
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Leveraging Server-Sent Events for Enterprise-Scale

Real-Time Notifications: A Spring Boot

Implementation

Ananth Majumdar

Email: thisisananth[at]gmail.com

Abstract: Users expect real-time updates for the information they are interested in for any web application. This doesn’t align well with

the request response architecture of the web. There are many solutions to address this need like HTTP Polling, long polling, server sent

events and web- sockets. This paper investigates the benefits and drawbacks of these technologies with a focus on simplicity and

scalability. This paper also talks about a real-world implementation of server sent events using Spring boot and the practical

considerations. It also discusses the results of the implementation and any further improvements.

Keywords: real-time updates, web application, server sent events, Spring Boot implementation, technology comparison

1. Introduction

Modern websites need real-time communication between

client and servers for getting updates for time-critical

things. The default request-response model is not sufficient

for providing real time up- dates as the client needs to

initiate the requests. Over time multiple solutions have been

created for these.

Frequently polling the server provided somewhat of a real-

time experience but it was wasteful of resources to create

continuous requests even with empty responses. Long polling

came into the pic- ture to solve the problem of continuous

requests when the response is empty. Even this is wasteful

due to the need to open and close multiple connections.

Both these solutions don’t address the basic problem of

having to create multiple connections to simulate real time

updates

To overcome these solutions were created where a persistent

connection is created to overcome the overhead of opening

and closing connections. These include server sent events for

unidirectional up- dates from the server to client and web-

sockets for bidirectional updates between the server and

client. These are better solutions utilizing resources more

efficiently. This paper provides an overview of the different

solutions their benefits and drawbacks. It also details a real-

time implementation of server sent events using Spring Boot

and how it helped in scaling an enterprise-wise notification

system. It also talks about the practical aspects of

deployment of SSE in production like security, CORS

request, timeouts, handling multiple connections and the

architecture for deploying the application in a cloud-based

infrastructure.

2. Background

2.1 The Need for Real-time updates

The web is based on a request-response architecture. A client

makes a request to a server and the server sends a response

back to the client with the requested resource. This works

well for a world in which the requested resource changes

infrequently. But if the data changes frequently, then this

breaks. The server cannot send an update to the client without

the client making a new request to the server. The modern

web has evolved to provide a broad range of applications

that require frequent updates. e.g. web dashboards,

collaborative editing.

Some of the solutions for this problem are

• HTTP Polling

• Long Polling

• Server Sent Events

• WebSockets

2.2 HTTP Polling

In this method, the client that needs real-time updates,

regularly sends a request to the server even if the response

is empty. The server responds with empty response if there

is no update and with the correct response if there is

something to be sent. It requires a full HTTP handshake

every time the server sends something to the client. That

wastes bandwidth and increases latency. Also, most of the

requests are wasted since there is no update to be sent. This

also means that the updates are only available when the next

request from the client is sent, so there is still some delay in

the update. But nevertheless, is simple to implement.

2.3 Long Polling

In long polling the client sends a request to the server and the

timeout is set to be very long or indefinite. This way the

client waits until a response is available or the long timeout

is reached. If a response is available the server sends the

response and closes the connection. If no response is

available, the response is closed when the timeout is

reached. But right after the request ends, a new request is

created by the client. This way it simulates an always on

connection with the server and hence can get an update

almost real-time. This is an improvement over HTTP

polling in that the updates can be delivered almost real-time

since a persistent connection is maintained with the server

most of the time. Also since the requests are held for a long

Paper ID: SR24608145702 DOI: https://dx.doi.org/10.21275/SR24608145702 1910

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:thisisananth@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

time compared to HTTP polling, the number of bytes sent

over the wire will also be less compared to HTTP polling.

Like HTTP polling, long polling also requires a full HTTP

hand- shake with the server every time the server sends

something to the client wasting bandwidth and increasing

latency. Scaling long polling across multiple servers means

keeping track of session state in a fundamentally stateless

protocol. One option is to use a third-party data store such

as Redis and to reload that state with each new HTTP

request. Another is to implement sticky sessions, so the

same server handles the same client each time. That brings

additional complexity, as you’ll need a strategy to ensure

load is distributed evenly across your cluster. You’ll need

to create your own back-pressure mechanisms to monitor

server load and adjust the rate of inbound requests by

delaying or temporarily rejecting connections. [1]

2.4 Server-Sent Events

Instead of polling using a request/response model, HTTP 1.1

defines a streaming data transfer mechanism using the

transfer-encoding: chunked header. With this it is possible

to write multiple times into the response. With an

implementation of this called server-sent events, it’s

possible for a server to send new data to a web page at any

time, by pushing messages to the web page. An EventSource

instance opens a persistent connection to an HTTP server,

which sends events in text/event-stream format. The

connection remains open until closed by calling

EventSource.close(). More details about implementing

Server Sent Events are presented later. Server-sent events

allow a client to get updates on demand from the server. This

is only useful for uni-directional communication from

server to the client. EventSource has automatic error

handling where it reconnects to the server upon

interruptions. It also has the overhead of HTTP headers

attached to each message. [1]

2.5 WebSockets

Websockets make it possible to open a two-way interactive

com- munication between a web browser client and a server.

Messages can be sent and received between the server and

client without polling the server. The protocol consists of an

opening handshake by sending a GET request with upgrade:

websocket header. If the server supports websockets, it

responds with HTTP code 101 Switching Protocols and a

wesocket connection is cre- ated. The client and server can

send messages at any time. Each websocket messages called

frames contains an opcode, payload size and a masking bit in

addition to the data. These have a smaller footprint compared

to the HTTP headers in the previous methods. Hence these

are more suited for faster bi-directional communication

between the client and the server. [7] The client/server can

also decide to a higher-level subprotocol to define message

semantics. To keep the connection alive between the client

and server, once the connection is established either the

server or client can send a ping to the other party and it

should respond with a pong as soon as possible.

Websocket protocol allows extensions to modify the

payload. It also allow sub-protocols to structure the payload

into different formats. Most clients prefer to work with

websockets with a sub- protocol like JSON or STOMP for

easier handling of the messages. Hence this requires special

server and client libraries and higher complexity compared

to other methods.

3. Understanding Server-Sent Events

To enable servers to push data over HTTP, HTML defines

an inter- face called EventSource. Using EventSource a

client can connect to a server and listen to events to get data

from the server. The server sends messages with the

text/event-stream MIME type.

eventSouce =

new EventSource("/events/subscribe");

eventSource.onmessage = function(event)

{

console.log("New message", event.data);

}

The connection is persistent. It supports auto-connect. It is

also based on HTTP and doesn’t need to implement a new

protocol. The server writes message in the following format
data: Message 1

data: Message 2

data: {"key":"value"}

Each message is delimited by characters to send a multi-

line message you can do that by sending a new data:

message after a single newline character. You can also send

JSON messages

EventSource supports reconnection. If a connection is

broken, the client automatically tries to reconnect. The

server can set a delay using retry: time in ms message. The

browser should wait that much time before reconnecting.

While reconnecting we can take adavantage of the id field

in each message. By sending an id field in each message, the

browser sets the eventSource.lastEventId to that value and

sends the Last-Event-ID header with the ID so that server

can start resending the information following that id.

If the server wants the browser to stop reconnecting, it was

do that by sending the 204 No content status. If the client

wants to close the connection it can do so by calling the

close() method on the EventSource.

EventSource also supports cross origin requests. Client

sends the Origin header and the server should respond with

the right Access- Control-Allow-Origin header. It also

allows passing credentials with the withCredentials option

like this
let source = new

EventSource("https://another-

site.com/events",

{withCredentials: true});

3.1 Spring Boot Server Sent Events Support

3.1.1 Spring Framework

The Spring Framework provides a comprehensive

programming and configuration model for modern Java-

based enterprise applications - on any kind of deployment

platform. A key element of Spring is infrastructural support

at the application level: Spring focuses on the "plumbing" of

enterprise applications so that teams can focus on

Paper ID: SR24608145702 DOI: https://dx.doi.org/10.21275/SR24608145702 1911

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

application-level business logic, without unnecessary ties to

specific deployment environments. It provides numerous

features that make it easy to develop all kinds of applications

using Java, Kotlin, Groovy and other scripting languages.

The main features are dependency injection, events, re-

sources, i18n, validation, data binding, type conversion,

aspect oriented programing, support for testing with mock

objects, data access support like transactions, DAO support,

JDBC, ORM, web frame- works like Spring MVC and

Spring WebFlux, various integration technologies like

remoting, JMS, JCA, JMX, email, tasks, scheduling, cache

and observability. [5]

3.1.2 Spring Boot

Spring Boot makes it easy to create stand- alone,

production-grade Spring based applications with an

opinionated view of Spring platform and third-party

libraries. It provides an embedded server so the applications

can be run a java jar files. It provides opinionated starter

dependencies to simplify build con- figuration. It can

automatically recognize libraries in the classpath and

configure Spring. It provides production ready features such

as metrics, health checks and externalized configuration. [4]

To support streaming HTTP responses, Spring framework

has a class called ResponseBodyEmitter [2] . It can be

used to send multiple objects where each object is written to

the response with a compatible HttpMessageConverter. It has

methods to send, complete, completeWithError and also

methods to handle events like onError, onTimeout,

onCompletion.

It also provides SSE support with an SseEmitter [6] class, a

subclass of ResponseBodyEmitter. It provides utilty

methods to create a new SseEmitter instance with a timeout

and also various methods to send the response. It also

provides a builder to add a data, id, message, event and

comment objects to the SseEmitter object and also to

specify the reconnectTime.

4. Implementation

We will describe the implementation of server sent events

for an enterprise wide real-time notification system.

4.1 Requirements and constraints

We are implementing a company wide notification system to

reduce the reliance on email for systematic informational

notifications. For this we built a simple UI to show the

notifications for a user and set it to run always. The

notifications are personalized for each user. In the initial

trial phase we started with 30 users. The initial

implementation to get updates was the client polling the server

every 30 seconds. Most of the times the users will not have

any updates but still the client needs to poll the server every

30 seconds. All this network activity was wasteful and also

adding unnecessary load on the server. To avoid this load

and to help scale the application to support around 3000

users, we needed to use better ways to send updates to the

client.

4.2 Reasons for choosing server-sent events

Websockets were an option for this but we didn’t want to

support another protocol. This also meant we had to handle

keeping connection alive, connection drops and resyncing any

missing mesages. All these would also increase the

complexity of what we were trying to do. We also need the

client to get updates from the server and there was no need

for bi-directional communication. So, we decided to go with

server-sent events for this use-case.

4.3 Implementation Details

We are using Spring’s SseEmitter class to send the server sent

events. We create one SseEmitter for each user connection.

We keep all the active connections in a Concurrent

HashMap keyed by the userid. The systems that are sending

notifications use a REST API to send the notification with

the list of recipient userIds. We are using Ama- zon Web

Services’ Simple Notification Service (SNS) and Simple

Queue Service (SQS) to handle the notifications and send

updates to the recipients of the messages. When an

integrating service sends a notification to the notification

service, the service puts it on a topic. This topic is listened

to by multiple queues, one of each con- tainer running the

notification service. Once each container receives a

message, it goes through the list of recipients and if there is

an SseEmitter connected to that container instance, it will

call the send method to send the message to that client. To

reduce the complexity of keeping track of sent messages, the

client still connects to the server every 15 minutes to get a

full copy of the messages. This makes sure that even if some

messages were lost during a disconnect- reconnect cycle, they

will be received in the next 15 minute period making sure

nothing is missed.

Figure 1: SSE Implementation architecture

4.4 Practical Considerations

The default EventSource object doesn’t support sending

headers as part of the request. We had a need to authenticate

the user before establishing a connection. For this we used a

polyfill. It supports sending headers and cross domain

requests. To keep the connection alive a comment message

should be sent every 30 seconds which will be used to detect

disconnects.

4.4.1 Idle timeouts

Our application uses a load balancer and since it is possible

that a user might not get any updates, the load balancer can

kill the idle connections. To overcome this we instituted a

comment message that will be sent every 30 seconds to reset

Paper ID: SR24608145702 DOI: https://dx.doi.org/10.21275/SR24608145702 1912

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the idle time and keep the connection alive. By sending the

heartbeat time just a few seconds less than the idle timeout,

we can keep the connection alive.

4.4.2 Authorization

Since we want to enable authentication for the SSE

connection, we use the polyfill to send the authorization

header. With the polyfill the authorization header can be

sent like this

var es = new EventSourcePolyfill('/events', { headers: {

'Authorization': 'Bearer token'

}

});

4.4.3 Handling multiple connections

This application is de- ployed with multiple instances for

high-availability. So as users connect to the application

from different places, it is possible that each user has

multiple connections open. To avoid multiple con- nections

from a single user, we have set up a check to not create a

connection if a user already has 4 connections open.

4.4.4 Handling disconnected clients

Once the SSE connection is established, user will receive

all the updates through the con- nection. For some reason if

the client disconnects by closing the browser or they loose

network connection, the connection becomes stale. Server

can discover this when sending a message or a heartbeat.

When this happens the SseEmitter instance can be removed

from the state by using the onError or onTimeout methods

exposed by the ResponseBodyEmitter interface.

5. Benefits and Results

Server sent events helped scale the system and improved

the user experience. After introducing SSE, the users are

getting notifications faster (5s vs 30s) without adding any

new system resources thereby improving the user

experience. Here are the connection count, CPU and

memory usage graphs with SSE implemented for 4000

users which is well within 60% range. This gave us the

confidence to release notification system enterprise wide.

This is the active connection count with 4000 users

connected through the load balancer to the server using

SSE

Figure 2: Active Connection Count

30 Nov 2020).

Spring Boot. URL: https://spring.io/projects/spring-boot.

Below is the memory usage with 4000 users where it peaks

at below 25%

Figure 3: Memory Usage

Below is the CPU usage with 4000 users where it spikes

momentarily to 10% and comes back to about 2%

Figure 4: CPU Usage

We could also do it without introducing any new

infrastructure or dependencies on the server side as

everything was already available in Spring Boot with a

familiar HTTP protocol.

6. Conclusion

This paper reviewed the need for real-time updates from

servers to clients and the various techniques available to do

that from HTTP polling, long polling, Server Sent Events to

Websockets. It identified the motivation for these

technologies and also the use-cases best suited for them.

This paper also goes in detail about an implementation of

server sent events for real-time notifications for an

enterprise-wide notification system. It gives a detailed

overview of server sent events and about the technologies

and libraries used in the implementation. It also goes into

detail of the practical consideration in making the server sent

event system production ready. It then talks about the results

of the implementation along with CPU, memory usage and

active connection metrics. It makes the case that for

unidirectional updates from server to the client, the

complexity of websockets is not required and server sent

events is a simpler alternative in that case.

References

[1] Paul Murley Zane Ma Joshua Mason Michael Bailey

Amin Kharraz. “Web-socket adoption and the

lanscape of realtime web”. In: WWW 21: Proceedings

of the Web Conference Apr 2021 (2021), pp. 1192–

1203. DOI: https://doi.org/10.1145/

3442381.3450063.

[2] ResponseBodyEmitter. URL:

https://docs.spring.io/spring- framework/docs/

current/javadoc-

api/org/springframework/web/servlet/mvc/method/ann

otation/ ResponseBodyEmitter.html.

[3] Server Sent Events. URL: https://javascript.info/server-

sent-events. (Last Updated Spring Framework. URL:

https://spring.io/projects/spring-framework.

[4] SseEmitter. URL: https://docs.spring.io/spring-

Paper ID: SR24608145702 DOI: https://dx.doi.org/10.21275/SR24608145702 1913

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://spring.io/projects/spring-boot
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/annotation/ResponseBodyEmitter.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/annotation/ResponseBodyEmitter.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/annotation/ResponseBodyEmitter.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/annotation/ResponseBodyEmitter.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/annotation/ResponseBodyEmitter.html
https://javascript.info/server-sent-events
https://javascript.info/server-sent-events
https://spring.io/projects/spring-framework
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/annotation/SseEmitter.html

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

framework/docs/current/javadoc-

api/org/springframework/web/servlet/mvc/method/ann

otation/SseEmitter.html.

[5] WebSockets Living Standard. URL: https : / /

websockets . spec . whatwg . org / #network-intro.

Paper ID: SR24608145702 DOI: https://dx.doi.org/10.21275/SR24608145702 1914

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/annotation/SseEmitter.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/annotation/SseEmitter.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/annotation/SseEmitter.html
https://websockets.spec.whatwg.org/#network-intro
https://websockets.spec.whatwg.org/#network-intro
https://websockets.spec.whatwg.org/#network-intro

