
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Tomato Plant Diseases Detection and Classification

Sameh Mohammed Abdo Khaled

MSc Information Technology, Bhaarathi I M.Sc.(S/W Engg), B.Ed. (CS), MBA(ISM), MA (Ed Psy)

Student, Rathinam College of Arts and Science,

Assistant Professor Department of Computer Science, Rathinam College of Arts and Science

Abstract: This project aims to develop a machine learning model to detect and classify diseases in tomato plants. The increasing

demand for food and the need to maintain food security has led to the development of advanced technologies in the agriculture sector.

One of the most challenging tasks in agriculture is to identify and diagnose diseases in crops, which can significantly reduce their

productivity. In this project, we will use computer vision and machine learning techniques to automate the process of disease detection

and classification in tomato plants. The first step in this project will be to collect a large dataset of tomato plant images and annotate

them with disease labels. This dataset will be used to train a convolutional neural network (CNN) model. The CNN model will learn to

recognize patterns in the images that are associated with specific diseases. We will then use this trained model to classify new images of

tomato plants and detect the presence of any diseases. The performance of the model will be evaluated based on accuracy, precision,

recall, and F1 score. The results of this project will be compared to existing methods in the literature to demonstrate the effectiveness of

the proposed approach. In conclusion, this project has the potential to make a significant contribution to the field of plant disease

detection and classification. By automating the process of disease detection, we can help farmers to quickly and accurately identify

diseases in their crops, reducing the impact of diseases on productivity and improving food security. The results of this project will also

provide a foundation for further research in the area of computer vision and machine learning for agriculture.

Keywords: Convolutional Neural Network, bacterial infections, tomato disease identification, Late blight, Spider mites, Bacterial Spot on

tomato leaves.

1. Introduction

1.1 Overview of the Project

Agriculture is amongst the most seasoned societies created

by individuals. It remains the mother of all societies till date

and has assumed a noteworthy job in the headway

advancement of mankind. Farming instruments and practices

like water system, strip editing, compost, manures,

pesticides and so on have been utilized since quite a while,

however have made huge enhancements over the most

recent hundred years. Indeed, even around the nineteenth

century, farming practices were sufficiently improved to

yield commonly the collect per unit land, contrasted with the

earlier years. Agribusiness is the communication of seed,

soil and agrarian synthetic concoctions. Therefore,

appropriate administration and care of all perspectives is

compulsory for the maintainability of the agrarian

framework. The point of improving farming generation

without investigating natural effects has caused ecological

corruption. Therefore, the objective ought to be to upgrade

agribusiness with negligible natural harm or debasement.

Plants develop wherever around the globe, even where

people don’t live. A few plants convey a great deal of data

for the improvement of human progress. Since, the event of

ailment in plants is normal, recognizing infection would

assume a significant job in agrarian advancement. In tomato

plant (Solanum lycopersicum), the rundown of ailments

happening is long. Bacterial Spot on tomato leaves is a

unique and perilous infection ever to exist. It spreads at an

exceptionally quick rate and requires extraordinary exertion

and venture to contain. Mostly, this sickness contorts the

tomato plants to the degree of extreme diminishing in their

attractiveness. Bacterial Spot is brought about by a

bacterium named xanthomonas campestris pv. The principal

manifestation of bacterial spot in tomato plants are oily, little

and unpredictable checks in the lower face of the leaves.

These little spots at first appear to be dim green, however

later turn purple and dark. These spots may contain dark

focuses and yellow or white shading inside. Bacterial spot

gradually harms leaf tissue and uncovered the tomato natural

product to cruel daylight which results in dull dark colored

knock like development on the organic product, which

influences profitability of the harvest. In this work we will

concentrate on distinguishing and curing the accompanying

ailments that happen/show side effects, in the leaves of the

tomato crop.

1. Septoria leaf spot 2. Late blight 3. Spider mites/Two

spotted spider mite 4. Early blight 5. Target Spot 6. Bacterial

spot Thus, our dataset consists 1000 images of each of the

above diseases in tomato plant leaves along with images of

healthy tomato leaves. Our work involves collecting tomato

leaf images, both healthy and infected, and analyzing them

for diseases/ symptoms using image processing. The

algorithm used in this work is a Convolutional Neural

Network (CNN) which are a part of the deep neural

networks and are mostly used in analysing visual images.

Some widely used CNN architectures are mentioned-

ResNet, GoogLeNet, AlexNet, VGGNet, LeNet.

Convolutional Neural Networks can be thought of as an

artificial brain at work, solving a number of problems that

are happening around us every day. It uses a huge variety of

multilayer perceptron that do not require much pre-

processing and collectively try to mimic a biological neural

network. The building blocks of a CNN are five different

layers, namely, 1. Convolutional layer 2. Rectified Linear

Unit layer 3. Fully connected layer 4. Pooling layer 5. Loss

Layer

1.2 Organization Profile

Zeboto is a Digital Marketing Company in Coimbatore We

provide optimized solution to your business needs in a cost

Paper ID: SR23508025906 DOI: 10.21275/SR23508025906 1078

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

effective manner. We are sure that the client will experience

the world class quality in our product and services. Our web

solutions are handled professionally to save on your precious

investment and time as per the global standards. Zeboto as a

company believes in hard work to become key service

provider with quality. We strive to carry this forward and

forge strong long- term relationships with our clients. We

are focusing on providing world-wide online solutions. We

create successful digital experiences that address our client’s

specific business goals and solve user challenges. We have

the team and skills to create a site that you will be proud to

show off, but our relationship and service are what make us

a company that you will love having as a partner. Our vision

is to be trusted & respected as a world-class web

development company in delivering and developing state-of-

the-art, innovative IT solutions for our clients to improve

profits as well as build efficiency.

2. Existing System

Diseases such as rust, bacterial infections, late blight etc can

plague the leaves of common crop plants. It is a common

occurrence in the agricultural sector. Detecting the diseases

and identifying their possible remedies is a cumbersome and

tedious task. It is also often inaccurate and requires expert

help. Farmers often lose out on their yields due to this.

Getting an expert to come down and manually check out the

leaves is time-consuming and often unreliable.

2.1 Disadvantages of the existing system

1) Not secure

2) It is not user friendly

3) Need lot of paperwork

4) It requires an internet connection.

5) It requires a large database.

2.2 Proposed System

In this project, we focus on creating a solution that would be

an easy fix for the leaf disease detection problems. We have

collected a large dataset consisting of images of healthy and

diseased leaves. We built a web app for the detection of the

disease a crop leaf is afflicted with, based on a picture of the

leaf. The app will make use of ML algorithms to analyze and

predict the disease a leaf has. It will use a model that has

been trained on pre-identified diseased leaf images. Based

on it, any newly encountered diseased leaf will be identified

by its disease. The input image can be either an uploaded

one or clicked through the phone camera. The output will be

the disease name it has been identified with. Thus, a

classification and identification of the disease is enabled. An

option to look up remedies for the disease will also be

provided. An additional option for a front-end is also made-

a Rest Api service that hosts a website to allow entering of a

picture name and displaying its output class.

Advantages of the proposed system

1) Provides a convenient, easy-to-use approach to identify

leaf diseases.

2) Reduces the need for human dependency in detecting and

remedying the disease.

3) Farmers can detect and remedy their crop leaves in an

efficient manner.

4) Increases crop production yield and quality.

5) It saves time and effort in the detection process.

6) Provides an accurate and reliable model for

identification.

7) Gives options for the user-interface. 8. Can be used to

detect uploaded images even in the absence of an internet

connection.

2.2.1 Problem Definition

The problem to be addressed in the tomato disease

identification project is the accurate and timely detection of

diseases that affect tomato plants. Tomato plants are

vulnerable to a range of diseases that can significantly

reduce crop yield and quality, including fungal, bacterial,

and viral infections. Early detection and timely treatment are

crucial to preventing the spread of these diseases and

minimizing their impact on tomato production. The

objective of this project is to develop an automated system

that can identify tomato diseases accurately and quickly. The

system should be able to detect multiple diseases and

provide recommendations for appropriate treatments based

on the identified disease. The system should be user-friendly

and accessible to tomato growers with minimal technical

expertise. To achieve this objective, the project will require

collecting a large dataset of tomato plant images that

includes both healthy plants and plants affected by various

diseases. This dataset will be used to train machine learning

models to accurately identify and classify different tomato

diseases. The trained model will be integrated into a user-

friendly application that can be used by farmers to identify

tomato diseases and receive recommendations for

appropriate treatment

2.2.2 Module Description

The tomato disease identification project can be divided into

several modules, each of which performs a specific task or

set of tasks. These modules include: 1. Image Acquisition:

The first module involves collecting high-quality images of

tomato plants that include both healthy plants and those

affected by various diseases. These images will be used to

train the machine learning models that will be used for

disease identification. 2. Image Pre-processing: The acquired

images will undergo several pre-processing steps to enhance

their quality, including resizing, normalization, and color

correction. This module is critical to ensure that the images

are of uniform quality, which will improve the accuracy of

the machine learning models. 3. Disease Identification: This

module uses machine learning models to identify tomato

diseases in the pre-processed images. The models will be

trained using a dataset of labeled images and will use

various computer vision techniques to detect disease

symptoms. 4. Disease Classification: Once a disease has

been identified in an image, this module classifies the

disease into a specific category. The classification process

involves comparing the identified disease symptoms with a

database of known tomato diseases and selecting the most

likely match. 5. User Interface: The user interface module is

responsible for providing an easy-to-use interface for tomato

growers to input images and receive disease identification.

This module should be intuitive and accessible to users with

minimal technical expertise. 6. Database Management: This

Paper ID: SR23508025906 DOI: 10.21275/SR23508025906 1079

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

module is responsible for managing the dataset of labeled

images and the database of known tomato diseases and their

treatments. It includes data storage, retrieval, and

management functions. Overall, the modules work together

to provide a complete and automated system for accurate

and timely identification of tomato diseases and

recommendations for appropriate treatments.

3. System Design

3.1 Input Design

CNN

A Convolutional neural network (CNN or ConvNet) is

utilized to deal with the issue articulation. It is a unique sort

of multi-layer NN that is intended to perceive visual

examples straightforwardly from pixel pictures alongside

least pre-handling. It is along these lines compelling in

picture arrangement situations.

Activation Function

CNNs likewise utilize Activation works that are utilized to

start up a reaction like the functions in the human mind

neurons. They trigger a response once aspecific edge limit

has been come to. We can look over various them for our

utilization, as Relu, Softmax, Sigmoid and so on. RELU - It

stands for rectified linear unit and is the most commonly

used activation function. Its use is very common in CNNs

and deep learning. It is a half-rectified function. f(z) denotes

a value that becomes zero when z is negative and becomes z

when the value of z is greater or equal to zero. Thus, this

function ranges from zero to infinity. The function is

monotonic in nature. The function should be used only in the

hidden layers. SIGMOID - This function has a curve that

looks like an S. It ranges from zero to one. Its most

applicable in situations that demand a prediction of

probabilistic output. The function is differentiable and

monotonic both. It shows low convergence. SOFTMAX -

This function is also called as the normalised exponential

function. It is most often used in the final layer of the neural

network. The output generated by it is large if the input aka

logit is large. It produces a small output for a small input. It

ranges from zero to one and is very useful in situations that

need an output range of probabilities.

Optimizers

An optimizer is used to improve the model to its best

capability by tampering with the weights in a neural

network. It takes into account the loss function. Often, they

face the issue of being stuck at the local minima. Basically,

it is the path we use to reduce the loss in a neural network. It

calculates and updates the parameters of the model in such a

way to cause minimum loss to the training. They fall in 2

types of categories-First Order Optimization - The loss

function is reduced or increased based on its gradient values

and parameters. It tells if the function is growing or reducing

at the point. Gradient Descent is the most common of all.

They are also famous for being quite fast. Second Order

Optimization - They use the 2nd order derivative to increase

or decrease the loss function. This approach is usually

unused as it is quite costly. It is useful to tell us about the

curvature. They are also better in case the performances are

compared. Few of the optimizers seen in practice are- 1.

Gradient descent 2. Adagrad 3. Adam 4. Stochastic gradient

descent

ADAM - It denotes adaptive moment estimation. It makes

use of the past to find out the current. This optimizer

basically adds parts of the previous gradients to the current

one. It has been very popular for its use in training NNs in

recent times. ADAGRAD - This optimizer is known for its

ability to have different learning rates in tune for individual

needs. That is, different weights may have varying learning

rates depending on need. However, the rates tend to reduce

over time. Even then, they are very popular for sparse

datasets. GRADIENTDESCENT - It is an iterative method

and is very popular. It adjusts the weights of the network

based on the gradients calculated. The gradient at a point can

be got by the differentiation with respect to theta.

STOCHASTIC GRADIENT DESCENT - This optimizer

uses a unit batch size for every iteration. Thus, it may be

good for multiple iterations but has a drawback of being

very noisy. It is also an iterative method and quite useful for

sparse Ml problems.

Loss Functions

It is used to find out how good the dataset is getting

modelled by the training process. It is aspired to keep a

minimum value for it for best results. This is also known as

a cost function. Some of them are - 5. Cross-Entropy 6.

Huber 7. Mean absolute error 8. Mean squared error

CROSS-ENTROPY - Used to measure for a classification

model with probability value lying between the range of

zero and one. As the prediction diverges from the label, the

loss is found to be increasing. An ideal model should have

zero log loss. HUBER - Used in regression cases. HINGE -

Found suitable for classification scenarios. MEAN

ABSOLUTE ERROR - It has been popularly used in

regression scenarios. It is defined as the sum of absolute

differences between the actual and predicted values. Hence,

the avg magnitude of errors is checked, without looking at

the direction. MEAN SQUARED ERROR - It denotes the

avg of the squared error of loss functions that are used for

least squares regression. Its the most commonly used for

regression scenarios. It denotes the sum of squared distances

of predicted and target values.

3.2 Output Design

OVERVIEW We make use of the Core Ml framework that is

found in Web, in conjunction with a ML model that has been

trained on any prior algorithm. This can be used to classify

the inputs. Another important framework used here is the

Vision framework that acts with the earlier one to enable

easier classification by Core Ml by subjecting the image data

set to some image processing. This app uses our custom

created model, to identify an image using three layers of

classification.

GETTING STARTED This code project runs on ubuntu, on

window 10 and above.

PREVIEW THE WEB APP The app can be seen in action

by building and running the project on Ubuntu, then making

use of the buttons in the app’s first screen to successfully

click a picture or to choose a picture from the photo library.

Paper ID: SR23508025906 DOI: 10.21275/SR23508025906 1080

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The app then uses the Vision framework to apply the Core

ML model to the inserted image, which is our input

parameter, and shows the result in the form of classification

labels. On the developer side we can also see the numbers

indicating the confidence level of each input parameter

(leaf’s picture) and its classification. It displays the

classification which is the culmination of all the

classifications based on confidence score.

Set Up Vision VIA Core ML

A file is generated by the CoreMc by default, which enables

easy access to the custom model.

Creation of an instance of a class and subsequent use of its

model property to create a VNCoreMLRequest request is the

way to go about in the process of setting up a Vision request.

After the request is run, the request object’s completion

handler is used to mention the method to get the results from

the model. Vision is tasked with scaling or cropping the

images to fit the Ml model, as each model needs the input

pictures to be in a fixed ratio, when in reality, the pictures

may be of varied aspect ratios. To ensure best performance,

the request’s imageCropAndScale- Option property is set in

accordance with the layout used in the training process of

the model.

Image Orientation

The images are converted to a proper orientation, so all the

images are in the same aspect ratio and thus pixel to pixel

image processing is applied equally on all the pixels of all

the images. We convert UIImages to CGImages in linux

because values of this type define the pixel coordinate origin

point as 0, 0 and the direction of the coordinate axes relative

to the indented display orientation of the image. These

values are taken from the image metadata.

Using Storyboards

Storyboards are used to enable prototypes and to facilitate

the creation of many view controllers, in the same file,

which is usually called Main.Storyboard. Before

Storyboards were launched, one had to create a UI using

XIB files and you could only create one file per view

(UICollectionViewCell, UIHeaderView or any other

UIView types). Their many advantages can be seen below: -

1. Connection of all the views using segues after laying them

out. It helps us generate a visual representation of the user

interface and the interaction between each element and

screen. 2. Description of the transition from one screen to

another is possible. Due to segues, we need to write less

code for our UI. 3. We have used tableview in our app to

represent the remedies for the diseases. Making tableview is

very easy using storyboard and static cells now, we can also

create dynamic cells for our custom use. 4. Auto Layout is

another feature that has been used in the app which enables

the use of mathematical functions to define relationships

among elements and also to give them dynamic, run-time

size and positing. This helps in making a dynamic user

interface for different screen sizes for different devices. 5.

Storyboards are written in XML which is a markup

language. So, one can either use

3.3 Testing Categories

Testing is a series of investigations or rather "tests''

conducted on unfinished products to reveal all quality and

vulnerability issues. It is used to confirm that the expected

and the predicted results are following suit as per the set

expectations. One or more properties is checked for in the

process of running a software part or the software in its

entirety. This process can be carried out either in person or

by the use of some tools. Both of them are very important in

combing out the bugs that are certain to cause loss to the

system. Losses caused due to testing are evident in many

cases like- Nissan cars, Starbucks, Bloomberg terminal in

London etc.

The testing process can be divided in various types:

Functional: -

1) Unit

2) Beta

3) System

4) Integration, etc.

Non-functional: -

1) Ability to use

2) How secure it is

3) Extent of its performance

4) Its installation process, etc.

Major types of testing taken into consideration are: -

Features:-

1) The model is tested for different images to check

accuracy of detection.

2) User entered image names are used as input.

3) The image is read using PILand resized to 256x256

before passing to the model.

Paper ID: SR23508025906 DOI: 10.21275/SR23508025906 1081

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4) We have a precision recall for all the images being

tested on the trained dataset.

1) Black box testing: It consists of a method which

involves the ignorance of the tester about any of the

system’s internal workings. He has no idea how either

the structure or the working of the project is being

carried out. As it is based on an oblivious tester, focus is

entirely the kind of inputs fed to system. It’s totally

dependent on the software needs demands. Some

common tools put into action for this testing are-

Selenium, Jmeter etc. The strategies used for these are-

Decision table, Boundary value, Equivalence class.

2) White box testing: It consists of a method which

involves the tester being abreast of all the system’s

internal workings. Here, the entire code can be clearly

seen by the user. The test cases are framed after taking

into consideration the system’s structure and the

program code in its entirety. The focus is entirely based

on the flow of the system in its working process. The

loopholes looked for here are- bad paths, predicted

output, security weak spots, inputs flow pattern, etc.

Other levels of testing are seen as: -

1) Unit testing: Here, the smallest parts of the system are

checked for any issues in its individuality.

2) Integration testing: Here, the various system parts are

consolidated and checked to see if they work fine even

after merging and getting connected to each other.

3) System testing: Done after the earlier mentioned

testing, here, the entire system is checked as a whole to

see if it is functioning well.

4) Acceptance testing: Here, the entire system is checked

to see it has its compliance with the mentioned needs

for the software and is working as per user demands

satisfactorily and does not miss out on any of them.

In our project: -

1) The trained model is tested with over 14 images in each

of the 7 classes. The 98 images are then checked for

accuracy using the existing labeled classes. It was found

that there was an accuracy of 91 per cent.

2) Apart from the testing of the model after the training,

testing was done on the web API.

3) Images were downloaded and tested on both the

interfaces. We found favorable results on both of the

front-end mechanisms.

4) The web app was also tested by clicking images using

the file uploader. Results were satisfactory in that case

too. The project was tested on various test-cases and the

result generated in the form of a table.

Dataset Loading

1) The dataset is imported into the Python Jupyter

notebook using Pytorchs’s modules like-

torchvision.datasets. ImageFolder and torch.utils.data.

Dataloader.

2) Data is split into training and testing parts.

3) Images are transformed using Pytorch’s transforms

module. They are converted to tensors and normalized.

4) Few images are displayed.

Neural Network Creation

1) A CNN is created consisting of 2 convolution sets and 3

FC layers

2) Filter size used is 5. Input image is of size 256x256 and

has 3 channels.

3) The activation functions used are Relu and Softmax.

4) The Optimizer used is Adam.

5) Loss function is CrossEntropyLoss().

Training and Model Saving

1) The epochs are run 5 times and running loss is

displayed every 50 mini-batches.

2) After training, the model is saved with a.pth extension.

3) The Trained dataset accuracy is around 91 percent.

4) This model is later converted to ml model extension.

Deployment to Web API

1) Flask is used in Python to create the Web Api.

2) A HTML file is made for thesite layout and the model

is invoked in a Python file.

3) User entered image name is sent fromHTML input to

Flask application.

4) There, model is invoked and predicted result is sent

back to Html to be displayed to user.

5) We use Crosss-Origin Resource Sharing (CORS)(app)

for cross-origin sharing.

6) The @app.route () functions are used to call upon the

requests.

7) Flask runs on port 5000 and site template on port 8005.

8) The entire data transfer is done in JSON format.

3.4 System Implementation

Training the dataset and creation of model:

We loaded the dataset and created a CNN. The data was

trained over the NN and the result saved as a model with.

pth extension. The first 2 layers of the NN used here are

based on the Le Net CNN architecture-proposed by Yann

Lecun in 1998. The NN has 2 Conv layers and 3 FC layers.

Relu and Softmax activation functions are used. Prediction

is done over 7 classes of Tomato leaf images for a dataset of

7000 images.

Testing the model:

The saved model was checked with multiple test images to

check the accuracy of the predictions.

Deployment of model over a Web Api:

The saved model was also deployed over a Web Api using

Flask, as an optional front- end for use. The data transfer

between the interfaces is in a \ac{JSON} format.

3.5 System Maintenance

Maintaining a software system for a tomato disease

identification project:

1) Regularly back up your data: Make sure to back up all

data and code regularly to avoid data loss in case of

system failure or errors. Store the backups in secure

locations, preferably on a separate physical device.

2) Keep your software up-to-date: Make sure that your

software components are updated regularly, including

Paper ID: SR23508025906 DOI: 10.21275/SR23508025906 1082

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

your operating system, web server, and any third-party

libraries that your project relies on.

3) Monitor your system: Monitor your system's

performance and usage to identify potential issues

before they cause problems. Use tools like monitoring

software, logs, and alerts to stay informed of any

problems or issues that arise.

4) Address security concerns: Be vigilant about security

risks and take proactive measures to address them. Use

encryption and authentication protocols to protect

sensitive data and ensure that access to the system is

secure.

5) Test and debug regularly: Test and debug your system

regularly to identify and fix bugs and issues. Use

automated testing tools to test your system's

functionality, performance, and security.

6) Document your system: Keep your system

documentation up-to-date to make it easier for other

developers to work on your system or to troubleshoot

issues that may arise.

7) Use version control: Use version control tools like Git

to manage changes to your codebase and to ensure that

you can roll back to a previous version if necessary.

8) By following these tips, you can help ensure that your

tomato disease identification project system is reliable,

secure, and effective in identifying tomato diseases

accurately.

4. Conclusion & Future Enhancements

4.1 Conclusion

This project proposes a CNN model to enable the detection

of the disease that has affected a given leaf image. A neural

network was built and trained upon the data set. The

generated model was saved and tested. The model is further

deployed in 2 ways as an WEB app and as a Rest Api.

Python was used to develop the model. The dataset consisted

of 7 classes of images, each of size 256x256. In total, there

were 7000 images in the data set.

A user can upload the image to be checked on the web app

and view the predicted disease type and the suggested

remedies too. Another alternative method to use the model is

through the Rest Api, where the user enters the name of the

image file to check, on the site and the result is displayed on

the site itself. The project model can be used to aid farmers

in identifying the diseases that plague their crop/leaves and

lead to a timely and convenient detection process. It is

beneficial for botany students and people who take

gardening as a passion. These people can get real- time

disease detection and remedy solutions provided to them. It

saves up a lot of time and money. It is beneficial in

education people about how to take care of their plants in

less time possible. Calling a specialist and waiting for him to

analyze and then go ahead with a remedy can sometimes be

too late and lead to major loss of crops.

4.2 Future Enhancement

There can be a lot of future enhancements in this project that

can help us serve our purpose better. Some of them can be:

1) In terms of neural network, modifications can be done

by adjusting with different optimizers and loss

functions. An increase in the number of layers can also

be done.

2) The scope of the number of diseases can be increased

for a more expanded view on the subject by training

the algorithm to accommodate a wide range of food

and cash crops.

3) A different architecture can also be used for

implementing neural network such as Artificial Neural

Network.

4) More machine learning algorithms can be used to

increase the accuracy of disease detection.

5) An android application can also be created, which

caters to a large user base.

References

[1] Mrunalini R. Badnakhe and Prashant R. Deshmukh,

“An Application of K-Means Clustering and Artificial

Intelligence in Pattern Recognition for Crop Diseases”,

pp. 135-137, 2011.

[2] Manisha Bhangea and H.A Hingoliwala, “Smart

Farming: Pomegranate Disease Detection Using Image

Processing”, 58 pp. 280 – 288, 2015.

[3] Jagadeesh D. Pujari, Rajesh Yakkundimath and

Abdulmunaf S.Byadgi, “Image Processing Based

detection of Fungal Diseases in Plants”, 46 pp. 1802 –

1808, 2015.

[4] Pranjali B. Padol and Anjali A. Yadav, “SVM

classifier based grape leaf disease detection”, pp. 3288-

3294, 2016.

[5] ArtiN. Rathod, Bhavesh Tanawal and Vatsal Shah,

“Image Processing Techniques for Detection of Leaf

Disease”, pp. 397-399, 2013.

[6] Sanjay B. Patil and Dr. Shrikant K. Bodhe, “Leaf

Disease Severity Measurement Using Image

Processing”, pp. 297-301, 2011.

[7] Smita Naikwadi and Niket Amoda, “Advances in

Image Procesing For Detection of Plant Diseases”, pp.

168-175, 2013.

[8] Anand.H.Kulkarni and Ashwin Patil R. K., “A plying

image rocessing techni ue to detect plant diseases”, pp.

3661-3664, 2012.

[9] Amar Kumar Dey, Manisha Sharma and

M.R.Meshram, “Image Processing Based Leaf Rot

Disease, Detection of Betel Vine”, pp. 748-754, 2016.

[10] activation functions and its types which is better:

https://towardsdatascience.com/

[11] activation-functions-and-its-types-which-is- better

a9a5310cc8f.html

[12] image classifier using cnn

https://www.geeksforgeeks.org/image-classifier-using-

cnn/.html

[13] cnn architectures types

https://medium.com/@RaghavPrabhu/cnn-

architectures- lenet- alexnet-vgg-googlenet-and-resnet-

7c81c017b848.html.

Paper ID: SR23508025906 DOI: 10.21275/SR23508025906 1083

https://towardsdatascience.com/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[14] flask documentation https://flask-

restful.readthedocs.io/en/latest/.html

[15] fetch api

documentation:https://developer.mozilla.org/enUS/doc

s/Web/API/Fetch- API.html optimizers cheatsheet

https://ml-

cheatsheet.readthedocs.io/en/latest/optimizers.

[16] adam-optimization-algorithm-for-deep-learning

https://machinelearningmastery.com/adam-

optimization-algorithm-for-deep- learning/

[17] train-test-split-and-cross-validation-in-python,

https://towardsdatascience.com/train- test-split-and-

cross-validation-in-python- 80b61beca4b6/

[18] pytorch-tutorial,

https://www.analyticsvidhya.com/blog/2018/02/pytorc

h-tutorial

[19] pytorch-tutorial-distilled,

https://towardsdatascience.com/pytorch-tutorial-

distilled- 95ce8781a89c.

[20] designing-a-restful-api-with-python-and-flask,

https://blog.miguelgrinberg.com/post/designing-a-

restful-api-with-python-and- flask.

[21] Designing a restful api in flask,

http://blog.luisrei.com/articles/flaskrest.html.

[22] Conversion to model,

https://developer.apple.com/documentation/

coreml/converting/trained/models/to/core/ml.

[23] Core-ML,

https://www.google.com/search?q=core+mloq=core+m

laqs=chrome...69i57j0 l5.2

175j0j4sourceid=chromeie=UTF-8.

[24] Vision,

https://developer.apple.com/documentation/vision

[25] Pytorch to coreML conversion,

https://medium.com/@alexiscreuzot/building-a-

neural- style-transfer-app-on-ios-with-pytorch-and-

coreml-76e00cd14b28

[26] Modeltesting in Xcode,

https://www.appcoda.com/create-ml/

[27] Machine Learning in iOS,

https://developer.apple.com/machine-learning/

[28] CoreML in your app,

https://developer.apple.com/documentation/coreml/inte

grating-a- core-ml-model- into-your-app

[29] CoreML in iOS 11, https://www.raywenderlich.com/

577-core-ml-and-vision- machine- learning-in-ios-11-

tutorial

[30] Machine Learning in iOS 11,

https://www.raywenderlich.com/ 577-core-ml-and-

vision- machine-learning-in-ios-11-tutorial

Paper ID: SR23508025906 DOI: 10.21275/SR23508025906 1084

