a DAG. Operators define what actions need to be taken at

each step of the workflow. Each operator represents a

specific task or action, such as running a SQL query, moving

data between systems, or sending an email notification.

Airflow provides a rich set of built - in operators for

common tasks, such as BashOperator, PythonOperator,

DataProcOperator, and EmailOperator.

To illustrate the use of DAGs and Operators in Airflow,

consider an example where we need to run a data processing

workflow on a daily basis. The DAG for this workflow, with

ID "Workflow_Orchestration, " could be defined as follows:

from airflow import DAG

from airflow. operators. bash_operator import BashOperator

from airflow. operators. python_operator import PythonOperator

from airflow. operators. email_operator import EmailOperator

from datetime import datetime, timedelta

default_args = {

 'owner': 'data - engineering',

 'depends_on_past': False,

 'start_date': datetime (2022, 1, 1),

 'email_on_failure': False,

 'email_on_retry': False,

 'retries': 1,

 'retry_delay': timedelta (minutes=5),

}

dag = DAG (

 dag_id='Workflow_Orchestration',

 default_args=default_args,

 schedule_interval=timedelta (days=1),

)

t1 = BashOperator (

 task_id='download_data',

 bash_command='python Python_Application. py

download_data',

 dag=dag,

)

t2 = BashOperator (

 task_id='transform_data',

 bash_command='python Python_Application. py

transform_data',

 dag=dag,

)

t3 = PythonOperator (

 task_id='validate_data',

 python_callable=validate_data,

 dag=dag,

)

t4 = DataProcOperator (

 task_id='run_analysis',

 dataproc_cluster='my - dataproc - cluster',

 main_jar='analysis. jar',

 arguments= ['input_data', 'output_data'],

 dag=dag,

)

t5 = EmailOperator (

 task_id='send_email',

 to='john. doe[at]example. com',

 subject='Workflow_Orchestration Succeeded',

 html_content='The data processing workflow has completed

successfully. ',

 dag=dag,

)

t1 >> t2 >> t3 >> t4 >> t5

In this example, the workflow consists of five tasks, each

represented by an operator. The BashOperator is used to

download and transform data, while the PythonOperator is

used to validate the data. The DataProcOperator is used to

run an analysis job on a Dataproc cluster, and the

EmailOperator is used to send a notification email when the

workflow completes.

The DAG is scheduled to run once per day, and each task is

defined with a unique task ID and a command or callable

that specifies what action needs to be taken. The

dependencies between tasks are defined using the >>

operator, which indicates the order in which tasks should be

executed.

Overall, DAGs and Operators provide a powerful way to

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 659

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

orchestrate complex data processing workflows in Airflow,

making it easier to manage and automate data pipeline tasks.

5.3 Airflow UI and CLI

In this subsection, the focus can be on how to interact with

Airflow through its user interface (UI) and command - line

interface (CLI). It can cover the various features of the

Airflow UI, such as monitoring and managing DAGs, as

well as the different commands available through the CLI.

[36]

The Airflow user interface (UI) provides a web - based

interface to monitor, manage and visualize DAGs, tasks, and

logs. It allows users to perform various tasks such as

creating and editing DAGs, setting task dependencies, and

monitoring task statuses. The Airflow UI can be accessed

through a web browser and provides a graphical

representation of DAGs with the ability to view task

instances, logs, and statistics. [37]

Airflow also provides a command - line interface (CLI) that

enables users to interact with Airflow from the terminal. The

CLI offers a range of commands to perform tasks such as

starting and stopping the Airflow scheduler, listing available

DAGs, and triggering specific tasks. The CLI also provides

the ability to create, delete, and update DAGs and tasks. [38]

Using the Airflow UI and CLI, users can perform tasks such

as:

Monitoring and managing DAGs: The Airflow UI provides a

dashboard that displays the status of all DAGs, tasks, and

runs. Users can view the DAGs' graphical representation,

track task dependencies, and monitor the execution status of

each task. Additionally, users can start, stop, pause, and

unpause DAGs.

Setting up alerts and notifications: Airflow provides an

EmailOperator that sends email notifications when certain

conditions are met, such as a task failing or a DAG taking

longer than expected to complete. These notifications can

help users identify issues and take corrective action

promptly.

Debugging and troubleshooting: Airflow stores task logs and

metadata in a database, which can be accessed through the

UI. This feature enables users to view the task's output,

errors, and status, aiding in debugging and troubleshooting.

[39]

Automating data pipelines: With the Airflow CLI, users can

automate data pipelines by scheduling DAGs and tasks to

run at specified intervals. Additionally, users can create

DAGs programmatically, which enables them to integrate

Airflow with other tools and platforms. [40]

Overall, the Airflow UI and CLI provide users with powerful

tools to monitor, manage, and automate data pipelines.

Airflow Architecture for Cloud Environments

This subsection can cover how Airflow architecture can be

adapted for cloud environments, such as AWS, GCP, or

Azure. It can delve into how Airflow can be deployed on

these cloud platforms and how it can be integrated with

other cloud services. [41]

Cloud Deployment Options:

Airflow can be deployed on various cloud platforms,

including Amazon Web Services (AWS), Google Cloud

Platform (GCP), and Microsoft Azure. Each cloud platform

offers different deployment options for Airflow, such as

using managed services like AWS Elastic Kubernetes

Service (EKS), GCP Kubernetes Engine, or Azure

Kubernetes Service (AKS), or deploying Airflow on virtual

machines using infrastructure as code tools like Terraform or

CloudFormation. The choice of deployment option depends

on factors like scalability, ease of maintenance, and cost.

[42]

Integration with Cloud Services:

Airflow can be integrated with various cloud services to

build data pipelines, including data storage services like

AWS S3, GCP Cloud Storage, or Azure Blob Storage, data

processing services like AWS Lambda, GCP Cloud

Functions, or Azure Functions, and data warehousing

services like AWS Redshift, GCP BigQuery, or Azure

Synapse Analytics. Airflow provides operators for each of

these cloud services, making it easier to build pipelines that

utilize these services. [43]

Scaling Airflow in the Cloud:

One of the advantages of using Airflow in the cloud is the

ability to scale horizontally by adding or removing worker

nodes based on demand. Cloud platforms like AWS and

GCP provide auto - scaling capabilities that can be used to

automatically add or remove worker nodes based on the

number of pending tasks in the Airflow queue. Additionally,

Airflow can be run on Kubernetes clusters, which provide

built - in scaling capabilities. [44]

Best Practices for Cloud - based Airflow:

When deploying Airflow in the cloud, there are some best

practices that can help ensure optimal performance and

minimize downtime. These include:

Designing Airflow DAGs to be idempotent and resilient to

failure

Monitoring and alerting for Airflow components like the

scheduler, web server, and worker nodes

Implementing a disaster recovery plan for Airflow

components and data

Utilizing cloud - native services like AWS RDS or GCP

Cloud SQL for the Airflow metadata database

Using security best practices like encrypting sensitive data

and restricting access to Airflow components. [45]

5.4 Best Practices for Airflow DAG Orchestration

In this subsection, the focus can be on some best practices

for DAG orchestration in Airflow, such as using the right

operators for specific tasks, creating modular DAGs, and

managing dependencies between tasks. [46]

Airflow DAGs (Directed Acyclic Graphs) are a powerful

tool for data pipeline orchestration, and their proper use can

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 660

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

greatly enhance data processing efficiency. However, DAG

orchestration can be complex, and it is important to follow

best practices to ensure effective workflow management.

Here are some best practices to consider when working with

Airflow DAGs:

Use the Right Operators: Airflow comes with a wide range

of operators, each of which is designed for a specific

purpose. It is essential to choose the right operator for the

task at hand to ensure that your DAG runs smoothly. For

example, the BashOperator can be used to run a Bash

command, while the PythonOperator can be used to run a

Python script.

Create Modular DAGs: Modular DAGs are easier to manage

and maintain than monolithic ones. Consider breaking your

DAG into smaller, more manageable components, each

responsible for a specific task. This approach allows for

easier testing, debugging, and modification of individual

components, without affecting the entire DAG. [47]

Use Sensible Default Arguments: The default arguments of a

DAG define its behavior, including its start date, end date,

and schedule interval. It is important to define these

arguments in a way that makes sense for your workflow. A

sensible schedule interval ensures that your DAG runs at the

right frequency, while a suitable start and end date ensures

that your DAG runs within a specific time frame.

Manage Dependencies: Airflow tasks can have dependencies

on other tasks, and it is important to manage these

dependencies carefully to ensure that your DAG runs

efficiently. Consider using the trigger_rule parameter to

define how tasks should behave if their dependencies fail or

succeed.

Monitor and Debug Your DAGs: Proper monitoring and

debugging can help you identify and resolve issues with

your DAGs quickly. Use Airflow's built - in monitoring tools

to keep track of task progress, and use logging statements to

output information about each task's execution.

By following these best practices, you can ensure that your

Airflow DAGs are well - structured, efficient, and easy to

manage.

5.5 Airflow and Other Orchestration Tools

Here, the focus can be on how Airflow compares to other

data pipeline orchestration tools in the market, such as Luigi,

Oozie, and Azkaban. It can cover the strengths and

weaknesses of each tool and how they differ in terms of

features, ease of use, and scalability.

Airflow is not the only data pipeline orchestration tool

available in the market. Other tools such as Luigi, Oozie,

and Azkaban are also commonly used by organizations.

Each tool has its own strengths and weaknesses, and it's

important to evaluate them carefully to choose the best tool

for your specific use case.

Luigi, developed by Spotify, is another open - source

workflow management tool. Like Airflow, it is written in

Python and provides a simple interface to define workflows.

Luigi is often used for batch processing and data pipeline

automation. [48]

Oozie, developed by Apache, is another workflow scheduler

for Hadoop that enables users to create directed acyclic

graphs of tasks. It supports multiple Hadoop jobs, such as

Java MapReduce, Pig, Hive, and Sqoop.

Azkaban, developed by LinkedIn, is another open - source

workflow management tool that is often used for Hadoop

job orchestration. It allows users to define and schedule

workflows using a web interface, and it can be integrated

with other Hadoop tools such as Pig, Hive, and Hadoop

MapReduce.

When comparing these tools with Airflow, some common

factors to consider include ease of use, scalability,

extensibility, and community support. While all of these

tools have their strengths, Airflow is often praised for its

flexibility, extensibility, and active community support.

Additionally, Airflow's use of DAGs provides a simple,

intuitive way to define and manage complex workflows.

5.6 Use Cases of Airflow in Industry

In this subsection, the focus can be on some real - world use

cases of Airflow in different industries, such as finance,

healthcare, and e - commerce. It can cover how Airflow has

helped these industries to streamline their data pipeline

workflows and achieve better business outcomes.

Here are some examples of how Airflow is used in different

industries:

Finance: In the finance industry, Airflow is used for tasks

such as data ingestion, ETL processing, and reporting.

Airflow can help financial institutions to consolidate data

from multiple sources, perform calculations on large

datasets, and generate timely reports for compliance and

regulatory purposes.

Healthcare: In the healthcare industry, Airflow is used for

tasks such as data integration, patient monitoring, and

clinical decision - making. Airflow can help healthcare

providers to manage patient data from multiple sources,

track patient outcomes, and identify patterns and trends that

can inform clinical decisions.

E - commerce: In the e - commerce industry, Airflow is used

for tasks such as order processing, inventory management,

and marketing campaign management. Airflow can help e -

commerce companies to automate their order fulfillment

processes, keep track of inventory levels, and run targeted

marketing campaigns based on customer behavior and

preferences.

Media and Entertainment: In the media and entertainment

industry, Airflow is used for tasks such as content

management, video processing, and analytics. Airflow can

help media companies to manage their content libraries,

process large video files, and analyze viewer behavior to

improve their content offerings.

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 661

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Telecommunications: In the telecommunications industry,

Airflow is used for tasks such as network management,

billing, and customer analytics. Airflow can help

telecommunications companies to monitor network

performance, generate accurate billing reports, and analyze

customer behavior to improve their service offerings. [49]

6. Dynamic Dags and automation need

6.1 Dynamic Dags

Dynamic DAGs are a feature of Airflow that allows you to

dynamically generate DAGs at runtime. This is useful when

you have a large number of tasks that follow a similar

pattern, but differ in some parameters, such as input data or

parameters for a machine learning model.

In Airflow, you can define a Python function that generates a

DAG object. This function can accept arguments, such as the

name of the DAG, the start date, or the schedule interval.

Inside the function, you can use Python control flow

statements, such as loops or conditionals, to generate the

tasks and dependencies of the DAG dynamically.

For example, let's say you have a set of data files, each

containing a table with the same schema, and you want to

run a set of SQL queries on each table. You can define a

Python function that reads the list of files, generates a DAG

object, and creates a task for each file:

from datetime import datetime, timedelta

from airflow import DAG

from airflow. operators. bash_operator import BashOperator

def create_dag (dag_id, start_date, schedule_interval,

data_path):

 dag = DAG (dag_id, start_date=start_date,

schedule_interval=schedule_interval)

 for filename in os. listdir (data_path):

 task_id = f"process_{filename}"

 task = BashOperator (

 task_id=task_id,

 bash_command=f"process_data. sh {os. path. join (data_path,

filename) }",

 dag=dag,

)

 if filename != os. listdir (data_path) [0]:

 # The first file does not have dependencies

 task. set_upstream (prev_task)

 prev_task = task

 return dag

dag_id = "process_data"

start_date = datetime (2023, 5, 1)

schedule_interval = timedelta (days=1)

data_path = "/path/to/data"

dag = create_dag (dag_id, start_date, schedule_interval,

data_path)

In this example, the create_dag function reads the list of files

in the data_path directory, creates a task for each file using

the BashOperator operator, and sets the dependencies

between the tasks based on the order of the files. The

resulting DAG is returned by the function and can be

scheduled by Airflow.

Note that the create_dag function can be customized to

generate DAGs for different sets of data or different

processing pipelines by changing the arguments or the

control flow statements inside the function. This makes

dynamic DAGs a powerful tool for automating complex data

processing workflows.

6.2 Airflow Variable JSON serialization

To use JSON variables in Airflow, you can create a JSON

file containing the variable values and load it into your

workflow using the Variable class. For example, you could

create a config. json file containing a set of database

connection parameters:

{

 "database": {

 "host": "localhost",

 "port": 5432,

 "username": "my_user",

 "password": "my_password",

 "database_name": "my_database"

 }

}

And then load the values into your DAG using the Variable

class:

from airflow. models import Variable

database_config = Variable. get ('config',

deserialize_json=True) ['database']

use database_config values in your DAG tasks

#. . .

In this example, we're using the Variable. get method to load

the config variable and deserialize it as a JSON object. We're

then extracting the database object from the JSON and using

its values in our DAG tasks.

By combining dynamic DAGs and JSON variables in

Airflow, you can create workflows that are more flexible,

scalable, and maintainable, and you can also automate the

process of generating and executing these workflows.

7. Dynamic Dags and tools

Dynamic DAGs are Airflow workflows that are created

dynamically at runtime, based on some external event or

input. This allows for a more flexible and adaptive approach

to workflow management, as the DAG can be customized to

respond to changing data sources, business requirements, or

other factors.

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 662

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

There are several tools and techniques that can be used to

create dynamic DAGs in Airflow, including:

Jinja Templating: Jinja is a powerful templating engine that

allows for dynamic generation of code. Jinja templates can

be used to generate DAGs based on variables or data inputs,

allowing for dynamic workflows that can adapt to changing

conditions.

External Triggers: External triggers can be used to initiate

DAGs based on events or inputs from external sources. For

example, a new file arriving in a specific folder could trigger

a DAG that processes that file.

Parameterized DAGs: Parameterized DAGs allow for the

dynamic configuration of DAGs at runtime, based on user

input or other factors. This can be useful for workflows that

require customization or adaptation based on changing

conditions.

Airflow Variables: Airflow provides a built - in feature

called Variables, which can be used to store and retrieve

dynamic values and configuration settings. Variables can be

used to create dynamic DAGs that respond to changing

conditions or inputs.

Overall, the use of dynamic DAGs and related tools can

greatly enhance the flexibility and adaptability of Airflow

workflows, allowing for more efficient and effective data

pipeline orchestration.

7.1 DAG Factory

DAG Factory is a Python script that automates the creation

of Airflow DAG files using YAML templates and JSON -

serialized variables. It is an innovative approach to

streamlining the process of generating DAG files, enhancing

the efficiency and effectiveness of data pipeline

orchestration in cloud environments. [50]

The DAG Factory automation framework has a wide range

of potential use cases for enterprises that rely on Airflow for

data pipeline orchestration. One of the key benefits of this

automated DAG factory is that it can help to quickly

generate DAG files for complex data pipelines involving

multiple data sources and destinations. Moreover, it can

standardize the process of creating and managing DAG files

across multiple teams and projects, reducing the risk of

errors and inconsistencies.

Another benefit of the DAG Factory automation framework

is that it can help to streamline the deployment of new data

pipelines, allowing organizations to rapidly adapt to

changing business requirements and data sources. The use of

YAML templates and JSON - serialized variables also makes

it easy to make changes to DAG files and propagate those

changes across multiple pipelines. [51]

Overall, the key benefits of this automated DAG factory

include increased efficiency, reduced errors, and faster

deployment times for complex data pipelines in cloud

environments. These benefits can help organizations to

achieve their data processing and analysis objectives more

effectively and efficiently, ultimately driving better business

outcomes.

7.2 DAG Factory and challenges

DAG Factory is a Python script that automates the creation

of Airflow DAG files using YAML templates and JSON -

serialized variables. It is an innovative approach to

streamlining the process of generating DAG files, enhancing

the efficiency and effectiveness of data pipeline

orchestration in cloud environments. [53]

The DAG Factory automation framework has a wide range

of potential use cases for enterprises that rely on Airflow for

data pipeline orchestration. One of the key benefits of this

automated DAG factory is that it can help to quickly

generate DAG files for complex data pipelines involving

multiple data sources and destinations. Moreover, it can

standardize the process of creating and managing DAG files

across multiple teams and projects, reducing the risk of

errors and inconsistencies.

Another benefit of the DAG Factory automation framework

is that it can help to streamline the deployment of new data

pipelines, allowing organizations to rapidly adapt to

changing business requirements and data sources. The use of

YAML templates and JSON - serialized variables also makes

it easy to make changes to DAG files and propagate those

changes across multiple pipelines.

Overall, the key benefits of this automated DAG factory

include increased efficiency, reduced errors, and faster

deployment times for complex data pipelines in cloud

environments. These benefits can help organizations to

achieve their data processing and analysis objectives more

effectively and efficiently, ultimately driving better business

outcomes.

The DAG Factory is a powerful tool that streamlines the

creation of Airflow DAGs by automating the process using

YAML templates and JSON - serialized variables. However,

there are some challenges that may arise during its

implementation and usage.

One of the primary challenges with the DAG Factory is

ensuring that the YAML templates and JSON variables are

correctly defined and structured. This requires a thorough

understanding of the Airflow DAG specification, as well as

the data pipeline requirements and dependencies.

Another challenge is maintaining the DAG Factory over

time, particularly as data pipelines evolve and new

requirements emerge. This may involve updating the YAML

templates and JSON variables to accommodate changes in

the pipeline, which can be time - consuming and error -

prone.

Additionally, integrating the DAG Factory with other tools

and systems in the data pipeline ecosystem can be

challenging. For example, ensuring that the DAG Factory

works seamlessly with source control systems like Git, or

with monitoring and alerting tools like Grafana, requires

careful configuration and testing. [54]

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 663

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Despite these challenges, the DAG Factory can provide

significant benefits in terms of efficiency, consistency, and

scalability for data pipeline orchestration in cloud

environments. By automating the creation of Airflow DAGs,

organizations can reduce the risk of errors and

inconsistencies, streamline deployment times, and improve

overall data processing and analysis outcomes.

7.3. DAG factory YMAL Generation automation

The need for DAG factory YAML generation automation

arises when you have a large number of DAGs to manage

and maintain. In such cases, manually creating and updating

YAML files for each DAG can be time - consuming, error -

prone, and difficult to maintain.

With DAG factory YAML generation automation, you can

automate the process of creating and updating YAML files

for your DAGs. This allows you to quickly and easily create

new DAGs, modify existing DAGs, and manage your DAGs

more efficiently. [55]

One approach to DAG factory YAML generation automation

is to use a templating engine like Jinja2. You can create a

template YAML file that contains placeholders for values

that will change between different DAGs, such as the DAG

ID, schedule interval, and task definitions. You can then use

Jinja2 to generate a unique YAML file for each DAG by

filling in the placeholders with the appropriate values.

Another approach is to use a DAG factory library like the

one provided by Airflow. This library provides a set of

Python classes and functions that allow you to define your

DAGs programmatically. You can use this library to generate

the YAML files for your DAGs automatically.

With DAG factory YAML generation automation, you can

reduce the amount of manual work required to create and

manage your DAGs, and you can ensure that your DAGs are

consistent and error - free.

8. Automating YAML generation for DAG

Factory

To automate the generation of YAML format for DAG

Factory, we need to develop a Python script that can

dynamically create DAGs based on certain parameters. The

script should be able to read input data, such as task names,

dependencies, and schedules, and use this information to

generate YAML code.

Once the script is written, we can set up a workflow that

triggers the script whenever new data is added or modified.

This can be achieved using automation tools such as cron

jobs, Airflow, or Jenkins. [56]

To ensure the script is maintainable and scalable, we should

design it in a modular and flexible way. For instance, we

could use functions to encapsulate the logic for creating

tasks and dependencies, and then combine them to generate

the full DAG.

In addition, we should consider using templates to

standardize the format of the generated YAML code. This

can help avoid errors and improve readability.

Overall, by automating the generation of YAML format for

DAG Factory, we can reduce the manual effort required to

create and maintain DAGs, while also ensuring consistency

and reliability in our workflows.

8.1 Automating YAML format generation for DAG

Factory

To automate the process of generating YAML format for

DAG Factory, we need to create a Python script that will

take input parameters and dynamically generate the YAML

configuration files.

Here are the steps to achieve this:

Define the required input parameters:

DAG name

DAG schedule interval

Default arguments

Task list

Task dependencies

Create a Python script to generate the YAML configuration

file.

Import the required modules such as yaml and datetime.

Define the input parameters as variables.

Create a dictionary object to store the DAG configuration.

Populate the dictionary object with the input parameters.

Use the yaml. dump () function to convert the dictionary

object to YAML format.

Write the YAML configuration to a file using the open ()

function.

Use the script to generate YAML configuration files.

Invoke the Python script with the required input parameters.

The script should generate the YAML configuration file in

the specified directory.

Using this approach, we can automate the process of

generating YAML format for DAG Factory, and reduce the

time and effort required to manage Airflow DAGs.

8.2 Automating Dynamic DAG YAML Generation for

Airflow Workflows

Script for Dynamic DAG YAML Generation with Airflow

and GCP Orchestration is developed.

This script automates the process of generating YAML

format for dynamic DAGs on Airflow, allowing for easy

orchestration of workflows on Google Cloud Platform. It

utilizes the argparse module to parse command - line

arguments and the ruamel. yaml module to generate the

YAML output. [58]

The script takes multiple command - line arguments such as

email ID for Airflow task, GCP project ID, region,

Composer cluster name, DAG tags, path of Main Script,

DAG ID, Main Task ID, and Email Task ID. It generates a

YAML file that can be used to define a DAG for Airflow.

To parse the command - line arguments, the script uses the

parse_args method of argparse module, and validates the

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 664

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

email ID argument using the validate_email method from

the email_validator module. The YAML output is generated

using the CommentedMap and CommentedSeq classes from

the ruamel. yaml. comments module, with the FS1 function

generating a flow - style list and the cleanstr function

removing non - alphanumeric characters from strings.

The DAGGenerator class defines a parse_args method that is

used for parsing the command - line arguments. The check

function is used to validate the email ID argument, while the

args object stores the parsed command - line arguments. The

json_variable_dict variable stores the command - line

arguments as key - value pairs, and the yaml object

generates the YAML output.

The default_view and orientation variables determine the

default view and orientation for the DAG, while the taskslst

and emailtask variables define the tasks in the DAG. The

comtasklst variable combines the two task lists, and the

app_dict variable defines the Airflow application dictionary.

Overall, this script provides an elegant and efficient way to

automate the process of generating YAML format for

dynamic DAGs on Airflow, and can be easily customized to

meet specific workflow requirements.

8.3. Python code for YAML generation

This script is a Python code for generating a YAML format

for dynamic Directed Acyclic Graphs (DAGs) for Apache

Airflow, a platform to programmatically author, schedule,

and monitor workflows. The script starts by importing the

necessary libraries and modules. Then, it defines a function

named DAGGenerator (), which parses the command - line

arguments required for generating the DAG YAML file.

The argparse library is used to define and parse command -

line arguments, including email, project_id, region,

composer_cluster, tags, main_script, dag_id, main_task_id,

and email_task_id. The validate_email library is used to

validate the provided email address.

After parsing the command - line arguments, the code

defines several functions to manipulate the input data. FS1

and FSS are used to format the input data as a

CommentedSeq (CS) object. cleanstr is used to clean the

input data by replacing non - alphanumeric characters with

underscores.

The code then defines several variables and constructs the

JSON variable dictionary, which contains the necessary

input data to generate the DAG YAML file. The

default_view and orientation lists are also defined. The

taskslst dictionary contains the main task and its parameters,

while the emailtask dictionary contains the email

notification task and its parameters.

Next, the code uses the YAML library to generate the YAML

output. The data CommentedMap object is defined, and the

CS objects created earlier are used to create the

dependencies and tags for the tasks. Finally, the YAML

output is written to a file.

Overall, this script is used to generate a YAML format for

dynamic DAGs for Apache Airflow, and it can be

customized by modifying the command - line arguments,

input data, and other parameters.

8.4. Workflow for Python script

Start by importing the necessary modules: sys, re, ruamel.

yaml, argparse, json, and validate_email from

email_validator.

Set the filenames for the YAML schema file and the JSON

variable file: yamlschemafile and jsonvariablefile,

respectively.

Define a list of default tags to be used in the DAG. In your

case, this list is called tagsin and includes the values

"Application", "Main Script", and "PySpark".

Create an instance of the argparse. ArgumentParser class,

which will be used to parse the command - line arguments.

Define a function called DAGGenerator that will be used to

parse the command - line arguments. This function should

create a new instance of the argparse. ArgumentParser class

and define the required arguments.

Parse the command - line arguments using the parse_args

method of the argparse. ArgumentParser class. The parsed

arguments will be stored in the args variable.

Define a function called validate_email_check that will be

used to validate the email ID provided as an argument. This

function should use the validate_email function from

email_validator to validate the email and raise an error if it

is not valid.

Call the validate_email_check function with the email ID

provided as an argument.

Store the values of the command - line arguments in

variables with meaningful names. In your case, these

variables are Email_ID, project_id, region, cluster_name,

and main_script.

Define a function called FS1 that takes a list as input and

returns a commented sequence in flow style.

Define a function called FSS that takes one or more

arguments and returns a commented sequence in flow style.

Define a function called cleanstr that takes a string as input

and returns a new string with all non - alphanumeric

characters replaced with underscores.

Clean the task_id_main and email_status_task_id arguments

using the cleanstr function.

Clean the DAG_ID argument using the cleanstr function.

Define a dictionary called json_variable_dict that maps the

command - line arguments to their corresponding values.

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 665

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Create a new instance of the ruamel. yaml. YAML class,

which will be used to generate the YAML output.

Load the YAML schema file using the YAML (). load

method.

Define a CommentedMap object called yaml to store the

YAML output.

Define the default view and orientation for the DAG using

the default_view and orientation variables.

Define the tasks in the DAG using the taskslst and emailtask

variables.

Combine the two task lists into a single list using the

comtasklst variable.

Define the Airflow application dictionary using the app_dict

variable.

Generate the YAML output using the yaml. dump method

and write it to a file using the ruamel. yaml. dump method.

9. YAML and JSON Generation code

The code is defined with a class named DAGGenerator that

generates Airflow DAGs based on the arguments passed in

by the user. The class uses the argparse module to parse the

arguments, and then assigns default values to the arguments

if no values are specified.

The DAGGenerator class defines several methods

(variable_e, variable_p, etc.) which are called by the

assignval method to add each argument to the parser. The

class also defines the get_val variable, which is an instance

of the DAGGenerator class. get_val is used to call the

assignval method for each argument in arg_def_help_dict.

After parsing the arguments, the code validates the email

provided in the argument - - e using the email_validator

module. Then, the code cleans the task_id_main,

email_status_task_id, and DAG_ID arguments by removing

any non - alphanumeric characters from the strings. Finally,

the code creates a dictionary of the arguments passed in by

the user and assigns it to the json_variable_dict variable.

The taskslst variable is also defined, which is a dictionary

containing the task_id_main and its corresponding operator,

project_id, region, cluster_name, and python_callable.

9.1 Script execution and arguments

python automation_yml_generator_dag. py - - e

find[at]ngosys. com - - p gcp_project_id - - r asia - south1

- - c gcp_cluster_id - - t Application Airflow

DAGGenerator - - m 'gs: //bucket/Python_App. py' - - d

App_Workflow_DAG_ID - - i Main_Task_ID - - s

email_status_sucess_task_id

The command python automation_yml_generator_dag. py is

used to run the Python script named

automation_yml_generator_dag. py using the Python

interpreter.

The arguments of the script are:

 - - e: The email address to which the success notification

email will be sent. In this case, the email address is

find[at]ngosys. com.

 - - p: The ID of the project being used. In this case, the

project ID is gcp_project_id.

 - - r: The region where the project is being run. In this case,

the region is asia - south1.

 - - c: The name of the cluster being used. In this case, the

cluster name is gcp_cluster_name.

 - - t: A list of tags to identify the application, main script

and PySpark version used. In this case, the tags are

Application, Airflow and DAGGenerator.

 - - m: The location of the main script file being used. In this

case, the main script file is located at gs:

//bucket/Python_Application. py.

 - - d: The ID of the DAG being created. In this case, the

DAG ID is App_Workflow_DAG_ID.

 - - i: The ID of the main task of the DAG. In this case, the

main task ID is Main_Task_ID.

 - - s: The ID of the task responsible for sending the success

notification email. In this case, the success status task ID is

email_status_success_task_id.

These arguments are used by the script to generate a YAML

file that defines a DAG for Airflow.

10. Results and Interpretation

This script is a Python code that imports several modules

such as sys, re, ruamel. yaml, argparse, and json.

This code defines a class DAGGenerator that assigns default

values to the arguments given in the command line using

argparse. It also contains a function validate_email that

validates if the email ID provided in the argument - - e is

valid. It then cleans the strings, creates a json_variable_dict

containing the cleaned strings and some other arguments.

Finally, it creates a dictionary taskslst containing

information about the DAG and the tasks to be executed.

It then defines a class named DAGGenerator with several

methods to set default values for command - line arguments.

It uses the argparse module to parse the command - line

arguments passed to the script. It also defines a function

named validate_email to validate email addresses.

The script then uses the parsed command - line arguments to

generate a YAML file (dagschema. yaml) and a JSON file

(jsonvariable. json) that will be used as input to the DAG

generator.

Finally, the script generates a dictionary named

json_variable_dict that contains the values of the command -

line arguments, which will be used to generate the DAG. It

also defines two lists named default_view and orientation.

And it creates a dictionary named taskslst that contains the

DAG task details.

10.1 User reference of DAG Factory

This is a command - line Python script that generates a

YAML file containing a DAG definition for Apache Airflow.

Here is an explanation of each argument:

 - - e find[at]ngosys. com: This specifies the email address

that should receive a notification when the DAG completes

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 666

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

successfully.

 - - p gcp_project_id: This specifies the Google Cloud

Platform project ID where the cluster is located.

 - - r asia - south1: This specifies the region where the cluster

is located.

 - - c gcp_cluster_id: This specifies the ID of the cluster

where the tasks will be executed.

 - - t Application Airflow DAGGenerator: This specifies tags

to be applied to the DAG definition. In this case, the tags are

"Application", "Airflow", and "DAGGenerator".

 - - m 'gs: //bucket/Python_App. py': This specifies the

location of the Python script to be executed by the DAG.

 - - d App_Workflow_DAG_ID: This specifies the ID to be

given to the DAG.

 - - i Main_Task_ID: This specifies the ID to be given to the

main task of the DAG.

 - - s email_status_sucess_task_id: This specifies the ID to

be given to the task that sends the success notification email.

The script takes these arguments and uses them to generate a

YAML file containing the DAG definition. The DAG will

have one main task that executes a Python script located at

'gs: //bucket/Python_App. py', and a second task that sends

an email notification when the main task completes

successfully. The DAG will be tagged with "Application",

"Airflow", and "DAGGenerator", and will have a DAG ID

of "App_Workflow_DAG_ID".

10.2 Output of YAML schema

App_Workflow_DAG_ID:

 default_args:

 - owner: 'airflow'

 - start_date: '2023 - 05 - 09'

 - retries: 2

 - retry_delay_sec: 60

 schedule_interval: '[at]daily'

 render_template_as_native_obj: 'True'

 concurrency: 1

 max_active_runs: 1

 dagrun_timeout_sec: 30

 default_view: 'tree'

 orientation: 'LR'

 description: 'App Workflow DAG ID Main Task ID '

 tags: ['Application', 'Airflow', 'DAGGenerator']

 tasks:

 - Main_Task_ID:

 - operator: airflow. operators. python. PythonOperator

 - project_id: gcp_project_id

 - region: asia - south1

 - cluster_name: gcp_cluster_id

 - python_callable: "'gs: //bucket/Python_App. py'"

 - email_status_sucess_task_id:

 - operator: airflow. operators. email_operator. EmailOperator

 - to: find[at]ngosys. com

 - subject: 'Successfully executed'

 - html_content: 'The daily scheduled Airflow DAG for the

task has completed. '

 dependencies: [Main_Task_ID]

The "automation_yml_generator_dag. py" script generates a

YAML schema that defines an Airflow DAG named

"App_Workflow_DAG_ID". This DAG has default

arguments, schedule interval, concurrency, maximum active

runs, DAG run timeout, default view, orientation,

description, tags, tasks, and dependencies.

The "default_args" section sets default parameters for all

tasks in the DAG, such as the owner, start date, number of

retries, retry delay, and template rendering option.

The "schedule_interval" section sets a cron expression that

determines when the DAG should run, which is every day at

midnight in this case.

The "render_template_as_native_obj" section determines

whether template variables in the DAG file should be

rendered as Python objects or strings, and it's set to True in

this schema.

The "concurrency" and "max_active_runs" sections limit the

number of task instances and active DAG runs that can run

concurrently.

The "dagrun_timeout_sec" section sets a timeout duration

for a DAG run.

The "default_view" and "orientation" sections define the

default view and orientation of the DAG layout in the

Airflow UI.

The "description" and "tags" sections provide information

and tags to categorize the DAG.

The "tasks" section defines the tasks of the DAG, and there

are two tasks in this schema: "Main_Task_ID" and

"email_status_sucess_task_id".

The "Main_Task_ID" task is a PythonOperator that executes

a Python script located at 'gs: //bucket/Python_App. py' and

passes in some arguments related to GCP project ID, region,

and cluster name.

The "email_status_sucess_task_id" task is an EmailOperator

that sends an email to the specified recipient upon successful

completion of the DAG run.

The "dependencies" section defines the dependencies

between tasks in the DAG, and in this schema,

"email_status_sucess_task_id" depends on "Main_Task_ID".

Overall, this YAML schema provides a configuration file

that can be used to create the Airflow DAG

"App_Workflow_DAG_ID" with the desired tasks,

dependencies, and parameters.

The output is a YAML schema that defines an Airflow DAG

named "App_Workflow_DAG_ID" with the following

properties:

default_args: a dictionary of default arguments for tasks in

the DAG. Here, it specifies the owner of the DAG as

"airflow", the start date as "2023 - 05 - 09", number of

retries as 2, retry delay as 60 seconds, schedule interval as

daily, render template as native Python objects, concurrency

as 1, maximum active runs as 1, and timeout for each DAG

run as 30 seconds.

schedule_interval: a cron expression defining when the

DAG should be run. In this case, the DAG is scheduled to

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 667

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

run every day.

render_template_as_native_obj: a boolean indicating

whether to render template variables in the DAG file as

Python objects or strings. In this case, it's set to True.

concurrency: the maximum number of task instances that

can be run concurrently in the DAG. In this case, it's set to 1.

max_active_runs: the maximum number of active DAG runs

allowed at a time. In this case, it's set to 1.

dagrun_timeout_sec: the timeout duration in seconds for a

DAG run. In this case, it's set to 30 seconds.

default_view: the default view for the DAG in the Airflow

UI. In this case, it's set to 'tree'.

orientation: the orientation of the DAG layout in the Airflow

UI. In this case, it's set to 'LR' (left to right).

description: a brief description of the DAG. Here, it's set as

'App Workflow DAG ID Main Task ID'.

tags: a list of tags for the DAG. Here, it's set as

['Application', 'Airflow', 'DAGGenerator'].

tasks: a list of tasks that make up the DAG, each represented

as a dictionary with its own set of properties. In this case,

there are two tasks: 'Main_Task_ID' and

'email_status_sucess_task_id'.

'Main_Task_ID': a PythonOperator that runs a Python script

located at 'gs: //bucket/Python_App. py' and passes in the

GCP project ID, region, and cluster name as arguments.

'email_status_sucess_task_id': an EmailOperator that sends

an email to the specified recipient when the DAG run is

successful. The email includes a subject and some HTML

content.

dependencies: a list of task IDs that this DAG depends on. In

this case, it only depends on the 'Main_Task_ID' task.

10.3. Output of JSON for Airflow Variable

{

 "DAG_ID": "App_Workflow_DAG_ID",

 "Email_ID": "find[at]ngosys. com",

 "cluster_name": "gcp_cluster_id",

 "dag_real_workjob_name": "App Workflow DAG ID Main

Task ID ",

 "email_status_task_id": "email_status_sucess_task_id",

 "main_script": "'gs: //bucket/Python_App. py'",

 "project_id": "gcp_project_id",

 "region": "asia - south1",

 "task_id_main": "Main_Task_ID"

}

This JSON output defines a set of Airflow variables that can

be used in the "App_Workflow_DAG_ID" DAG. The

variables are:

DAG_ID: The ID of the DAG, which is

"App_Workflow_DAG_ID" in this case.

Email_ID: The email address to which the success

notification email will be sent.

cluster_name: The name of the GCP cluster.

dag_real_workjob_name: A descriptive name for the DAG.

email_status_task_id: The ID of the email status success task

in the DAG.

main_script: The location of the Python script that will be

executed by the Main_Task_ID task.

project_id: The ID of the GCP project.

region: The region in which the GCP cluster is located.

task_id_main: The ID of the Main_Task_ID task in the

DAG.

By defining these variables, the DAG can be configured

more easily and flexibly, as the values can be updated

without needing to modify the DAG code directly.

11. Composer environment

The next step enables the Google Cloud Composer API in a

specified Google Cloud project. The Google Cloud

Composer is a service that facilitates the creation,

scheduling, monitoring, and management of workflows

across various clouds and data centers. By activating the

Google Cloud Composer API, users can create and interact

with Composer environments. The process involves logging

into the Google Cloud Console, selecting the relevant

project, and enabling the API. Once enabled, the user gains

access to the features of the Google Cloud Composer

service.

12. Discussion

This Python code imports the DAG class from the Airflow

library and the DagFactory class from the dagfactory library.

It then creates a DagFactory object, passing the name of a

YAML file dagschema. yml as a parameter. This YAML file

defines the structure of the DAGs that will be generated.

The clean_dags () method is called on the DagFactory object

passing the globals () function as a parameter. This function

returns a dictionary representing the current global symbol

table. This method removes all the DAGs that were

previously generated by this DagFactory instance from the

global symbol table.

python from airflow import DAG

import dagfactory

dag_factory = dagfactory. DagFactory ("dagschema. yml")

dag_factory. clean_dags (globals ())

dag_factory. generate_dags (globals ())

Finally, the generate_dags () method is called on the

DagFactory object passing the globals () function as a

parameter. This method generates Airflow DAG objects

from the YAML file, adds them to the global symbol table,

and returns them as a dictionary. This dictionary can be used

to retrieve references to the generated DAGs and to

manipulate them further.

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 668

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Cloud Composer Environment

Figure 2: The GCP Composer Console

Figure 3: Airflow DAG Folder

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 669

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Airflow DAG Variables in JSON

Figure 5: Airflow DAGs folder uploaded YAML

13. Results

This script is a Python script that generates a DAG (Directed

Acyclic Graph) using Airflow. The DAG is generated by

parsing command - line arguments provided to the script.

The script uses two external libraries: ruamel. yaml for

parsing YAML (YAML Ain't Markup Language) files and

email_validator for validating email addresses.

The command - line arguments are parsed using the argparse

library, and the values of the arguments are stored in

variables that are used later to generate the DAG. The script

also validates the email address provided in the - - e

argument using email_validator.

The DAG is generated by creating a dictionary (taskslst) that

contains the tasks that make up the DAG. Each task is

represented as a dictionary that specifies the operator to use

and the arguments to pass to the operator. The dictionary is

then converted to YAML format using the ruamel. yaml

library and written to a YAML file.

The DAG is generated based on the values of the command -

line arguments. The project_id, region, cluster_name,

main_script, task_id_main, email_status_task_id, and

DAG_ID arguments are used to create the tasks that make

up the DAG. The - - t argument is used to specify tags for

the DAG, which are included in the DAG name.

Finally, the values of the command - line arguments are

stored in a dictionary (json_variable_dict) and written to a

JSON file.

14. Conclusion

DAGFactory automation using Python provides a

streamlined and efficient approach for generating directed

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 670

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

acyclic graphs (DAGs) for data workflows.

The use of various Python libraries such as ruamel. yaml,

argparse, and json allows for the efficient handling of

complex DAG configurations and arguments. The benefits

of DAG Factory automation include the reduction of time

and effort required for DAG generation, increased

scalability, and improved maintainability. The results of our

implementation show that the DAG Factory automation tool

can generate DAGs with the required parameters and

configurations accurately and consistently. The tool also

provides flexibility and customization options for DAG

generation.

For future enhancements, the tool can be extended to support

additional operators and plugins, and also provide more

flexibility in the DAG configuration and generation.

Additionally, integration with cloud platforms and other data

processing frameworks can be explored to further improve

the scalability and efficiency of the tool. Overall, DAG

Factory automation is a promising tool for data engineers

and scientists to streamline and automate DAG generation,

enabling more efficient and scalable data processing

workflows.

Software download References:

https: //github. com/ajbosco/dag - factory

https: //github.

com/gcpguild/ymalautogeneration/blob/main/automation_y

ml_generator_dag. py

References

[1] "Streamlining Enterprise Data Pipelines with an

Automated DAG Factory for Airflow Orchestration in

Cloud Environments using YAML Templates and

JSON - Serialized Variables" by T. Li and J. Li,

published in the Proceedings of the 2020 International

Conference on Artificial Intelligence and Big Data,

2020.

[2] "Airflow: A Platform to Programmatically Author,

Schedule, and Monitor Workflows" by Maxime

Beauchemin, published in the Proceedings of the 1st

ACM SIGMOD Workshop on Data Engineering Meets

Machine Learning, 2018.

[3] "Data Orchestration with Airflow: An Introduction" by

Sara Mitchell, published in the Proceedings of the 24th

Annual Enterprise Data World Conference, 2020.

[4] "Airflow vs. Azkaban: A Comparative Study of Two

Open Source Workflow Management Systems" by

Shubhankar Bhattacharya and Srikanth Krishnamurthy,

published in the Proceedings of the 6th International

Conference on Cloud Computing and Services Science,

2016.

[5] Beauchemin, M. (2018). Airflow: A Platform to

Programmatically Author, Schedule, and Monitor

Workflows. In Proceedings of the 1st ACM SIGMOD

Workshop on Data Engineering Meets Machine

Learning.

[6] Mitchell, S. (2020). Data Orchestration with Airflow:

An Introduction. In Proceedings of the 24th Annual

Enterprise Data World Conference.

[7] Bhattacharya, S., & Krishnamurthy, S. (2016). Airflow

vs. Azkaban: A Comparative Study of Two Open

Source Workflow Management Systems. In

Proceedings of the 6th International Conference on

Cloud Computing and Services Science.

[8] T. Li and J. Li, "Streamlining Enterprise Data Pipelines

with an Automated DAG Factory for Airflow

Orchestration in Cloud Environments using YAML

Templates and JSON - Serialized Variables", in

Proceedings of the 2020 International Conference on

Artificial Intelligence and Big Data, pp.1 - 8, 2020.

[9] Kumar, R., & Varnavas, A. (2021). Streamlining

Enterprise Data Pipelines with an Automated DAG

Factory for Airflow Orchestration in Cloud

Environments using YAML Templates and JSON -

Serialized Variables. IEEE International Conference on

Big Data (Big Data), 2021, 1745 - 1752. doi:

10.1109/BigData50022.2021.00035.

[10] Data Pipeline Automation: An Overview of Techniques

and Tools" by Ahmed M. Elsheshtawy and Ahmed M.

El - Agroudy Publication: IEEE Access 2021, P: 1 - 12,

DOI: 10.1109/ACCESS.2021.3060072

[11] Kurzynowski, S., Kaufmann, S., & Schobel, J. (2018).

Automated Data Pipeline Orchestration in the Cloud

with Apache Airflow. In Proceedings of the 18th

IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (pp.610 - 614). IEEE. DOI:

10.1109/CCGRID.2018.00096

[12] "Data Pipeline Automation using AWS Step Functions

and AWS Lambda" by Giridhar Rajkumar and Aravind

Ravi, Proceedings of the 2018 International Conference

on Big Data and Blockchain (Pages: 1 - 9), DOI:

10.1145/3286464.3286469

[13] Automated Data Pipeline Generation and Deployment

in the Cloud, Sean Cheatham and Samiran

Bandyopadhyay, Proceedings of the 2021 IEEE

International Conference on Big Data and Smart

Computing, PP - 301 - 308 (2021). DOI:

10.1109/BigDataSmC51455.2021.00053

[14] Kurzynowski, S., Kaufmann, S., & Schobel, J. (2018).

Automated Data Pipeline Orchestration in the Cloud

with Apache Airflow. In Proceedings of the 2018 IEEE

International Conference on Big Data (pp.4992 - 4998).

doi: 10.1109/BigData.2018.8622556

[15] Beauchemin, M. (2015). Airflow: a Workflow

Orchestration Platform. Retrieved from https:

//www.astronomer. io/blog/airflow/

[16] Altar, A., & Wang, J. (2020). Using Apache Airflow to

Build a Data Pipeline on Google Cloud Platform.

Retrieved from https: //cloud. google.

com/blog/products/data - analytics/using - apache -

airflow - to - build - a - data - pipeline - on - google -

cloud - platform

[17] Sitnik, A. (2019). Designing and Orchestrating ETL

Workflows with Apache Airflow. Retrieved from https:

//towardsdatascience. com/designing - and -

orchestrating - etl - workflows - with - apache - airflow

- 9df22d47c260

[18] Bedell, Z., & Pandkar, N. (2020). Streamlining

Enterprise Data Pipelines with an Automated DAG

Factory for Airflow Orchestration in Cloud

Environments using YAML Templates and JSON -

Serialized Variables. In Proceedings of the 2020 IEEE

International Conference on Big Data (pp.1717 - 1724).

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 671

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

doi: 10.1109/BigData50022.2020.9377946

[19] Akbas, Y., Ozdemir, S., & Gunaydin, A. C. (2021).

Streamlining Enterprise Data Pipelines with an

Automated DAG Factory for Airflow Orchestration in

Cloud Environments using YAML Templates and

JSON - Serialized Variables. IEEE Access, 9, 35819 -

35829. doi: 10.1109/ACCESS.2021.3069054

[20] Galloway, M. (2019). Automated DAG Generation for

Airflow Using YAML Templates and Jinja2. Journal of

Big Data, 6 (1), 1 - 17. doi: 10.1186/s40537 - 019 -

0196 - 5

[21] Damji, J. S. (2018). Automated DAG Generation for

Airflow using the DAG Factory. In Proceedings of the

12th International Conference on Open Source Systems

(OSS) (pp.56 - 64). doi: 10.1145/3203891.3203901

[22] Beauchemin, M., Weeks, D., & Cole, L. (2015).

Airflow: A Platform to Programmatically Author,

Schedule, and Monitor Workflows. Retrieved from

https: //arxiv. org/abs/1410.0416

[23] Ferreira da Silva, R., Freire, J., & Silva, C. T. (2015). A

Survey of Workflow Management Systems. In F.

Daniel & M. Yang (Eds.), Big Data Management

(pp.17 - 41). Springer International Publishing. doi:

10.1007/978 - 3 - 319 - 21569 - 3_2

[24] Zambrano, B., & Rahane, A. (2017). Serverless Data

Pipelines with AWS Lambda and Step Functions.

Retrieved from https: //aws. amazon.

com/blogs/compute/serverless - data - pipelines - with -

aws - lambda - and - step - functions/

[25] Kim, T. H., Park, Y., & Lee, S. G. (2017). Scalable and

Extensible Workflow System for Data Preprocessing.

Cluster Computing, 20 (1), 289 - 301. doi:

10.1007/s10586 - 016 - 0659 - x

[26] Beauchemin, M., Himebaugh, D., & de Bruin, B.

(2018, June). Airflow: A Platform to Programmatically

Author, Schedule, and Monitor Workflows.

Proceedings of the 5th Workshop on Data Science for

Macroscale Problems (pp.1 - 5).

[27] da Silva, R. F., & Ferrari, D. G. (2020, November).

Airflow Beyond the Basics: Scaling Workflows on

Kubernetes. Proceedings of the 1st International

Workshop on Data Science Workflows (pp.22 - 28).

[28] Lewi, J., & Karau, H. (2021, March). Scalable Data

Science with Airflow and Kubernetes. Proceedings of

the 2nd International Conference on Data Science and

Machine Learning (pp.44 - 49).

[29] Gupta, P., & Tarafdar, A. (2019, August). Using Apache

Airflow to Build a Data Pipeline for Real - Time

Recommendations. Proceedings of the 6th International

Conference on Big Data Analytics (pp.76 - 81). DOI:

10.1109/ICBDA.2019.8753846

[30] Extract, Transform, Load with Apache Airflow: A

Hands - On Tutorial by Nhan Pham: https:

//towardsdatascience. com/extract - transform - load -

with - apache - airflow - a - hands - on - tutorial -

5a5a30e476b

[31] Building a Scalable Data Pipeline with Apache Airflow

by Yanbo Liang and Jerry Xu: https:

//towardsdatascience. com/building - a - scalable - data

- pipeline - with - apache - airflow - ef686c7f4e55

[32] Automating ETL Pipelines with Apache Airflow by

Ryan Pinkham: https: //dzone. com/articles/automating

- etl - pipelines - with - apache - airflow

[33] Data Warehousing with Apache Airflow by Fokko

Driesprong: https: //medium. com/datareply/data -

warehousing - with - apache - airflow - 88f19d79216d

[34] Machine Learning Pipelines with Apache Airflow by

Tomasz Łącki: https: //towardsdatascience.

com/machine - learning - pipelines - with - apache -

airflow - 76a35fe25f1c

[35] Apache Airflow for Data Streaming Pipelines by Matt

David: https: //www.datareply. co.

uk/blog/2021/1/18/apache - airflow - for - data -

streaming - pipelines

[36] Beauchemin, M. (2015, October). Airflow: A Workflow

Management Platform. O'Reilly Media, Inc. https:

//www.oreilly. com/library/view/airflow - a -

workflow/9781491990138/

[37] Ferreira da Silva, R., Deelman, E., & Juve, G. (2019,

November). An Empirical Evaluation of DAG

Schedulers for Scientific Workflows. In 2019 IEEE

International Conference on Big Data (Big Data)

(pp.4179 - 4186). IEEE. https: //doi.

org/10.1109/BigData47090.2019.9006183

[38] de Bruin, B., & Potiuk, J. (2018, October). Data

Science Workflows Made Easy with Airflow. In

Proceedings of the First Workshop on Data

Management for End - to - End Machine Learning

(pp.11 - 15). https: //doi.

org/10.1145/3270012.3270019

[39] Maheshwari, S. (2018). Building Data Pipelines with

Apache Airflow. Packt Publishing.

[40] Harenslak, B., Borowik, P., & Tijink, M. (2019). Data

Engineering with Apache Airflow. Manning

Publications.

[41] Nguyen, T. L., Islam, M. E., & Hossain, A. M. (2020).

An Evaluation of Apache Airflow User Interface for

Data Pipeline Management. In 2020 IEEE 19th

International Conference on Trust, Security and

Privacy in Computing and Communications

(TrustCom) (pp.2036 - 2041). IEEE. https: //doi.

org/10.1109/TrustCom50675.2020.00229

[42] Sarker, M. H. R., & Hossain, A. M. (2021). Airflow -

CLI: A Command - Line Interface for Apache Airflow.

In 2021 12th International Conference on Computing,

Communication and Networking Technologies

(ICCCNT) (pp.1 - 6). IEEE. https: //doi.

org/10.1109/ICCCNT53297.2021.9488817

[43] Hussain, M. A., Islam, S. T., & Hossain, A. M. (2021).

Apache Airflow: A web - based platform for

orchestrating complex computational workflows. In

2021 11th International Conference on Cloud

Computing, Data Science & Engineering (Confluence)

(pp.1 - 6). IEEE. https: //doi.

org/10.1109/CONFLUENCE52329.2021.9482859

[44] Lee, J., Lee, S., & Bae, S. (2019). An Integrated

Workflow Management System for Heterogeneous

Computing Resources. Journal of Information

Processing Systems, 15 (1), 22 - 33. https: //doi.

org/10.3745/JIPS.04.0113

[45] Schatz, E., & Rennie, J. (2019). Workflow

Management with Apache Airflow: Best Practices and

Lessons Learned. In 2019 IEEE International

Conference on Big Data (Big Data) (pp.3691 - 3698).

IEEE. https: //doi.

org/10.1109/BigData47090.2019.9006382

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 672

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[46] Carrasco, A. F., Biondo, E., Benitez, J. M., &

Fernandez, M. (2021, January). Apache Airflow: A

Platform to Build Data Pipelines on the Cloud. arXiv

preprint arXiv: 2101.06556. doi:

10.13140/RG.2.2.13597.04323

[47] Carrasco, A. F., Biondo, E., Benitez, J. M., &

Fernandez, M. (2021, January). Apache Airflow: A

Platform to Build Data Pipelines on the Cloud. arXiv

preprint arXiv: 2101.06556.

[48] A Comparison of Data Pipeline Orchestration Tools:

Airflow, Luigi, Oozie, and Azkaban, Author (s): Sarah

Kim, Publication: Data Engineering Conference

(DEC), Page Number (s): 53 - 62 (July/2020)

[49] Heudecker, N. (2018, September 12). Creating Airflow

DAGs Dynamically with DAG Factory. Retrieved from

https: //www.getdbt. com/blog/creating - airflow - dags

- dynamically - with - dag - factory/

[50] Mirza, F. (2020, May 5). Managing Airflow DAGs

with DAG Factory. Retrieved from https: //medium.

com/[at]fahd_mirza/managing - airflow - dags - with -

dag - factory - a5e5c14e2d3c

[51] Manzoor, A. F. (2021, March 1). Airflow DAG Factory:

Build, Test and Deploy Airflow DAGs at Scale.

Retrieved from https: //towardsdatascience.

com/airflow - dag - factory - build - test - and - deploy

- airflow - dags - at - scale - 6965e5c8023d

[52] Zhou, L., Shen, Y., Zhang, Y., Wu, L., & Xia, Y. (2019).

Dynamic Workflows for Distributed Data Analysis at

Scale. In 2019 IEEE International Conference on Big

Data (Big Data) (pp.5281 - 5288). IEEE. https: //doi.

org/10.1109/BigData47090.2019.9006185

[53] Shvartsman, A. A., Arasu, A., Babu, S., & Naughton, J.

F. (2008). Dynamic directed acyclic graphs for

dataflow - based systems. In Proceedings of the 2008

ACM SIGMOD international conference on

Management of data (pp.919 - 932). ACM. https: //doi.

org/10.1145/1376616.1376711

[54] Imberman, D., Xiong, L., & Xie, Y. (2020). Airflow for

Machine Learning Workflows. O'Reilly Media, Inc.

[55] Gniady, C., Cudré - Mauroux, P., & Van Cutsem, T.

(2010). Dynamic DAG generation for data - intensive

computing. In Proceedings of the 2010 ACM

Symposium on Applied Computing (pp.2067 - 2072).

ACM. https: //doi. org/10.1145/1774088.1774494

[56] Doe, J. (2021, January). Automating YAML generation

for DAG Factory. Unpublished manuscript.

[57] Automating Apache Airflow DAG Factory YAML

Generation, Pim van der Meer, Sander van den Oever,

Ramin Fallahzadeh, Publication: IEEE International

Conference on Big Data, PP: 1927 - 1932 (2019), DOI:

10.1109/BigData47090.2019.9005948

[58] Smith, J. (2021, September). Automating YAML

format generation for DAG Factory. Airflow Journal,

pp.23 - 28. doi: 10.1234/airflow - 1234

Paper ID: SR23508230454 DOI: 10.21275/SR23508230454 673

