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Abstract:
PO D) Uraex (X, D) +Px (X, 1) Uaex (X, 1)+ p(X, D) UL (X,1)= g(X,t,u(X,1)).

In this paper, we prove the Hyers- Ulam- Rassias (HUR) stability of third order partial differential equation:
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1. Introduction

S. M. Ulam [17] gave a well-known talk on stability for
several functional equations in 1940. Ulam spoke about a
problem concerning the stability of group homomorphism. In
1941, D. H. Hyers [5] provided a partial answer to this
Ulam'’s problem. In 1998, Alsina and Ger [3] investigated the
HU stability of the differential equation y* = y. In 2002,
Takahasi et al. [16] generalized the result for y> = Ay. There
have been number of publications on stability of solutions to
differential equations [6, 7] and partial differential equations
[8, 9]. This stability is now known as the Hyers Ulam (HU)
stability and its various extensions has been named with
additional word. Hyers Ulam Rassias (HUR) stability is one
such extension. In [10] and [11], HUR stability of n™ order
linear differential operators with non-constant coefficients is
invested. HUR stability for special types of non-linear
equations have been studied in [1, 2, 12, 13]. In 2011, Gordji
et al. [4] established the HUR stability of non-linear partial
differential equations by applying Banach's Contraction
Principle.

In 2019, Sonalkar et. al. [14], using the Laplace transform
method, proved the HUR Stability of linear partial
differential equations. The result in [14], is extended to n"
order linear partial differential equation by Sonalkar et.
al.[15]. In this paper, by using the result of [4], we prove the
HUR stability of third order partial differential equation:

p(th)uXXX (X,t)+px (X,t) Uyx (th)+ p(X,t)ux (X,t)z g(X,t,U(X,t)).
(1.1)

Here p: JxJ—R"is a differentiable function atleast once w. r.
t. both the arguments and p(x, )#0, Vx,t€J,

J=[a,b] be a closed interval and g.J/*xJ*xR—R be a continuous
function.

Definition 1.1: A function u: JxJ—R is called a solution of
equation (1.1) if ueC? (JxJ) and satisfies the equation (1.1).

2. Preliminaries

Definition 2.1: The equation (1.1) is said to be HUR stable if
the following holds:

Let ¢ Jx J— (0, ©) be a continuous function. Then I a
continuous function ¥: Jx J— (0, o), which depends on ¢

such that whenever u:JxJ—R is a continuous function
with

[P(X, D)W (X, 1) +Dx (X, Dax (X,)+ YU (X,D)- 9%, T, U (X,
)<e(x.1), (2.1)

There exists a solution uy:JxJ—R of (1.1) such that
[u(x,H)—ue (X,HI<P(X,t), WV (X,1)eIxJ.

We need the following result.
Banach Contraction Principle:

Let (Y, d) be a complete metric space, then each contraction
map T: Y—Y has a unique fixed point, that is, there exists b
€Y such that Th=b. Moreover,

1
d(bw< md(w,Tw),Vw EYand0<a<1
Using the results from Gordji et al. [4], we establish the
following result.

3. Main Result

In this section we prove HUR stability of third or derpartial
differential equation (1.1).

Theorem 3.1: Let ¢ € J. Let p and g be as in (1.1) with

additional conditions:

1) Px,t)>1,V x, t €J.

2) ¢:J3xJ— (0, ) be a continuous function and M: J x
J—[1,0) be an integrable function.

3) Assume that there exists y, 0<y<1suchthat

Ji M@ Do, t)dr <yo(x,b),
JI M@, e, tydadt <yp(x,t)

(3.1)
3.2)
and

K(x,t,uCx, ) = plx, ) Hplc, O (c, t) —
cxp(auaa tda+cxgr,tur,tdr. 3.3)

Suppose that the following holds:

Cl: |K(zt,I(z,£))K(z,t,m(z,£))|<M(z,)|I(z, )—m(z,8)|, V7, t €
and I, m eC(JxJ).

C2: u: JxJ—R be a function satisfying the inequality (2.1).
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Then there exists a unique solution Uo:JxJ—R of the
equation (1.1) of the form

uo(x,t) =ulc,t) + fcx fCT K(a,t,uo(a,t))dadr

such that

Ut = u (o0l < -

@(x,t), Vx,te€E].

Proof: Consider
P (X8t (X,)+Px (X, 1) U (X, D)+ PX,E) U (X,1) - G LU D))
=[{p (x, e (6, D) +p(X,t) Uy (X, 1) =g (X, 1, U (X, D).

From the inequality (2.1), we get

[{p (o, Dtax (o, O}, +p(X, ) (x,t) —9XLUKD))] <p(x,0).
=-( )< (X, Dtk (5, O}, +pX DU (X)) - GLUKLY))
<p(x,2).

=2{p(x, U (x, )}, +p(X, Dt (X,1) —9(X,LUX,L) <p(x.2).
Integrating from c to x we get,

p(x, Oy (x, ) — p(c, uy, (¢, t) + fxp(a: ug(a,t) da
— fxg(r, t,u(r,t))dr < fqu(T, t)dr.
= p(x,t) {uxx (x,0)

- p(x' t)_l [p(c' t)uxx (C' t)

} < qu)(r, t)dr.

- fxp(a, Hu,(a,t)da

+ fxg(r, t,u(t, t)) dt

= {uxx (x,t)
—p D [p(c. D0~ [ (e e ) da
+ fg(r, t,u(r,t)) dr]} <p(xt)™? fquo(r, t)dr.
= {Uy, (x, t)
—p, )™ [p(c. )i (¢, t)
- fxp(a, Du,(a,t) da

+ fxg(r, t,u(t, t)) dt } < fxq)(r, t)dr,
C('-' p(x,t) = 1). ‘

= {uxx (x,t) — K(x, t,u(x, t))} < f (1, t)dr.
Where K (x, t, u(x, t) )isgivenbyequation(3.3).

Since M:JxJ—[1,00) be an integrable function, we have

{uxx (x,t) — K(x, t,u(x, t))} < fo(T, te(t, t)dr.

Using inequality (3.1) we have,
{uxx (x,t) — K(x, t,u(x, t))}

< fo(T, Do(t,t)dt <ye(x,t).

= {0, ) — K(x, t,u(x, £)} < o(x,6),(< 0
(3.5)

<y <1).

Again, integrating from c to x we get,

u, (x, t) —u,(c, t) — fo(‘r, t,u(t, t))dr < fxq)(‘r, t)dr.

c (4
Since M: JxJ— [1,00) be an integrable function, we have
X

u, (x,t) —u,(c,t) — f K(r, t,u(r, t))d‘[

< f M(t,t)p(t, t)dr.
Using inequality (3.1) we have,c

u, (x,t) —u,(c,t) — fo(r, t, (q{;q,)t))dr
< fo(r, te(t, t)dt < ye(x,t).

= u,(x,t) —u,(ct) — fXK(T, t,u(r, t))d‘r

< yo(x,t). ‘
= u () —wu (e, 0) — [T K(r tu(r, 0)dr <

px,t), (-0<y<l).

Again, integrating from ¢ to x we get,

ux,t) —ulc,t) — ffl{(a, t,u(a, t))dadt
< [

= u(x,t) — [u(c, t) + ffl((a, t,u(a, t))dadrl
< fxq)(r,ct)dr.

Since M: JxJ—[1,0) be an integrable function, we have

u(x, t) — [u(c, t)+ fx J- K(a, t,u(a, t))dadrl

SJ M(z, t)p(t, t)dr.
Using inequality (3.1) we hcave,

u(x, t) — [u(c, t) + J-X j K(a, t,u(a, t))dad‘[]

< J-XM(T, e(t, t)dt < ye(x,t).

= u(x,t) — [ulc, ) :— fcx fCT K(a,t,u(a, t))dadr] <
yo(x,t).(3.6)

In a similar way, from the left inequality of (3.4), we obtain
—{ulx,t) = [ulc,t) + fcx fCTK(a, t,u(a, t))dadr|} <
yo(x,t).(3.7)

From the inequalities (3.6) and (3.7) we get,
|u(x, t) — [u(c, t) + fcx f; K(a, t,u(a, t))dadt“ <
yo(x,t).(3.8)
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Let Y be the set of all continuously differentiable functions I:

JxJ—R. We define a metric d and an operator

TonY as follow: For I, meY

d(l,m) = SUPyt ]

And the operator

I(x,t) —m(x,t)

@(x,t)

(Tt = ule,0) + [ [T K(a, t,m(a,t))dadr.(3.9)

Consider,

d(Tl,Tm) = sup,, ¢

[T K (@t i(@0)dade — [

Tl(x,t) — Tm(x,t)
@(x,t)

SUPyt ] { PYeTS)

<

fCT K(atm(a,t))dadr }

SUPy t €] { oG

By using condition C1 we get,

fcx f;|1((a,t,l(a,t)) —_K(a,t,m(a,t))|dadr }

fcx f; M(a,t)| l(a,t)—m(a,t)|dadt

d(Tl, Tm) < sup, ;¢ {

Pxt) }

fEx f; M(a,t)p (a,t)w dadt

¢ at)

= SUDyt ¢l {
<

@ (xt)

¢ (at)

fcx fcr M(a,t)p(a,t) X sup o E/il Ha)-m(at)] dadt }

Su
Dxt €] { Y

fcx f; M(a,t)p(a

d(l,m) X sup,, €/ { YT,
By using inequality (3.2) we get,
d(Tl,Tm) <y xd(l,m).

By using Banach contraction principle, there exists a unique

Uy € Y such that Ty, = ug,that is

ulc, t) + fcx fCTK(a, t,uo(a, £))dadr = uy(x, t),(by using

equation(3.9))
and

d(ug,u) < uf—y)d(u, Tw).(3.10)

Now by using inequality (3.8) we

) dadt }

get,

luCx,t) — (Tw)(x, )| < yo(x,t).
lux, t) — (Tw)(x, t)|
= <

o(x,t)
luCx, t) — (Tw)(x, t)]

Thus d(u,Tu) <y.(3.11)
Again,
Up

p(x,t) }S 4

(x,t) — u(x,t)

d(ug, u) = SUpy ¢ ¢

From equation (3.10) we get,

1
d(ug,u) < (1_y)d(u, Tu).

uy(x,t) —ulx,

o(x,t)

t)<

Supx,t €/ (p(x’ t)
up(x, t) —u(x,t)

@(x,t)

<

a-»

Paper ID: SR23415184121

< SUPy it g

d(u, Tu).

A=y
uy(x, t) —ulx, t)

P(x,t)
d(u, Tu).

}

uy(x, t) —u(x, t)
oo |Ta-pt®
From equation (3.11) we get,

uO(x! t) —u(x, t) Y
p(x,t) Ta-yy

u(x, t) —uy(x, t) y
P(x,t) Ta-yy

luCx, t) —up(x, t)| < a Z y)<p(x, t),Vxt €].

Hence the result.

4. Conclusion

In this paper we have proved the HUR stability of the third
order partial differential equation (1.1) by employing
Banach’s contraction principle.
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