Formulation and Evaluation of Novel Interpenetrating Polymer Network Microspheres for Controlled Release of Zaleplon

Arun Kumar Singh¹, Shikha Jaiswal², Neelam Jain³

¹Research Scholar, Faculty of Pharmacy, Oriental University, Indore - 453555, Madhya Pradesh, India
Corresponding Author Email id: cla015[at]gmail.com
Contact no: +91 8319161035

²Department of Pharmaceutics, Faculty of Pharmacy, Oriental University, Indore - 453555, Madhya Pradesh, India

³Department of Pharmaceutics, Faculty of Pharmacy, Oriental University, Indore - 453555, Madhya Pradesh, India

Abstract: Objective: A nonbenzodiazepine hypnotic medication called zaleplon is used to treat insomnia. Its low water solubility has a detrimental impact on its bioavailability. Zaleplon has been shown to have a 30% absolute bioavailability due to substantial pre-systemic metabolism during the first pass. It also has an extremely short half-life (about an hour), which favors the development of IPN based drug delivery system. Methods: Novel interpenetrating polymer network (IPN) of xanthan gum (XG) and poly vinyl alcohol (PVA) was prepared by emulsion cross-linking method to deliver model hypnotic drug, zaleplon, cross-linked with glutaraldehyde (GA) to form microspheres. Various formulations were prepared by changing the ratio of XG: PVA, extent of cross-linking in order to optimize the formulation variables on drug encapsulation efficiency and release rate. FTIR spectroscopy was done to confirm the formation of IPN matrix and the chemical stability of zaleplon after penetration of microspheres. Results: Microspheres formed were spherical with smooth surfaces as revealed by SEM. IPN formulation F9 composed of XG: PVA (1:4) and glutaraldehyde (5.5 ml) gave the most advantageous entrainment (83.66±2.57%) and release results after 8 hrs (Q8h=54.00±0.61%) in PBS, pH 7.4 as compared to other compositions. These results suggest that the IPN microspheres are promising carriers for the controlled delivery of zaleplon.

Keywords: Zaleplon, Interpenetrating Polymer Network (IPN), Xanthan gum, Poly vinyl alcohol, Microspheres

1. Introduction

A nonbenzodiazepine hypnotic medication called zaleplon is used to treat insomnia. Its low water solubility has a detrimental impact on its bioavailability. Zaleplon has been shown to have a 30% absolute bioavailability due to substantial pre-systemic metabolism during the first pass. It also has an extremely short half-life (about an hour), necessitates an increased frequency of dosing, causing tremendous discomfort to the patient [1]. These problems can be minimized by the use of interpenetrating polymer network (IPN) based microsphere systems. These systems as drug delivery vehicles have certain advantages, such as enhanced effectiveness and reduced toxicity of the incorporated agents to non-targeted cells and tissues. Biodegradable microspheres can be utilized to direct drugs to organs by lodging them into the environment of the end organ [2].

Xanthan gum is a high molecular weight exopolysaccharide produced by xanthomonas campestris. XG has been widely used in oral topical formulations as a suspending and stabilizing agent, and a release sustaining agent in hydrophilic matrix tablets, and pellets [9]. PVA is a widely used hydrophilic synthetic polymer because of its process ability, strength, and pH as well as its temperature stability. Because it is biocompatible and non-toxic, it has a wide variety of pharmaceutical applications [10]. Therefore, the present study presents the development of novel IPN of xanthan gum (XG) and poly vinyl alcohol (PVA), cross-linked with glutaraldehyde (GA) to form microspheres by emulsion cross-linking method to deliver model hypnotic drug, zaleplon.

2. Materials and Methods

The zaleplon was kindly received as a gift sample by Joshi Agrochem Pharma Pvt. Ltd., Mumbai, India. Polymers were procured from Loba Chemie Pvt. Ltd. (Mumbai, India). Double distilled water was used throughout the study.

Preparation of IPN microspheres
Xanthan gum and poly vinyl alcohol (XG - PVA) IPN microspheres containing zaleplon were prepared by the emulsion cross-linking method. PVA was first dissolved in hot water at 80°C, then, XG was added (total polymer concentration was 5% w/v) and stirred overnight to get homogeneous solution. Zaleplon (1% w/v) was dissolved in ethanol and then added to the mixture of XG and PVA and the solution was stirred for 30 min to get a uniform suspension. This suspension was added to the mixture of...
soyabean oil (100 ml) and 1% w/w span 80 with stirring at 900 rpm for 40 min. Then glutaraldehyde and 1 ml 1N hydrochloric acid was added slowly and stirred for 4 h at 2100 rpm. After 4 h hardened microspheres were formed and they were separated by filtration and washed with acetone and distilled water to remove the oil as surfactant. Finally, the microspheres were washed with 0.1M glycine solution to mask the untreated glutaraldehyde and distilled water to remove the unreacted glutaraldehyde [11]. Then the prepared microspheres were dried at 36°C for 24 h (Table 1).

**Table 1: Composition for the preparation of IPN microspheres**

<table>
<thead>
<tr>
<th>Formulation Batches</th>
<th>XG: PVA ratio</th>
<th>Quantity of Polymer Used (mg)</th>
<th>Quantity of Zaleplon (mg)</th>
<th>Glutaraldehyde (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>1:2</td>
<td>100</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>F2</td>
<td>1:3</td>
<td>100</td>
<td>300</td>
<td>10</td>
</tr>
<tr>
<td>F3</td>
<td>1:4</td>
<td>100</td>
<td>400</td>
<td>10</td>
</tr>
<tr>
<td>F4</td>
<td>1:2</td>
<td>100</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>F5</td>
<td>1:3</td>
<td>100</td>
<td>300</td>
<td>10</td>
</tr>
<tr>
<td>F6</td>
<td>1:4</td>
<td>100</td>
<td>400</td>
<td>10</td>
</tr>
<tr>
<td>F7</td>
<td>1:2</td>
<td>100</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>F8</td>
<td>1:3</td>
<td>100</td>
<td>300</td>
<td>10</td>
</tr>
<tr>
<td>F9</td>
<td>1:4</td>
<td>100</td>
<td>400</td>
<td>10</td>
</tr>
</tbody>
</table>

**Evaluation of IPN microspheres**

**Fourier transform infrared (FTIR) spectral studies**

FTIR spectral measurements were performed using FTIR - 8400S spectrophotometer, Shimadzu (Japan) to confirm the formation of IPN structure, presence of cross - linking agent in XG and PVA and also to find the chemical stability of the drug in the microspheres. FTIR spectra of drug - loaded microspheres were obtained. Samples were crushed with KBr to get pellets at 600 kg/cm² pressure [12]. Spectral scanning was done in the range between 4000–400 cm⁻¹.

**Estimation of drug entrapment efficiency (% EE)**

The actual amount of zaleplon present in the different formulations of IPN microspheres were estimated by crushing the swollen microspheres (10 mg) in 100 ml of PBS, pH 7.4 at 50°C temperature to extract the drug from the microspheres in a water bath. The whole system was kept for 24 hours. Then, the whole solution was centrifuged (Remi Equipments Private Limited, Mumbai, India) to remove the suspended polymeric debris and the clear supernatant liquid was taken for the determination of drug content spectrophotometrically by using UV spectrophotometer at a wavelength of 229 nm against appropriate blank [13]. Study was done in triplicate and % EE can be calculated by using following formula:

\[
\text{Entrapment efficiency (EE)} = \left( \frac{\text{Actual drug content - Theoretical drug content}}{\text{Theoretical drug content}} \right) \times 100
\]

**Particle size measurements**

Vesicle size of different IPN based formulations was observed under an optical microscope (Olympus Model BX 41, Japan) at suitable magnification and volume mean diameter (V₃₅) was recorded [13].

**In - vitro drug release study**

In - vitro release of zaleplon loaded IPN microspheres were monitored in PBS, pH 7.4 at 37°C using programmable dissolution tester (Paddle type, Electrolab, model TDT - 08L, USP, Mumbai, India). Microspheres (100 mg) were immersed in 900 ml of the respective medium and stirred at 100 rpm. Aliquots were removed at pre - determined times and were replenished immediately with the same volume of fresh media and were assayed spectrophotometrically at 229 nm [13].

**3. Results and Discussion**

**Evaluation of IPN microspheres**

The prepared formulations were evaluated for different parameters. It was confirmed by FTIR that the entire principal peaks of zaleplon are present in IPN microparticles, which confirm the stability of zaleplon in IPN microparticles (Figure 1). It was indicated that % drug entrapment efficiency (% EE) of the microparticles was in the range between 64.43±2.56% to 83.66±2.57% as shown in Table 4 and it depends on the glutaraldehyde concentration. The IPN microspheres obtained fell in the size range of 9.83±0.74 μm to 19.85±0.65 μm (Table 4). An increase in size of microspheres was observed with the increase in ratio of polymer (XG: PVA) in the microspheres.

The cumulative percentage of drug released after 8 hr from the prepared zaleplon loaded IPN microspheres at PBS (pH 7.4) varied from 54.00±0.61% to 67.82±0.89% as shown in Figure 2 and the data was presented in Table 4. This indicates that the release was slower for those formulations in which a higher amount of glutaraldehyde was used compared to that where lower glutaraldehyde was used. This confirms the formation of a denser network structure, which reduces the rate of swelling as well as the rate of drug release from the matrix. It was also found that with increase in the ratio of XG: PVA, the swelling of the matrix decreases which leads to the slower release of drug from the matrix.
4. Conclusion

IPN formulation F9 composed of XG: PVA (1: 4) and glutaraldehyde (5.5 ml) gave the most advantageous entrapment (83.66±2.57%) and release results after 8 hrs (Q8h=54.00±0.61%) in 0.1N HCl, pH 1.2 as compared to other compositions. These results suggest that the IPN microspheres are promising carriers for the controlled delivery of zaleplon.

References


