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Abstract: This paper investigates the problem of vertical vibration control of an active vehicle suspension system. An active suspension 

system is a possible way to improve suspension performance. This paper illustrates the design of an output feedback H∞ controller and 

state feedback H∞ controllers in the entire frequency range as well as in finite frequency range for an active suspension system. The 

H∞ performance is used to measure ride comfort so that more general road disturbances can be considered. Human body is much 

sensitive to vibrations of frequency 4 - 8 Hz in the vertical direction. The main objective is to reduce the body vertical vibration in this 

frequency range using an active suspension system. By using Generalized Kalman - Yakubovich - Popov (KYP) lemma, the H∞ norm 

from the disturbance to the controlled output is reduced in the particular frequency band. A state feedback controller is designed in the 

framework of linear matrix inequality (LMI) optimization. In addition, the time domain constraints are guaranteed in the controller 

design. A quarter car model with active suspension system is considered in this work and the effectiveness of the approach is illustrated 

by using simulations.  
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1. Introduction  
 

Vehicle suspension has been a hot research topic due to their 

important role in vehicle performance. Performance 

requirements for vehicle suspension include ride comfort, 

road holding suspension deflection and actuator saturation. 

However these requirements are often conflicting and a 

compromise of the requirements must be reached.  

 

Vehicle suspension basically consists of wish - bone, spring 

and shock absorber to transmit and also filter all forces 

between body and road. The spring carries the body mass 

and isolates the body from the road disturbances and thus 

contributes to ride comfort. The damper contributes to both 

driving safety and comfort. Its task is the damping of body 

and wheel oscillations. For obtaining these performances, 

many type of suspension systems, such as passive, semi - 

active and active suspension, have been developed. Among 

these types, active suspension system is a possible way to 

improve suspension performance by overcoming the conflict 

between ride comfort and road handling.  

 

Unlike conventional passive suspension, in active vehicle 

suspension systems the external excitation is counteracted 

with the generation of a control force depending on the 

vehicle response through an actuator driven by an external 

energy source. The main concept is use an active suspension 

to reduce the vibration energy of the vehicle body induced 

by the road excitation, while keeping the vehicle stability 

within an acceptable limit. A lot of efforts have been made 

to develop models for suspension systems and to define 

design specifications that reflect the main objectives. Many 

active suspension control approaches are proposed, based on 

various control techniques such as linear quadratic Gaussian 

control [5], adaptive and nonlinear control [6], active fault - 

tolerant control [7], fuzzy logic and neural network control, 

µ control [8], velocity feedback control [9], sliding mode 

control [10] and H∞ control. In particular, active suspension 

systems using H∞ control have been intensively discussed in 

the context of robustness and disturbance attenuation, and 

they have been well recognized to be an effective way to 

manage the tradeoff between conflicting performance 

requirements.  

 

For the active suspension systems, the main task is to design 

the controller which can stabilize the vertical motion of the 

car body and isolating the force transmitted to the 

passengers. Most of the reported approaches are aiming to 

improve ride comfort and are considered in the entire 

frequency domain. However, active suspension system may 

just belong to certain frequency band, and ride comfort is 

known to be frequency sensitive. From the ISO2361, the 

human body is much sensitive to vibrations of 4 – 8 Hz in 

the vertical direction. Hence the development of H∞ control 

in finite frequency domain is significant for active 

suspension system.  

 

Frequency gridding can be used to grid the frequency axis. 

In this case infinitely many frequency domain inequalities 

(FDI) are approximated by a finite number of FDIs at 

selected frequency points. This approach has a practical 

significance especially when the system is well damped and 

the frequency response is expected to be smooth. But it lacks 

a rigorous performance guarantee in the design process.  

 

In this paper, a finite frequency output feedback H∞ 

controller is designed by incorporating weighting functions. 

In the H∞ frame work, weighting functions allow for 

frequency informations to be incorporated into the analysis. 

But the additional weights increase the system complexity 

and the process of selecting appropriate weights is time - 

consuming. Another approach that avoids both weighing 

functions and frequency gridding is to generalize the 

fundamental machinery, the Kalman - Yakubovich - Popov 

(KYP) lemma approach. The standard KYP lemma 

establishes the equivalence between a frequency domain 

inequality for a transfer function and a linear matrix 

inequality (LMI) associated with its state space realization. 
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However the standard KYP lemma is applicable for the 

infinite frequency range. A very significant development 

made by Iwasaki and Hara is the generalized KYP lemma 

[11]. It establishes the equivalence between a frequency 

domain property and an LMI over a finite frequency range 

allowing designers to impose performance requirements 

over finite or infinite frequency ranges. The generalized 

KYP lemma is very useful for the analysis and synthesis 

problems in practical applications.  

 

Unlike the conventional H∞ controllers, we present a design 

of H∞ controller over a finite frequency range. Initially with 

the help of weighting functions, an output feedback H∞ 

controller is designed. In addition to this an H∞ controller for 

finite frequency range by using the generalized KYP lemma 

is designed. The time - domain constraints (road holding, 

suspension deflection and actuator saturation) are guaranteed 

in the controller design [1]. By using the generalized KYP 

lemma, the frequency domain inequalities are transformed 

into linear matrix inequalities, and to design a state feedback 

control law based on matrix inequalities such that the 

resulting closed loop system is asymptotically stable with a 

prescribed level of disturbance attenuation in certain 

frequency domain.  

 

The rest of this paper is organized as follows: The problem 

to be solved is formulated mathematically in Section II, and 

the controller designs using output feedback and state 

feedback are presented in Section III. Section IV illustrates 

the usefulness and advantage of the proposed methodology 

through simulations. Finally, Section V concludes the paper.  

 

2. Problem Formulation 
 

A vehicle active suspension system controller is to be 

designed such that the body vertical acceleration is reduced. 

For analysis, we choose a quarter - car model as shown in 

Fig.1. Here ms is the sprung mass, which represents the car 

chassis; mu is the unsprung mass, which represents the mass 

of vehicle’s components that are not supported by the spring 

(wheel assembly); cs and ks are damping and stiffness of the 

passive suspension system, respectively; ct and kt stand for 

the damping and compressibility of the pneumatic tire, 

respectively; zs and zu are the displacements of the sprung 

and unsprung masses, respectively; zr is the road 

displacement input; u represents the control force. In this 

brief the effect of actuator dynamics is neglected and is 

modeled as an ideal force generator.  

 

The ideal dynamic equations of the sprung and unsprung 

masses are given by [1] 

 

 
Figure 1: Quarter - car model with an active suspension 
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The state variables are chosen as:  

           

       tztxtztx

tztztxtztztx

us

ruus

 



43

21

                 ,

      ,

 
 

where x1 (t) denotes the suspension deflection, x2 (t) is the 

tire deflection, x3 (t) is the sprung mass speed and x4 (t) 

denotes the unsprung mass speed. The disturbance input is 

defined as w (t) = 
)(tzr


. Then, by defining 

 Ttxtxtxtxtx )()()()()( 4321
 and the dynamic equation in 

(1) can be rewritten in the following state space form:  
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The main objective for vehicle suspension systems is the 

improvement of ride comfort and is closely related to the 

body acceleration in frequency band 4 - 8 Hz. For this, it is 

important to keep the transfer function from the disturbance 

input w (t) to car body acceleration 
)(tzs


 as small as 

possible over the frequency band 4 - 8 Hz [1].  

 

In order to make sure the car safety, we should ensure the 

firm uninterrupted contact of wheels to road, and the 

dynamic tire load should be kept small, that is 

      gmmtztzk usrut 
.  

 

Because of the mechanical structure, the suspension stroke 

should not exceed the allowable maximum, that is 
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    maxztztz us 
, where maxz

is the maximum 

suspension deflection. Another hard constraint imposed on 

active suspensions is from the limited power of the actuator, 

that is 
  maxutu 

.  

 

According to the above conditions, we choose the H∞ norm 

as performance measure and the body acceleration 
)(tzs


 as 

performance output, and suspension stroke and relative 

dynamic tire load as controlled outputs 
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Therefore, the vehicle suspension control system can be 

described by 
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Where A, B1 and B2 are defined earlier, and 
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Consider G (jω) as the transfer function from the disturbance 

inputs w to the controlled output z1 (t). The finite frequency 

H∞ control problem is to design a controller such that the 

closed - loop system guarantees that the transfer function 

from w (t) to car body acceleration 
)(tz s


is as small as 

possible over 4 to 8 Hz.  

 

In addition, from the safety and mechanical structure point 

of view, the constraints 

 
  2 ,1  ,1)(  ,)( 2max  itzutu

i          (5)  

need to be guaranteed.  

 

3. Controller Design 
 

3.1 Output Feedback Controller Design 

 

For the active suspension system given in (4), an output 

feedback H∞ control problem is formulated to find an 

internally stabilizing controller to minimize the H∞ norm of 

the closed loop transfer function from the disturbance input 

to controlled output z1 (t). That is 







)(sup jG
                (6)  

where γ > 0 is a prescribed scalar.  

 
Figure 2: Standard system configuration 

 

Standard feedback configuration using an H∞ controller is 

shown in Fig.2. The signals w, u, z and y are vector - valued 

signals; w (t) contains all exogenous inputs, such as 

disturbances; u (t) is the control signal generated by the 

controller K (s); z (t) is the controlled output and y (t) is the 

measured output used by the controller to generate u (t). It is 

supposed, that transfer matrices G and K are real rational 

and proper with K constrained to provide internal stability. 

Suppose that the realizations G and K are stabilizable and 

detectable, then a standard suboptimal H∞ control problem is 

to find all admissible controllers K (s) such that 

.)(  
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The output feedback control law is given by 

)()( tysKu 
                     (7)  

 

where K (s) is the feedback controller to be designed. Let  
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By combining (7) with (4), the closed - loop system is 

obtained by 
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Using weighted performance specification has certain 

advantages in system design. First of all, some components 

of a vector signal are usually more important than others. 

Secondly, each component of the signal may not be 

measured in the same matrix. Also we might be interested in 

rejecting errors in a certain frequency range, hence some 

frequency dependent weights must be chosen. So the 

weighting functions allow for frequency information to be 

incorporated into the design. The weighting functions reflect 

the frequencies at which different input - output pairs of the 

transfer function matrix Tzw are sought to be minimized. The 

performance objectives are achieved by minimizing the 

weighted transfer function.  
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Figure 3: Quarter - car model with weighting functions 

 

A block diagram of the H∞ control design interconnection 

for the active suspension problem is shown in Fig.3. The 

weight Wn serves to model sensor noise in the measurement 

channel and is chosen as equal to 0.01 for this problem. The 

weight Wd is chosen to reflect the frequency content of the 

disturbance w. Here it used to scale the magnitude of road 

disturbances and assume the maximum road disturbance is 

7cm/s and hence choose Wd =0.07.  

 

The weighting matrix Wz1 is used to reflect the requirements 

on the shape of certain closed loop transfer functions. Here it 

is used to keep the car body vertical acceleration small over 

the desired frequency range. The weight magnitude rolls off 

at low frequency and flattens out at a small at high 

frequency. Similarly, Wu is used to reflect some restrictions 

on the control or actuator force. Here the magnitude and 

frequency content of the control force are limited by the 

weighting function Wu.  

 

The augmented plant model is obtained by using sysic 

command from Robust Control Toolbox in Matlab. Then the 

H∞ controller is synthesized for the weighted plant by using 

Matlab commands, which minimizes ║Tzw║∞ under the 

constraint that K (s) internally stabilizes the plant.  

 

3.2 State Feedback Controller Design 

 

In this section, the problem formulated as shown in (4) is 

solved by using state feedback approach. The main 

advantage of using state feedback controller is that, we can 

control the unstable modes of a system by using states which 

are uncontrollable from the output. In H∞ state feedback 

controller, pole placement can be done so as to minimize the 

H∞ norm of the system. For the system shown in (4) the 

following assumptions are made:  

1) (A, B2) is stabilizable;  

2) There is a matrix D┴ such that [D12 D┴] is unitary;  
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 has full column rank for all ω. Then a 

standard suboptimal H∞ control problem can be 

formulated to find all admissible controllers K (s) such 

that 
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 It is assumed that all the state 

variables can be measured, and we consider a state 

feedback case with 

 )()( tKxtu                         (9)  

where K is state feedback gain to be designed. By combining 

(9) with (4), the closed - loop system is given by 
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In this section we have to design a controller which can 

ensure the transfer function from the disturbance input w (t) 

to the controlled output z1 (t) as small as possible over the 

entire frequency range, while the time domain constraints 

(5) are guaranteed.  

 

The lemmas used in the paper are given below:  

 

Lemma I (KYP Lemma) [4]: Consider the linear system 

),,,( DCBA . Given symmetric matrix ∏, and 

scalar 
, then the following statements are equivalent.  

(1) The frequency domain inequality  
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(2) There exist symmetric matrix P > 0 such that the LMI 
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The above lemma gives the design process of the state 

feedback controller over the entire frequency range.  

 

Let γ and ρ be given. A state feedback controller in the form 

of (9) exists, such that the closed loop system in (10) is 

asymptotically stable with w (t) =0, and satisfies 
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)( jG
for all nonzero 
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Considering V (t) =x
T
 (t) P1x (t) as the energy function, and 

we have 
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where λmax (.) represents the maximum eigenvalue. Then the 

constraints in (5) hold if  
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By Schur complement inequality (15) can be written as  
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 If the inequalities (13), (16) and (17) have a set of feasible 

solution, the controller gain K is given by 
1

1 .


 PKK
  

 

3.3 Finite Frequency Controller Design 

 

In this section the design of a controller which can ensure 

the transfer function from the disturbance input w (t) to the 

controlled output z1 (t) as small as possible over the 

frequency band 4 - 8 Hz, while the time domain constraints 

(5) are guaranteed is discussed. In the following, we will 

investigate how to design a desired controller for the 

suspension system and we use the following lemma 

Lemma II (Generalized KYP Lemma [11]: Consider the 

linear system
),,,( DCBA

. Given symmetric matrix ∏, and 

scalars 
21,

, then the following statements are 

equivalent.  

 (1) The finite frequency inequality  
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where ωc= (ω1+ω2) / 2 and ∏12, ∏22 are the upper right and 

lower right block matrices of ∏.  

 

 By using GKYP lemma, Projection Lemma [15] and 

Reciprocal Projection Lemma [15] the finite frequency H∞ 

control problem is formulated to minimize the H∞ norm from 

the disturbance inputs to the controlled output over the fixed 

frequency band ω 1≤ ω ≤ ω2. We can use the following 

theorems [3] as well, for the design of the controller.  

 

Theorem 1: Let γ, η and ρ be given. A state feedback 

controller in the form of (9) exists, such that the closed loop 

system in (10) is asymptotically stable with w (t) =0, and 

satisfies 
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21
)( jG

for all nonzero ],0[2 L , 

while the constraints in (5) are guaranteed with the 

disturbance energy under the bound wmax = (ρ - V (0)) /η, if 

there exist symmetric matrices P, P1>0, Q1>0 and general 

matrix F satisfying 
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where ωc= (ω1+ω2) / 2 is given.  

 

The constraints given in (22) and (23) involve the forms of 

FBK, and then the resulting feasibility problem is nonlinear. 

LMI optimization technique cannot handle nonlinear 

problems. By congruence transformation with J1=diag{F
 - 1

, 

F
 - 1

, F
 - 1

, I}, J2=diag{F
 - 1

, F
 - 1

, I, I}, J3=diag{I, F
 - 1

}, we can 

convert (22) - (25) to linear inequalities.  

 

Defining 
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the following theorem is obtained.  

 

Theorem 2: Let γ, η and ρ be given. A state feedback 

controller in the form of (9) exists, such that the closed loop 

system in (10) is asymptotically stable with w (t) =0, and 

satisfies 









21
)( jG

for all nonzero 

],0[2 L , while the constraints in (5) are guaranteed 

with the disturbance energy under the bound wmax = (ρ - V 

(0)) /η, if there exist symmetric matrices 0,0, 1  QPP  

and general matrix F satisfying 
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If the inequalities (26) - (29) have a set of feasible solutions, 

the controller gain K is given by 

 
1 .  FKK                               (30)  

 

4. Simulation Results 
 

In this section, we provide an example to illustrate the 

effectiveness of the finite frequency H∞ controller design 

method. The quarter - car model parameters are listed in 

Table I. The output feedback H∞ controller is designed with 

weighting functions selected as shown below 
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Then the H∞ controller for the weighted system is obtained 

by using Robust Control Toolbox in Matlab. The controller 

K (s) is obtained as 

 









































21.3563.209.5229.527.4738.766

9.92525.793.3318.3658332021310

298,3315.129.2624.2618564.383

1456.01644.0254.3286.341093.47

07*97.80102.3880

0568.0011256.00

e

AK

 

 

 0

68.15124.761.5193.614118.360   ,

131.6

0

3.443

63.57

55.50

03341.0


































K

KK

D

CB

 
 

Table I: Quarter - Car Model Parameters 
 ms mu ks kt cs ct 

320kg 40kg 18kN/m 200kN/m 1kNs/m 10Ns/m 

 

 
Figure 4: Frequency response of body vertical acceleration 

 

  

The closed - loop performance of the suspension system is 

analyzed using this controller and this controller is denoted 

as Controller I.  

 

Then the H∞ state feedback controller over the entire 

frequency range is designed based on the assumption that all 

the state variables can be measured. Solve the matrix 

inequalities (13), (16) and (17) using the LMI Control 

Toolbox in Matlab with zero initial conditions for matrices 

K and  01 P  with the optimized parameter γ > 0. 

Constraints are given using the command lmiterm and 

finally the controller is synthesized using the command 

feasp. Then we get the feasible values of the LMI variables 

and the controller gain 
1

1 .


 PKK E is obtained as 

 04.0093.0536.029.1104 EK
 

 

and we denote this controller as Controller II for brevity.  

 

A state feedback H∞ controller in the finite frequency 

domain for the system (4) is designed based on the 

assumption that all the state variables can be measured. 

Solve the matrix inequalities (26) - (29) using the LMI 

Toolbox in Matlab with zero initial conditions for matrices 

0 and 0, 1  QPP  with the optimized parameter γ > 0 and 

ω1=4 Hz, ω2=8 Hz, ρ=0.9, η=10, 000, zmax=100 mm, 

umax=2500 By solving the convex optimization problem 

formulated in the above section, the minimum guaranteed 

closed - loop H∞ performance obtained is γ=2.46. Then an 

admissible control gain matrix is  
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Figure 5: Time - domain response of body vertical 

acceleration 

  

 6114.0205.0543.0905.0104 FK  
 

we denote this finite frequency controller as Controller III.  

 

In the following, we will illustrate the performance of the 

closed - loop suspension system. By the simulation, the 

frequency response of the open - loop system, the closed - 

loop system with Controller I, Controller II, and Controller 

III are compared in Fig.4. The dashed, dotted, and dash - 

dotted lines are the frequency responses of the suspension 

system with finite frequency controller, entire frequency 

controller, and output feedback controller respectively, and 

the solid line is the response of the passive system. From 

Fig.4, we can see that the finite frequency controller yields 

the least value of H∞ norm over the frequency range 4 - 8 

Hz, compared with the others, which clearly shows that 

improved ride comfort has been achieved.  

 

Time - domain performance characteristics are critical to the 

success of the active suspension systems. Time response 

plots of the three H∞ controllers are shown in following 

figures. The dash - dotted, dotted and dashed lines 

correspond to the suspension system with, H∞ Controller I, 

Controller II and Controller III respectively. All responses 

correspond to the road disturbance w (t):  
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tw
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 (29)  

 

where A = 0.5m, f = 5 Hz, and T=0.2 s. The time - domain 

response of body vertical acceleration for the active 

suspension system is shown in Fig.4 and 5. We can clearly 

see that the vertical body acceleration is less for the system 

with finite frequency controller. Fig.5 shows the ratio x1 (t) 

/zmax, the relation dynamic tire load kt. x2 (t) / zmax, and the 

force of the actuator. From the figure, it is found that the 

actuator force is less than the maximum bound umax, which  

means the time domain constraints are guaranteed by the 

Controller III.  

 

 
Figure 6: Time - domain response of constraints for active 

suspension system. 

 

From Fig.5 it is found that the response of the finite 

frequency controller is better than the response of the system 

with weighting functions. The body vertical acceleration is 

also gets reduced in finite frequency system. The time 

domain characteristics such as dynamic tire load and 

suspension deflection are quite satisfactory with Controller I. 

The closed - loop system with this controller also gives 

satisfactory result and the method is effective. But, the 

choice of weighting function is quite time consuming, 

especially when the designer has to shoot for a good tradeoff 

between the complexity of weights and the accuracy in 

capturing desired specifications.  

 

From Fig.6, we found that larger actuator forces are needed 

for finite frequency controller than the entire frequency 

controller. The reason is that the finite frequency control 

requires more force to match the finite frequency features. 

All other time domain constraints are satisfied by both 

systems.  

 

A state feedback H∞ control based on generalized KYP 

lemma is a more reliable and convenient method to deal with 

problems in the finite frequency domain. This method 

avoids the usage of weighing functions. The improvement in 

ride comfort has been achieved with the finite frequency 

controller.  
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5. Conclusions 
 

This paper investigates the problem of finite frequency H∞ 

control with time domain constraints for active vehicle 

suspension systems using weighting function method and in 

the frame work of LMI optimization. By using both the 

methods we can reduce the body vertical acceleration in the 

4 - 8 Hz domain. Using Generalized KYP lemma, the ride 

comfort has been improved by minimizing the H∞ norm in 

specific frequency band, and the time domain constraints 

have been guaranteed. The effectiveness of this approach 

has been shown by the analysis and simulation of a given 

quarter car model. The finite frequency H∞ controller design 

can be done by considering the actuator dynamics as a future 

work.  
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