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Abstract: According to IT experts, neuromorphic computing may play a key role in bringing about the fourth AI revolution. 

Throughout time, as the hardware industry has expanded, we have seen neuromorphic chips take control. It will improve other chips' 

hardware platforms so that each can handle the unique AI workloads for which it was intended. Several experts think neuromorphic 

computing has the potential to alter the strength, effectiveness, and capacities of algorithms in artificial intelligence while also revealing 

new information about cognition. Energy economy, execution speed, resilience against local failures, and learnability are key 

advantages of neuromorphic computing over conventional methods. Neuromorphic computing may be a game-changer for space 

applications where mission success depends on rapid and autonomous processing of a wide range of incoming information from various 

sources. It was shown that the SIF model had a 91.5% accuracy rate and had reduced the number of steps by adopting an early exit 

strategy in order to explore design space. The RIF model was only able to achieve less than 85% accuracy, no matter the number of 

steps taken. For design space exploration, there are design and control time knobs that, while lowering inference latency, provide 

accuracy that is comparable to or slightly below that of full precision models. In edge artificial intelligence, Spiking neural networks 

(SNNs), motivated by biological neurons, have been investigated as a possible neuromorphic computing solution for the incorporation of 

AI algorithms in edge devices due to their low energy consumption, in order to meet this difficulty. Due to the LFNL approach's use of 

spike activation, which requires a limited number of training time steps (T) to optimize, classification accuracy is slightly lower than that 

of traditional federated learning-based ANNs. This review article examines the use of neuromorphic computing in three domains: 

unattended ground sensors, space, and wireless edge artificial intelligence.  
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1. Introduction 
 

Hardware structures known as neuromorphic computers 

imitate the computational phenomenology of the brain. This 

contrasts with neural network accelerators, which aim to 

speed up the basic computation and data flows of neural 

network models used in machine learning. Examples of 

these accelerators are the Google TPU and the Intel Neural 

Compute Stick. In order to establish a spiking 

communication architecture for computing, neuromorphic 

computers mimic the integrate and fire neuron dynamics of 

the brain. Although neural networks are inspired by the 

brain, they greatly oversimplify how the brain computes. In 

terms of the real computing model of the brain, 

neuromorphic architectures are more accurate (albeit, still 

simplified). Over traditional CPU designs, neuromorphic 

computing models predict a 1000x power increase.  

 

An ordinary contemporary desktop Processor runs at 65W 

with a clock speed of 2-3 GHz. The calculation shows that a 

typical CPU operation should cost on the order of nano-

joules of energy if we assume that a handful (a number less 

than 10) of clock cycles are required on average for a single 

operation. A NMC, on the other hand, relies on synaptic 

events for its fundamental function, and the typical NMC 

system used today costs on the order of pico-joules of 

energy per synaptic event. The loose foundation for the 

1000x power gain is the difference in base-operation energy 

cost of three orders of magnitude.  

 

There is a reason why Neuromorphic computing has an 

advantage other than its sparsity and event driven nature are 

as follows.  

 

First, there are more advanced communication protocols 

between components of massively parallel basic computing 

that share memory. The other is that a spike is seen as a 

single bit of information being transmitted by digital NMC 

systems. One of the intriguing aspects of NMC designs is 

this temporal dynamic. SNNs can effectively extract 

temporal information from time-dependent data since time is 

integrated into information propagation and processing. 

Also, the computing model's use of time is an energy-free 

information exchange; the precise moment a spike appears 

has significant significance.  

 

First, there are more advanced communication protocols 

between components of massively parallel basic computing 

that share memory. The other is that a spike is seen as a 

single bit of information being transmitted by digital NMC 

systems. As these methods only convey the value of an 1, 

sending the value of a 0 requires no energy; it is merely the 

lack of a spike. One of the intriguing aspects of NMC 

designs is this temporal dynamic. SNNs can effectively 

extract temporal information from time-dependent data since 

time is integrated into information propagation and 

processing. Also, the computing model's use of time is an 

energy-free information exchange; the precise moment a 

spike appears has significant significance.  

 

Wireless Edge Artificial Intelligence 

Machine intelligence, or artificial intelligence created by 

humans as a replacement for the usage of human brains, is 

known as artificial intelligence. It is implemented as an 

artifact and is capable of performing any tasks that people 

can perform as well as those that humans are incapable of 

performing. To assist those who speak different languages, it 

is employed in the airport's natural language generating 

system. It is utilized in voice recognition by Google AI or 

Alexa. Since the Internet of Things (IoT) and mobile 

computing have developed so quickly, billions of linked 

devices, including robots, actuators, sensors, and 
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autonomous cars, have produced enormous volumes of data. 

This tendency has led to the development of an effective 

method called edge artificial intelligence (AI), which 

combines edge computing with AI, to allow devices at the 

edge of a network to locally process and analyze data 

without sending it to a centralized server. In addition to 

facilitating the protection of data privacy, such a feature 

significantly lowers data traffic and network latency. Deep 

learning of neural networks trained for voice recognition, 

picture and video categorization, and object identification in 

edge AI has also led to previously unheard-of accuracy 

levels.  

 

Edge AI still has to overcome the two following major 

obstacles in spite of these advantages. First off, advanced 

learning techniques and, more critically, sufficiently large 

training datasets are prerequisites for current AI-based 

systems. As a result, it is virtually hard to train useful AI 

models due to the small amounts of local datasets that are 

readily available to edge devices. Second, energy-

constrained edge devices are unable to locally train or 

analyze data due to machine learning algorithms' typical 

computational and energy demands.  

 

Without sending raw data to a server, FL allows several 

collaborating devices to locally train a machine learning 

model (i. e., each with its own data, in parallel). The devices 

in this situation merely upload parameters (or gradients) to a 

centralized server for global model aggregation. The 

procedure is then continued until convergence with the new 

model parameters delivered back to the devices for the 

subsequent training session. FL not only enables edge AI to 

produce models with a similar level of quality to centralized 

learning, but it also lowers data traffic and aids in data 

privacy protection. For these reasons, FL has lately been 

used in medical applications that need privacy protection, 

such as medical picture categorization.  

Given the central coordinator in FL, all clients and devices 

must have confidence in the central server, and the variety of 

edge devices limits the training pace. Decentralised FL, 

where model parameters are communicated exclusively 

among networked devices without utilizing a central server, 

has been proposed as a solution to this problem. 

Nevertheless, higher training delay is the result of 

periodically cycling model aggregation among devices. 

Even though it does provide a solution for privacy-

enhancing and reliable model training under insufficient 

datasets at edge devices, deep learning-based model training 

can consume a significant amount of energy, further 

preventing the application of decentralized FL in energy-

constrained edge devices. Spiking neural networks (SNNs), 

which are motivated by biological neurons, have been 

proposed and investigated as a possible neuromorphic 

computing solution for the incorporation of AI algorithms in 

edge devices due to their low energy consumption, in order 

to meet this difficulty. SNNs use Integrate-and-Fire (IF) or 

Leaky IF (LIF) neuron units to work with continuous 

spatiotemporal dynamics and discrete spike occurrences, 

simulating the electrical activity of human-brain systems. 

Binary spike-based sparse computing has intrinsic 

parallelism over time steps, and SNNs offer quick, sparse, 

and energy-efficient information processing. Additionally, 

various attempts to increase learning capacity, energy 

economy, and privacy protection by fusing SNNs with FL 

have been attempted, although model parameters are still 

aggregated by a central server.  

 

In the event of unequal and inadequate training data on edge 

devices, Lead federated neuromorphic learning (LFNL) 

enables edge devices to cooperatively train a worldwide 

trustworthy model while increasing privacy without a central 

server. Due to its decentralized federated learning and 

parallel training structures, LFNL effectively replaces the 

centralized data sharing paradigm across edge devices 

without the need for a centralized server, greatly reducing 

data traffic, enhancing data privacy, and shortening training 

latency when compared to current centralized learning 

techniques. Additionally, our suggested LFNL can 

significantly reduce energy usage by implementing spike-

based processing capabilities, making it particularly ideal for 

energy-constrained edge devices. The benefits of LFNL 

have been empirically proved in a number of benchmark 

comparisons on tasks including the identification of audio, 

visual, and radar signals with unequal dataset distributions. 

Research has demonstrated that LFNL greatly outperforms 

the locally trained technique and provides a comparable 

recognition accuracy to centralized learning without 

generating a lot of data traffic, achieving an inference 

accuracy of more than 94% for each challenge. The 

approach yields somewhat poorer classification accuracy 

than that of the conventional federated learning-based ANNs 

because of the spike activation driven nature of LFNL, 

which necessitates a finite amount of training time steps (T) 

to optimize LFNL-SNN. For energy-constrained devices, it 

can, nevertheless, drastically lower energy usage. On bigger 

and higher-dimensional datasets (CIFAR10 and CIFAR100 

datasets), a greater classification accuracy is still obtained 

thanks to LFNL's scalability in comparison to the current 

federated learning architecture. It has been demonstrated that 

LFNL greatly outperforms the locally trained technique and 

provides a comparable recognition accuracy to centralised 

learning without generating a lot of data traffic, achieving an 

inference accuracy of more than 94% for each challenge. 

 

The approach yields somewhat poorer classification 

accuracy than that of the conventional federated learning-

based ANNs because of the spike activation driven nature of 

LFNL, which necessitates a finite amount of training time 

steps (T) to optimize LFNL-SNN. For energy-constrained 

devices, it can, nevertheless, drastically lower energy usage. 

On bigger and higher-dimensional datasets (CIFAR10 and 

CIFAR100 datasets), a greater classification accuracy is still 

obtained thanks to LFNL's scalability in comparison to the 

current federated learning architecture.  

 

Space 
In order to perform an algorithmic design space exploration 

without neuromorphic processor specific constraints and 

compare Reset-Integrate-and-Fire (RIF) and Subtractive-

Integrate-and-Fire (SIF) neuron types for debugging, simple 

control knobs in design time as well as in runtime that can 

be used to reduce inference latency without compromising 

accuracy or involving complicated and computationally 

expensive (SIF). SIF neurons eliminate the discontinuity in 

the neuron function at the time when a neuron fires, hence 

reducing the accuracy deterioration of converted SNNs. This 
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is accomplished, nevertheless, at the expense of increased 

spiking activity.  

 

The SIF model, which has a shorter latency and more 

accuracy than the RIF model, requires fewer calculations 

overall (RIFs consume around 84% of the SIF's operations). 

Thus, one can investigate the SIF model. The neural 

threshold of each network layer is an extra hyperparameter 

that may be modified for run-time control. By lowering it, 

one may speed up inference, albeit at the expense of a 

modest accuracy compromise brought on by coarser 

approximations of network dynamics. When training is 

complete, a popular approach called threshold balancing 

runs the full dataset through the network to normalize the 

neuron thresholds to the maximum ANN activity.  

 

Nevertheless, employing the highest level of ANN activation 

leads to a significantly larger delay since a higher threshold 

causes fewer neurons to fire. Here, rather than merely 

selecting the highest possible activation value, we 

investigated threshold balancing using various activation 

histogram percentiles.  

 

It has been found that as one selects lower percentiles, 

network latency decreases, but accuracy suffers as a result. 

So, we selected a percentile value where the accuracy 

deterioration is at its lowest. Investigating an Early Exit 

inference technique to reduce redundant computations and 

improve latency results in simpler examples being 

categorized earlier, resulting in fewer redundant 

computations and a lower average inference latency. The 

last layer is given a certain threshold value, and if the 

highest membrane potential of the neurons in the final layer 

crosses that value, the SNN inference is said to be finished. 

As a result, an efficient and dynamic SNN inference method 

is produced.  

 

Here are some more specifics on how networks can be 

trained: According to earlier research, ANNs were trained 

with the restrictions of no bias and batch normalization 

layers. In the absence of batch-normalization, dropout layers 

were added after each ReLU layer to provide some degree of 

regularization. Instead of turning the inputs into Poisson 

spike trains, one can simply apply the inputs as a current to 

the SNN. By substituting IF spiking neuron nodes for 

ReLUs, the trained ANN is transformed into an iso 

architecture SNN. Weights were quantized to an accuracy of 

8 bits. By selecting a random subset from the training set 

and calculating the maximum ANN activity, the SNN 

weights are normalized. Using BindsNET, a Python tool 

built on PyTorch, the SNN is implemented. Investigating an 

Early Exit inference technique to reduce redundant 

computations and improve latency results in simpler 

examples being categorized earlier, resulting in fewer 

redundant computations and a lower average inference 

latency. The last layer is given a certain threshold value, and 

if the highest membrane potential of the neurons in the final 

layer crosses that value, the SNN inference is said to be 

finished. As a result, an efficient and dynamic SNN 

inference method is produced. In comparison, regardless of 

the quantity of timesteps employed, the RIF model only 

managed to reach less than 85% accuracy. We altered our 

model to use the 98.7 percentile element from the activation 

histogram for threshold balancing in order to obtain quicker 

latency, and we ran it for only 290 timesteps to achieve an 

accuracy of 85%. Also, while using our Early Exit approach, 

the average inference timestep value is 106, which is 

considerably less than the situation without early exit's value 

of 290.  

 

Neuromorphic computing may be a game-changer for space 

applications where mission success depends on rapid and 

autonomous processing of a wide range of incoming 

information from various sources.  

 

Ground Sensors 
The inherent low power characteristics of NMC, sparse 

connection, and event-driven processing and communication 

are driven by two brain-inspired concepts. In an electrical 

soup of 86 billion neurons, each neuron in the brain is 

connected to an average of 7, 000 other neurons. Also, 

throughout a task, not the entire brain spikes continuously. 

Power consumption is drastically decreased by not powering 

any computing parts that are not needed at any given 

moment.  

 

Moreover, event-driven computation and firing dynamics 

characterize neurons. A neuron won't use energy to analyze 

a spike if it doesn't get one. 

 

NMCs are fundamentally spatial-temporal systems that offer 

many modes of data processing and display. Future 

computing will be enabled by neuromorphic computers, 

which will soon be more accessible to embedded devices. 

The Intelligence Science for Proliferation Investment Area 

(IA) of the National Securities Program (NSP) should be 

ready for this future right away.  

 

Applications for space-based remote sensing (RS) are deeply 

woven into many parts of SNL's mission domains. In three 

dimensions, hyper-spectrally (sensing more spectral bands), 

hypertemporally (higher sample rates), and hyper-spatially, 

remote sensing systems are rapidly developing (increasing 

number of smaller pixels). Due to this progression, it has 

become difficult to implement costly and computationally 

sophisticated algorithms in SWaP-restricted settings. The 

issue domain of remote sensing activities is collectively 

covered by the three broad application areas of signal 

processing, signal categorization, and signal interpretation.  

 

There are many similarities between space-based RS and 

terrestrial RS, especially unattended ground sensors (UGS). 

Both mission domains need complex processing of sensor 

data, operate in SWaP settings with severe constraints, and 

get increasingly processor-intensive with each subsequent 

mission.  

 

The demise of Moore's law is having an impact on cutting-

edge processing application areas including supercomputers 

and data centers, while low-power The market for embedded 

sensors still has time to benefit from future performance 

improvements. This is due to the fact that transistor scaling 

has advanced more rapidly than embedded processing ICs 

utilized in low-power applications. However, the 

lamentation of the HPC and data center industries is a wake-
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up call to the embedded computing industry and a look into 

our unavoidable future.  

 

New computer paradigms and processing platforms require 

years of study, development, testing, characterization, and 

trust-building before they can be used. Heterogeneous 

specialization is the way of the future of embedded systems 

as well as computers. The paradigm change NMC hopes to 

allow is fundamentally well suited for embedded computing. 

In contrast to the embedded world, which has flourished in 

its quest of the least solution, HPC has prospered in its goal 

of enabling maximum calculations (marching towards 

exascale). Therefore, rather than doing so out of necessity, 

we view the chance to embrace this paradigm change as a 

strategic benefit.  

 

Many of the typical ANN-based ML techniques may be 

useful for our UGS sensing application needs, but their 

applicability is constrained by the power needed to apply 

them. It is possible to convert conventional ANN algorithms 

to SNN algorithms that may be used in NMC systems using 

a programme created by SNL called Whitstone. This makes 

it easier for NMC research to enter the field of low-power 

embedded systems and makes it possible to investigate the 

use of additional processing power at the sensor node. 

Effectively, the amount of data provided for later processing 

or analyst interpretation may be decreased by permitting 

increased processing at the sensor. The study of a more 

feature-rich categorization of raw sensor data and a better 

separation of events of interest are both made possible by the 

node's increased processing.  

 

There is no denying that over the past three to four years, 

ML has been the hot topic in NSP, ISP, and IA. It is 

encouraging to see several mission-relevant funding 

initiatives investigating the use of ANN-type algorithms to 

mission-relevant issues. Results, though, seem contradictory. 

BALDR (examination of radio isotope identification using 

ML algorithms), for instance, is a superb illustration of how 

to successfully apply ML to a problem that is pertinent to the 

domain. Because high-fidelity models must be degraded in 

order to go to the embedded processor environment, 

precision is lost, other efforts have not been as effective.  

 

Where standard ANN techniques are failing, a close 

examination of the corresponding ground base sensor 

algorithms and their transformation into SNN models for 

implementation on NMC hardware can result in 

computational and power benefits. The RS domain has 

already done this, and the NA-22 domain is now doing it. As 

its first investment in neuromorphic computing research, the 

NSP ISP LDRD IA supported a 2-year LDRD project with 

the working title "Autonomous Reconfigurable Intelligence 

at the Edge" in FY22. This endeavor examines the use of 

brain-inspired computer methods to solve challenges 

pertinent to the ISP mission domain. With liquid state 

machines (LSM), this study specifically aims to use the idea 

of context switching in the brain to create an algorithm that 

can use many ML. Many of the models also consume more 

power than the conventional technique for accomplishing 

the same work since they are either too big to implement or 

take too long to compute.  

 

Additionally, a lot of the one-dimensional sensor 

phenomenologies used in ground sensors make it 

challenging to accurately distinguish between event data 

when examining data from a single sensor.  

 

The LSM is an SNN-based technique that uses streaming 

data, a typical sort of data in the UGS domain, to conduct 

high dimensional feature space discrimination. This kind of 

neural model may combine sensor data with ease while 

increasing the dimension of the data, which improves 

discrimination. It will be simple to implement on 

neuromorphic hardware if the data sensor categorization 

algorithm makes native use of spikes. This indicates that 

neuromorphic research is beginning to go forward in the 

NSP ISP IA, which is encouraging. 

  

2. Analysis 
 

In edge intelligence, SNNs have been advocated because of 

their low energy consumption for the implementation of AI 

algorithms in edge devices. Quick, sparse, and energy-

efficient information processing is provided by SNNs.  

 

Achieving an inference accuracy of more than 94% for each 

challenge, it has been shown that LFNL significantly 

outperforms the locally trained approach and offers a 

comparable recognition accuracy to centralized learning 

without creating a lot of data traffic. Due to the spike 

activation driven nature of LFNL, which requires a finite 

amount of training time steps (T) to optimize LFNL-SNN, 

the technique produces somewhat lower classification 

accuracy than that of the standard federated learning-based 

ANNs. A solution to this would be increasing the finite 

amount of training time steps to a threshold value which is 

closer to the one required by the LFNL-SNN optimization. 

The training of the threshold value could be done with 

previous datasets. This would limit the training time steps 

considerably while also increasing it enough to reach a value 

close to the optimization of LFNL-SNN.  

 

Most neuromorphic research is still done on von Neumann 

hardware with standard deep learning software. As opposed 

to what neuromorphic computing attempts to do, this limits 

the study findings to traditional approaches.  

 

There are design and control time knobs for design space 

exploration that give the same or slightly less accuracy as 

full precision models while reducing inference latency.  

 

3. Conclusion 
 

Several experts think neuromorphic computing has the 

ability to transform the strength, effectiveness, and 

capacities of algorithms in AI while also revealing new 

information about cognition. Nevertheless, neuromorphic 

computing is still in its infancy and faces a number of 

difficulties. Neuromorphic computers require less energy 

(GPUs) than deep learning, machine learning, neural 

hardware, and edge graphics processing units. Yet, they 

have yet to demonstrate that they are indisputably more 

accurate than them. Many people prefer conventional 

software because of the accuracy issue, expensive expenses, 

and complexity of the technology. Software for 
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neuromorphic computing is still behind the hardware. The 

majority of neuromorphic research is still carried out using 

von Neumann hardware and common deep learning 

software. Because neuromorphic computing aims to go 

beyond traditional approaches, this limits the study findings 

to them. Non Experts cannot access neuromorphic 

computers. Software developers have not yet created 

application programming interfaces, programming models, 

or languages to make neuromorphic computers more usable.  

 

Neuromorphic research lacks clear performance and 

common challenge criteria. It is difficult to assess the 

operation of neuromorphic computers and prove their use 

without these rules. Neuromorphic computers can only 

access the currently understood parts of human cognition, 

which are still far from complete. If cognition requires 

quantum computation rather than conventional processing, 

neuromorphic computers would be partial representations of 

the human brain and would need to incorporate technologies 

from areas like probabilistic and quantum computing. In 

order to explore design space, It was demonstrated that the 

SIF model had a 91.5% accuracy rate and had cut the 

number of steps by using an early exit strategy. The RIF 

model was only able to attain less than 85% accuracy no 

matter how many timesteps were utilized.  

 

In edge intelligence, With an inference accuracy of more 

than 94% for each challenge, it has been shown that LFNL 

significantly outperforms the locally trained method and 

gives a recognition accuracy equivalent to centralized 

learning without producing a lot of data traffic. The 

approach results in somewhat poorer classification accuracy 

than that of the conventional federated learning-based ANNs 

due to the spike activation driven nature of LFNL, which 

takes a finite amount of training time steps (T) to optimize 

LFNL-SNN.  

 

4. Future Directions 
 

Yet more investigations into design space are feasible, 

including backpropagation over time and semi-supervised or 

unsupervised learning utilizing spike timing dependent 

plasticity (STDP) learning rules. To improve accuracy, more 

study must be done on models like the SIF model and on 

exit strategies such as early exit strategies that minimize 

overhead or headcount. At the moment, processing, filtering, 

and extracting enormous volumes of continually received 

data to understand events and actions constitutes real-time 

change detection of information (images, texts, audio 

signals, etc. ). Although von Neumann architecture has been 

used to carry out these tasks, Neuromorphic computing 

could enable more effective on-orbit data processing and 

storage by lowering the number of bytes needed to save an 

image and/or removing the requirement to send significant 

amounts of data to a ground station for image processing. 

For distant platforms that are deployed in space, autonomous 

systems are essential. The International Space Station now 

uses autonomous docking mechanisms. According to the 

Global Exploration Roadmap (GER), "advances in 

electronics, computer architectures, and software that enable 

autonomous systems to interact with people are needed and 

can be tapped into from commercial markets to facilitate 

maturity of essential capabilities. " While deep learning 

algorithms and neuromorphic computing are presently 

enabling satellites to operate autonomously, neuromorphic 

computing may bring about additional benefits including the 

ability to learn in real-time. Information security and 

mission assurance depend on the spacecraft's cyber status 

being tracked and evaluated. This might be especially useful 

in situations where communication lines are congested. For 

situational awareness on the ground, intrusion detection 

continuously scans communications and spacecraft bus 

traffic for signs of an assault in progress.  

 

A reliable defense system would be provided by embedded 

intelligence made possible by NC on board a spaceship. 

Several of the modern space systems send the processed data 

from imagers and other sensors to a distant operations 

center. The bandwidth for this data transfer is constrained, 

but the capacity of the sensors is growing. Moreover, in a 

threat environment, connectivity with the data gathering 

platform may be hampered (e. g., a disrupted 

communication link). Even in dangerous circumstances, a 

neuromorphic processor might provide quick processing of 

sensor data at the site of acquisition and offer cybersecurity, 

change detection, and autonomous control capabilities. 

Ultimately, a well-designed neuromorphic technology can 

overcome a basic time-energy paradox by providing both 

quick analysis and low energy use.  

 

Artificial neural networks that more closely resemble real 

neural networks are called spiking neural networks (SNNs). 

As stated in Edge Artificial Intelligence, Future research 

must be done to combine SNNs with Federated Learning to 

boost learning capacity, energy efficiency, and privacy 

protection, albeit model parameters are still aggregated by a 

central server.  

 

In edge intelligence, The LFNL approach results in 

somewhat poorer classification accuracy than that of the 

conventional federated learning-based ANNs due to the 

spike activation driven nature of LFNL, which takes a finite 

amount of training time steps (T) to optimize LFNL-SNN. 

An interesting research area would be the spike driven 

nature of LFNL which would increase the classification 

accuracy by increasing the number of training time steps to 

optimize LFNL-SNN. An intriguing topic for investigation 

would be the spike-driven nature of LFNL, which would 

improve LFNL-SNN by increasing the amount of training 

time steps and improving classification accuracy.  

 

References 
 

[1] S. K. Esser, A. Andreopoulos, R. Appuswamy, P. 

Datta, D. Barch, A. Amir, J. Arthur, A. Cassidy, M. 

Flickner, P. Merolla et al., "Cognitive computing 

systems: Algorithms and applications for networks of 

neurosynaptic cores", Neural Networks (IJCNN) The 

2013 International Joint Conference on, pp.1-10, 

2013.  

[2] D. Martí, M. Rigotti, M. Seok and S. Fusi, Energy-

efficient neuromorphic classifiers, 2015.  

[3] Steve K. Esser et al., "Back-propagation for energy-

efficient neuromorphic computing", Advances in 

Neural Information Processing Systems, 2015.  

Paper ID: SR23424160205 DOI: 10.21275/SR23424160205 1363 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 4, April 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

[4] G. E. Hinton, P. Dayan, B. J. Frey and R. Neal, "The 

wake-sleep algorithm for self-organizing neural 

networks", Science, vol.268, pp.1158-1161, 1995.  

[5] D. E. Rumelhart, G. E. Hinton and R. J. Williams, 

"Learning internal representations by error 

propagation" in Parallel Distributed Processing, 

Cambridge, MA: MIT Press, vol.1, 1986.  

[6] Paul A. Merolla et al., "A million spiking-neuron 

integrated circuit with a scalable communication 

network and interface", Science, vol.345, no.6197, 

pp.668-673, 2014.  

[7] Andrew S. Cassidy et al., "Cognitive computing 

building block: A versatile and efficient digital neuron 

model for neurosynaptic cores", Neural Networks 

(IJCNN) The 2013 InternationalJoint Conference on, 

2013.  

[8] Paul Merolla et al., "A digital neuro-synaptic core 

using embedded crossbar memory with 45pJ per spike 

in 45nm", Custom Integrated Circuits Conference 

(CICC) 2011 IEEE, 2011.  

[9] Wulfram Gerstner and Werner M. Kistler, Spiking 

neuron models: Single neurons populations plasticity, 

Cambridge university press, 2002.  

[10] Md Zahangir Alom, Venkata Ramesh Bontupalli and 

Tarek M. Taha, "Intrusion detection using deep belief 

networks", 2015 National Aerospace and Electronics 

Conference (NAECON), 2015.  

[11] Zahangir Alom, Venkata Ramesh Bontupalli and Tarek 

M. Taha, "Intrusion Detection Using Deep Belief 

Network and Extreme Learning Machine", 

International Journal of Monitoring and Surveillance 

Technologies Research (IJMSTR), vol.3, no.2, pp.35-

56, 2015.  

[12] Martin Roesch, "Snort: Lightweight intrusion detection 

for networks", Lisa, vol.99, no.1, 1999.  

[13] Ruiwen Deng, Jie Yuan, Xiaoyong Li, Linghui Li, Yali 

Gao, Wenping Kong, "DACNN: Deep Autoencoding 

Convolutional Neural Network in Network Intrusion 

Detection", 2022 7th International Conference on Big 

Data Analytics (ICBDA), pp.224-230, 2022.  

[14] Luíza C. Garaffa, Abdullah Aljuffri, Cezar Reinbrecht, 

Said Hamdioui, Mottaqiallah Taouil, Johanna 

Sepulveda, "Revealing the Secrets of Spiking Neural 

Networks: The Case of Izhikevich Neuron", 2021 24th 

Euromicro Conference on Digital System Design 

(DSD), pp.514-518, 2021.  

[15] Jan Lansky, Saqib Ali, Mokhtar Mohammadi, 

Mohammed Kamal Majeed, Sarkhel H. Taher Karim, 

Shima Rashidi, Mehdi Hosseinzadeh, Amir Masoud 

Rahmani, "Deep Learning-Based Intrusion Detection 

Systems: A Systematic Review", IEEE Access, vol.9, 

pp.101574-101599, 2021.  

[16] Md. Shahanur Alam, Chris Yakopcic, Guru 

Subramanyam, Tarek M. Taha, "Memristor Based 

Neuromorphic Network Security System Capable of 

Online Incremental Learning and Anomaly Detection", 

2020 11th International Green and Sustainable 

Computing Workshops (IGSC), pp.1-8, 2020.  

[17] Yongxuan Zhang, Jun Yan, "Semi-Supervised 

Domain-Adversarial Training for Intrusion Detection 

against False Data Injection in the Smart Grid", 2020 

International Joint Conference on Neural Networks 

(IJCNN), pp.1-7, 2020.  

[18] Kayla Chisholm, Chris Yakopcic, Md. Shahanur Alam, 

Tarek M. Taha, "Multilayer Perceptron Algorithms for 

Network Intrusion Detection on Portable Low Power 

Hardware", 2020 10th Annual Computing and 

Communication Workshop and Conference (CCWC), 

pp.0901-0906, 2020.  

[19] Sornxayya Phetlasy, Satoshi Ohzahata, Celimuge Wu, 

Toshihito Kato, "Applying SMOTE for a Sequential 

Classifiers Combination Method to Improve the 

Performance of Intrusion Detection System", 2019 

IEEE Intl Conf on Dependable, Autonomic and Secure 

Computing, Intl Conf on Pervasive Intelligence and 

Computing, Intl Conf on Cloud and Big Data 

Computing, Intl Conf on Cyber Science and 

Technology Congress 

(DASC/PiCom/CBDCom/CyberSciTech), pp.255-258, 

2019.  

[20] Chris Yakopcic, M. Tarek Taha, "Analysis and Design 

of Memristor Crossbar Based Neuromorphic Intrusion 

Detection Hardware", 2018 International Joint 

Conference on Neural Networks (IJCNN), pp.1-7, 

2018.  

[21] Steven Z. Lin, Yong Shi, Zhi Xue, "Character-Level 

Intrusion Detection Based On Convolutional Neural 

Networks", 2018 International Joint Conference on 

Neural Networks (IJCNN), pp.1-8, 2018.  

[22] Amol Borkar, Akshay Donode, Anjali Kumari, "A 

survey on Intrusion Detection System (IDS) and 

Internal Intrusion Detection and protection system 

(IIDPS) ", 2017 International Conference on Inventive 

Computing and Informatics (ICICI), pp.949-953, 2017.  

[23] A. M. Aleesa, B. B. Zaidan, A. A. Zaidan, Nan M. 

Sahar, "Review of intrusion detection systems based 

on deep learning techniques: coherent taxonomy, 

challenges, motivations, recommendations, substantial 

analysis and future directions", Neural Computing and 

Applications, vol.32, no.14, pp.9827, 2020.  

[24] H. Sienkiewicz, "How transparency can lead to 

understanding the ‘cybertopography’-Defense 

Systems", Defense Systems, [online] Available: 

https://defensesystems. com/articles/2013/11/20/daa-

transparency. aspx.  

[25] C. Graham, "Cyber attack hits German train stations as 

hackers target Deutsche Bahn", The Telegraph, 

[online] Available: http://www. telegraph. co. 

uk/news/2017/05/13/cyber-attack-hits-german-train-

statio ns-hackers-target-deutsche/.  

Paper ID: SR23424160205 DOI: 10.21275/SR23424160205 1364 

https://defensesystems.com/articles/2013/11/20/daa-transparency.aspx
https://defensesystems.com/articles/2013/11/20/daa-transparency.aspx



