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Abstract: In this research paper, we developed and analysis a mathematical model of hepatitis C virus transmission we formulated and 

investigated using ordinary differential equations and a Susceptible-Infected- Removed model with partitioned population across disease risk 

factors. The feasible region of the model was verified and the positivity of the solutions was shown. The Disease Free Equilibrium and 

the Endemic Equilibrium are obtained. The basic reproduction numbers of the model are computed and analysed and both the local and 

global stability of the disease free and endemic equilibrium are shown. The model was implemented and verified with simulation across 

various population partitions. 
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1. Introduction 
 

“Hepatitis C is the disease caused by the hepatitis C virus 

(HCV). The infection causes acute and chronic infection, 

running in seriousness from a gentle disease enduring half a 

month to a genuine, long lasting sickness” [8]. Hepatitis C 

infection (HCV) is a typical reason for liver sickness and a 

significant general medical issue around the world. More than 

two decades ago, HCV was recognized and the chance of 

screening blood items for sullying with hepatitis C emerged 

[4]. 

 

The Hepatitis C virus is a problem found across the world. 

Hepatitis C is a blood- borne disease that can be contracted 

whenever there is an exposure to a contaminated blood. 

Globally about 170 million people are infected by the disease 

[1]. Transmission of hepatitis C infection occurs by 

introduction to the blood stream of contaminated blood or 

body liquids containing blood. “The major route of 

transmissions includes unprotected sexual contact, blood 

transfusions, re-utilization of tainted needles and syringes, and 

vertical transmission from mother to child amid labor” [4]. 

The World Health Organization (WHO) indicates that the 

“most affected regions are the WHO Eastern Mediterranean 

Region and the WHO European Region, with an estimated 

prevalence in 2015 of 2.3% and 1.5% respectively” [8]. 

Mathematical modeling and scientific visualization helps 

characterize issues, under- stand information, impart and 

evaluate comprehension, and forecast outcomes. Use of a 

deterministic compartmental model provides methods for 

exploring elements of viral trans- mission and its control among 

the various susceptible and infected population subgroups. A 

deterministic compartmental model thus serves as a research 

tool for development of epidemiological information. A 

particular epidemiological parameter of interest is the “energy 

of contamination”. This is the normal rate at which susceptible 

people become infected. In an open populace where people are 

tracked after initial infection with HCV disease and when they 

become chronic, the energy of contamination can be 

determined. 

 

Over the last two decades, numerous mathematicians have 

investigated numerical models on the transmission and control 

of hepatitis C infection. This includes Dontwi et al.[4], 

Lemon and Brown [5], Nowak et al. [6], and Hickman [7], 

who have utilized a variety of numerical models to assess 

and control the spread of hepatitis C infection. 

 

2. Model Formulation 
 

In this model develops and analyses a mathematical model 

of transmission dynamics of hepatitis C infection. Before the 

formulation of the model, the population is subdivided into 

the following epidemiological classes or subgroups namely: 

susceptible  S t , acutely infected  A t , chronically infected

 C t , and recovered  R t ; where susceptible is the group 

of individuals in the total population who are not yet infected by 

the disease, acutely infected are the group of individuals 

infected but are not yet highly infectious, chronically infected 

are the individuals infected by the disease and are very 

infectious, and recovered are individuals who have respond to 

treatment and are cured. Thus the total population  N t s 

given by          N t S t A t C t R t    . The 

susceptible individuals are recruited into the population 

through birth and migration at a constant rate  .A 

susceptible individual becomes exposed to the hepatitis C 

virus after coming into contact with an infected persons and 

transfer to the acute infected state at a rate C , where C
is the product of the effective contact rate and probability per 
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contact with an infectious person. A susceptible individual 

can die of a cause unrelated to HCV at the rate  After a 

while the initially infected (exposed) but not symptomatic 

individual may show symptoms and move to infected 

(symptomatic) chronic class at a rate  or may be treated and 

move to the recovered class at a rate  . Individuals in this 

class can die naturally at a constant rate  . Individuals in the 

chronic infected and symptomatic class will either die of the 

disease at the rate  or die naturally at the rate  or get 

treated and recover from the disease at the rate and move 

into recovered class. The corresponding mathematical 

equations of the schematic diagram can be described by a 

system of ordinary differential equations given below: 

 

 
Figure 1: The Flow Diagram 

 

Table 3.1: Notation and definition of variables and 

parameter 
Symbol Description 

 S t  Susceptible individuals at time, t 

 A t  Acutely infected individuals at time, t 

 C t  Chronically infected individuals at time, t 

 R t  Recovered individuals at time, t 

 N t  Total population at time, t 

  Constant recruitment rate 

  Contact rate at which susceptible become infected 

  Death removal rate due to other causes other than HCV 

  Death rate due to HCV 

  The rate at which acutely infected recover 

  Treatment rate for chronically infected 

  The rate at which acutely infected becomes chronic. 

 

2.1 The Model Equations 

 

From the assumptions and the dynamics between the 

compartments shown in the model compartments in figure 1, 

the effect of immunization on the epidemiology of hepatitis 

C virus is modeled by the following system of ordinary 

differential equations; 

 

 

 

dS
C S

dt

dA
CS A

dt

dC
A C

dt

dR
A C R

dt

  

   

   

  


   


   


   


  


   (1) 

 

Analysis of the Model Equations 
 

Theorem 1: (Invariant Region) The following biological 

feasible region of the model equations (1) 

         4, , , :S A C R S t A t C t R t



        (2) 

Is positively invariant. 

Proof: Adding all the equations model in (1) we have 

dN dS dA dC dR

dt dt dt dt dt
      (3) 

 
dN

S A C R C
dt

        (4) 

So that  

dN
N

dt
       (5) 

It follows from the Gronwall inequality  

        0 1
t t

N t N e e
 



 
    (6) 

Hence  N t



 if  0N




   (7) 

 

Thus   is positively invariant, and therefore the model 

equation (1) is epidemiologically and mathematically well 

posed. 

 

Theorem 2: (Positivity of the solution for the model) If we 

let 
0 0t  ,      0 0, 0 0, 0 0S A C   and  0 0R 

then the solutions      , ,S t A t C t and  R t of the model 

equations in (1) are positive for every 0t   

 

Proof: We will prove      , ,S t A t C t and  R t a 

repositive in
4

 for all  00,t t . 

 

Note that all model parameters are positive. It follows from 

the first equation in (1) that 

 

 
dS

SC S C S
dt

           (8) 

So that we have  

   
 

0 0.
C dt

S t S e
      (9) 

Also we can show from the second equation in (1) that is  
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   
dA

SC A A
dt

             
  

 (10) 

So that  

   
 

0 0.
dt

A t A e
           (11) 

Similarly, it can be verified that the rest of the equations are 

positive for all 0t  , since  0e    . 

 

3.3 Disease Free Equilibrium State 

 

The disease-free equilibrium of the model (1) is obtained by 

setting 

0
dS dA dC dA

dt dt dt dt
       (12) 

 

n this case there is no disease: 0A C R   . Hence, the 

DFE of our equation is given by: 

 0 0 0 0 0, , , ,0,0,0E S A C R




 
   

 
 (13) 

 

3.4 Basic Reproduction Number
0R ,  

 

Diekmann et. al. [3] defines the basic reproduction number,
0R , 

as the average number of secondary infections caused by an 

infectious individual during his or her entire life as an 

infectious person. Using the next generation operator technique 

described by Diekmann and Heesterbeek [3], we obtained the 

basic reproduction number, R0 of the model in Equations (1) 

which is the spectral radius (ρ) of the next generation matrix, 

K , that is  0R K , where 
1K FV  .We define F

to be matrix of the rate of appearance of new infections and 

V to be the matrix of the rate of other transitions between other 

compartments and the infected compartments. 

 

The matrices F (for the new infection terms) and V (of the 

transition terms) are obtained from the infected classes (i. e., 

A and C) at HCV-free equilibrium and are given by 

 

Where    1 2,K K            and 
3K   

00

0 0

S
F

 
  
 

 and 
1

2

0K
V

K

 
  

 
      (14) 

with 

111

21 2

1 2 2

1
0

01

1

KK
V

KK K

K K K

 



 
 

 
   

   
 
 

(15) 

Thus, we have 

0 0

1

1 2 2

0 0

S S

K FV K K K

 


 
 

 
 
  

  (16) 

 

 

To get the highest eigen value  , we find the characteristic 

polynomial of K  

0 0

1

1 2 2

2

0

0 0

S S

K K K

 









  (17) 

Therefore, the basic reproduction number 

 1

0R FV   spectra radius of 
1FV 

and hence 

0

1 2

R
K K




     (18) 

 

3.5 Local Stability Analysis of Disease Free Equilibrium 

State. 

 

Theorem 3: The disease-free equilibrium, 
*E  of (18) is 

locally asymptotically stable (LAS) in D if 0 1R   and 

unstable if otherwise 0 1R   . 

 

Proof: We shall use Jacobean stability technique to carry out 

the local stability analysis of the disease disease-free 

equilibrium.  

 

Jacobean matrix of the system of equations at disease-free 

equilibrium is: 

At DFE point  0 0 ,0,0,0E S , then we have 

0

0

1

2

0 0

0 0

0 0

0

S

K S
J

K

 





  

  
 

 
 
 

 

 (19) 

 

Next applying Gaussian elimination with a series of 

elementary row operations on (19) we obtain the row 

equivalent matrix 

0

0

1

0

1 2

1

0 0

0 0

0 0 0

0 0 0

S

K S

J K K S

K

 



 



 



  


     

 (20) 

 

Determinant gives 

Therefore 3 0  if and only if 

0

1 2

1

0
K K S

K

 
 . This 

yields 
0

1 2S K K      (21) 

 

Dividing both side of (21) by 1 2K K , we have 

0

1 2

1
S

K K

 
    (22) 
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But 

0

0

1 2

,
S

R
K K

 
  since we acquired 0 1R   and all the 

other three eigen values were all negative, it shows that the 

disease free equilibrium is LAS 

 

3.5 Global Stability of Disease Free Equilibrium 

 

Theorem 5: The HCV-free equilibrium (DFE) is globally 

asymptotically stable (GAS) if 0 1R   . 

 

Proof: One common approach in studying the global 

asymptotic stability of the DFE is to construct a Lyapunov 

function in proving this theorem. 

 

Consider the Lyapunov function 

1L A K C      (23) 

 

Then taking its derivative along the solutions of the model 

equation, we have  

   
1

1 1 2

1 2

0

1 2

1 2

' ' '

1

L A K C

SC K A K A K C

SC K K C

S
K K C

K K



  





 

   

 

 
  

 

 (24) 

 

But since 
0S S  we have 

 

0

1 2

1 2

1 2 0

' 1

1

S
L K K C

K K

K K C R

 
  

 

 

   (25) 

Since all the model parameters are nonnegative, it follows 

that when 
0 1, ' 0.R L  This implies that the equality 

' 0L   holds when 0 1R  . Hence this proves the theorem 

and shows that HCV will be under control. 

 

3.7 Existence of Endemic Equilibrium Point in Terms of 

force of Infection 

 

   * * * * *, , 0,0,0,0E S A C R   To obtain the endemic 

equilibra, we see that from the third of equation (13) 

* 2K C
A


                           (26) 

But if we consider the fact that in an endemic equilibrium 

0C  , then from the second equation of (), we see that 
*

* 1

*

1 2

K A
S

C

K K









                                (27) 

Which implies  

 
However, from the first equation of (1), we see that 

*

*

*
1

C
S

S

 

 

 

 

 

 
  

 

                                 (29) 

Putting (27) into (29) and simplifying it we have 

*

1 2

1C
K K

 

 

 
  

 
                              (30) 

Hence 

*

1 2

C
K K

 


                                    (31) 

As a result of this and by putting (31) into (26)  

* 2

1

K
A

K




                                   (32) 

Then from the fourth equation of (1) and by substituting (32) 

and (1) respectively into it, we see that  

* 2

1 1 2

K
R

K K K

  

   
                 (33) 

 

3. Numerical Simulation 
 

It is difficult to get reliable data on disease transmission, so 

we estimated some of the parameter values based on the 

available data from the World Health Organization (WHO) 

[8] and reliable literature [5]. Values for   variables 

marked Estimated in Table 4.1 were chosen to 

proportionally represent across the disease transmission risk 

differences between the population groups and were set at a 

level to permit the disease to spread relative to treatment 

rates. For the numerical simulations, a interval of 30 months 

was used. Considering the average time of 3-6 months for an 

acutely infected person to shift to being chronically infected 

and the 12 week course of treatment with DAA, 30 months 

was sufficient to illustrate the disease dynamics. As the 

population will not greatly increase or decrease in this 

relatively short time interval, we held the population 

constant and thus did not include births or deaths, so 

0      Table 4.1 details selected parameters 

values for disease dynamics 

 

Table 4.1: Table of population parameters 
Parameters and variables Value Source 

1 IV   0.08 Estimated 

2 STD   0.05 Estimated 

3 IV STD     0.10 Estimated 

4 Other   0.01 Estimated 

  0.60 WHO [8] 

  0.071 WHO [8] 

  0.10 WHO [8] 

  0.45 WHO [8] 
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Table 4.2 shows initial conditions for populations expressed 

in percentages for each class that was used for testing and 

the first set of model simulations. To allow simulation 

results to show the progression of infection across different 

demographic groups, the initial infection was given only to 

intravenous drug users in the acute class, with 10% of the 

population infected and assigned equally to the 
IVA  and 

IV STDA A  classes. To provide for simple visualization of 

impact on disease dynamics resulting from changes to the 

treatment and infection rates, no one was initially assigned 

to any of the chronic or recovered categories. The total of 

susceptible population was set at 90%, with the majority of 

the population in the OtherS  category (60%). An with equal 

amounts of population assigned to the susceptible groups 

that have disease transmission risk factors (10% each). An 

additional set of simulations was also completed with 

population proportions set to more realistically reflect real-

world initial conditions and is detailed at the end of this 

section. 

 

Table 4.2: Table of initial population proportions 
Population proportion Value 

IVS  0.10 

STDS  0.10 

IV STDS S  0.10 

OtherS  0.60 

IVA  0.05 

STDA  0 

IV STDA A  0.05 

OtherA  0 

IVC  0 

STDC  0 

IV STDC C  0 

OtherC  0 

IVR  0 

STDR  0 

IV STDR R  0 

OtherR  0 

 

4.1 Graphical Representation of the Improved Model 

 

The graphical representations are from the numerical solutions 

of the improved model equations. The Matlab simulation of 

the improved model assumes the initial conditions of the 

population proportion when there is no government policy or 

proper education with little or low treatment available. As a 

result of this, it can be seen from the graphs in Figure4.1that 

over a period of time in (a) the susceptible population begin to 

slightly reduce especially the IV and IV + STD susceptible 

groups, in (b) the acutely infected population moves faster to 

the chronic class over the period of time, and in (c) the 

chronically infected proportion from the IV and IV+STD 

population increases over a long period of time. 

 

 
                                                           (a) (b) 
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                                                               (c)       (d) 

Figure 4.1: The graph of time series plots showing the effect of high contact rates on the population over a period of time with 

the assumed initial conditions from Table 4.2 when there is little or no treatment 

 

 
                                                                 (a) (b) 

 

 
                                                                (c) (d) 

Figure 4.2: The graph of time series plots showing the effect of high contact rates on the population over a period of time with 

the assumed initial conditions from Table 4.2 with an increased rate of treatment 
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                                                               (a) (b) 

 

 
                                                              (c)          (d) 

 

4. Discussion 
 

The simulation done in Figure 4.2 shows the effect of 

increasing treatment rate on the population with high contact 

rate.As it can be seen from (a) that the Susceptible class is 

slightly decreasing with time because of the increased 

contact rate and in (b) the rate of transfer from the acute 

class to the chronic class is faster as well. However, (c) 

show the population proportion of the IV and IV + STD 

chronically infected grows and decreases so quickly over 

time, while (d) show the infected class are recovering faster 

because of the effect of high treatment rate. 

 

Figure 4.3: The graph of time series plots showing the effect 

of low contact rates on the population over a period of time 

with the assumed initial conditions from Table 4.2 when 

there is little or no treatment 

 

The graph of Figure 4.3 depicts the effect of low contact rate 

on the population when there is government policy in place 

and public enlightenment and proper education on how to use 

condoms to prevent sexually transmitted diseases and education 

on drug use. From (a) we can see that it takes time for people 

to move from the susceptible class to acute, and (b) shows 

that people leave the acute stage quickly. In (c) the 

chronically population recovers well and completely in the 

first few months. Then (d) shows a lot of individuals 

recovering from the IV and IV+STD chronically infected. 

 

5. Concluding Remarks 
 

In this study, a mathematical model for the spread and 

transmission dynamics of hepatitis C virus infection is 

developed and analyzed using a system of first order 

ordinary differential equations. Treatment and other control 

measures were incorporated and analysis carried out on the 

developed model by considering the different modes of 

transmitting the disease. The basic or effective reproduction 

number of the model was computed and the equilibrium 

states(points) were obtained and analyzed for their stability 

relatively to the effective reproduction number. The result 

shows that, the disease free equilibrium was stable and the 

criteria for stability of the endemic equilibrium were 

established. It is shown that the model’s infectious and disease 

free equilibria are locally and globally a symptotically stable 

if R<1, and it is endemic equilibrium or unstable if 

R>1.Numerical simulations of the model show that the 

hepatitis C virus will be eradicated or reduced to the 

minimum from the proposed population in consideration if 

there is proper education, adequate awareness, and proper 

intensive treatment given at the initial phase of the disease 

outbreak with the proposed interventions of the model in due 

time. 
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