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Abstract: Object detection in a static or dynamic scene, such as a video, is a well-known problem in the computer or machine vision 

community. Some techniques have already been developed so far. Such detected objects have applications in many different areas. The 

literature in this domain is vast; as a result it is really very difficult for a beginner to work in this domain. A guideline, therefore, is very 

helpful, particularly to the young researchers working in the area of computer vision. We have therefore felt the need of a review in this 

domain. With this objective in mind, we have written this article. We have studied some major existing state-of-the-art object detection 

methods and chronologically summarize each of them. Each summarization narrates a detailed description on motivation, work 

description, merits and demerits, followed by some discussion. 
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1. Introduction 
 

Humans can easily identify (or classify) and locate objects 

present in an image, i.e., different types of objects are 

present in an image, where they are located in that image, 

and how they interact with each other. The goal is to train a 

computer like humans to have understanding about a given 

image, i.e., what objects are present in the image and where 

are they located. With the availability of a large amount of 

data, faster GPUs, and improved algorithms, computers can 

be easily trained so that they can detect (identify and locate) 

objects present within a given image with a high degree of 

accuracy. 

 

Image classification aids the classification of a single object 

within an image, whereas image localization specifies the 

exact location of the classified object within an image. 

Object detection is associated with both the class and 

location of multiple objects in an image (see Fig. 1). In 

computer vision, the most common method for localizing an 

object in an image is to draw a bounding box around the 

object with its coordinates. 

 

Our review paper deals with some cutting-edge object 

detection methods and a comparative study among some of 

them. 

 
Figure 1: Image Classification vs. Image Localization vs. 

Object Detection 

 

2. Some Related Works 
 

Detecting objects within an image can be accomplished 

using various techniques, each of which has better 

performance in some respects. 

 

Object detection methods can be divided in two categories 

that use (i) classical computer vision techniques and the (ii) 

modern or deep learning-based techniques. A brief 

summarization can be found in Fig 2. 

 

 
Figure 2: Classification of object detection methods 
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2.1 Viola-Jones 

 

In 2001, P. Viola and M. Jones proposed an efficient 

algorithm [1] for face detection. They showed faces in real-

time on a webcam feed. It was the most stunning 

demonstration of machine vision with high degree of 

potential during that time. 

 

2.1.1. Motivation  

Face detection as well as its recognition, now-a-days has 2 

immense roles in our daily life, starting from school, office-

attendance to different security measures used in 

surveillance. The human face is one of the most popular and 

significant area objects because it has numerous applications 

in security and entertainment. Faces have striking features 

that differentiate one from the other. However, it may not 

always be obvious to us. 

 

2.1.2. Work description 

Overview  

The 3 main contributions in [1] are – (i) creating a new 

image from an existing image known as the integral image 

to compute the Haar features quickly, (ii) development of 

learning algorithm based on AdaBoost for extremely 

efficient face classifier from a reduced set of visual features, 

and (iii) cascading of classifiers for rejecting background 

regions of images and ensuring prominent object-like 

regions. 

 

Haar features are similar to the convolutional kernels. Each 

feature yields a single value computed by deducting the sum 

of pixels in the white rectangle from that in the black 

rectangle. 3 kinds of Haar features that are used in [1] are – 

(i) 2-rectangle, (ii) 3-rectangle, and (iii) 4-rectangle features, 

and they are computed using an integral image [2], which is 

an intermediate representation of the original image, 

𝐼𝐼 𝑥, 𝑦 =  𝐼 𝑥 ′ , 𝑦′ 

𝑥 ′≤𝑥 ,𝑦 ′≤𝑦

, (1) 

where 𝐼𝐼(𝑥, 𝑦) and 𝐼(𝑥′, 𝑦′) are the integral and original 

(must be in grayscale) images, respectively. 

 

For evaluating the Haar features in a given image, the 

method uses a 24 × 24 window. Within this window, 

approximately 160,000+ feature values are calculated, taking 

into account all possible feature parameters such as position, 

scale, and type. However, only a few sets of these features 

are useful to detect a face. AdaBoost [3] aids in the 

discovery of these useful features and builds a strong 

classifier as a linear combination of these useful features, 

which are also known as weak classifiers, 

𝐹 𝑥 =  𝑤𝑖𝑓𝑖(𝑥)

𝑛

𝑖=1

, (2) 

 

where 𝐹 𝑥  is the strong classifier, 𝑓𝑖 𝑥  is a weak classifier, 

and 𝑤𝑖  is a weight associated with the weak classifier. 

 

The final evaluation is carried out using a cascade classifier 

[1] composed of stages, each of which contains a strong 

classifier. Each of these stages determines whether a given 

window contains a face or not and immediately is discarded 

if it fails. For localization (if face), a bounding box is drawn 

with the help of the window coordinates within the image. 

 

The architecture  

The architecture of the Viola-Jones face detection model is 

shown in Fig. 3. 

 

 
Figure 3: The Viola-Jones face detection model architecture 
 

Training and testing  

The Viola-Jones face detection model is trained [4] using 

frontal upright face images [1]. 

 

2.1.3. Merits, demerits and discussion  

Viola-Jones does sophisticated feature selection and an 

invariant detector that locates scales [5]. Rather than scaling 

the image, the features can be scaled. Because it is a general 

detection scheme, it can be trained to detect other objects 

(e.g., automobiles). 

 

The method in [1] – (i) is less effective at detecting faces 

that are tilted/turned, (ii) is sensitive to illumination 

conditions, and (iii) suffers from multiple detections of the 

exact face due to overlapping sub-windows. 

 

Viola-Jones is one of the most powerful methodologies of its 

time and sets its foundation in the facial detection field, and 

many modern technologies benefited from it. 

 

2.2. HOG 

In 2005, N. Dalal and B. Triggs proposed an efficient feature 

extraction algorithm [6] for detecting pedestrians in images. 

 

2.2.1. Motivation  

The need for a strong feature set that for a human was felt 

for long time. One of the requirements was to distinguish 

cleanly even in complex backgrounds with poor lighting. 

This was successfully done in their work. 

 

2.2.2. Work description 

Overview  

The distribution of gradient directions is used as image 

features in the HOG feature descriptor. A small patch in the 

ratio of 1:2 (width: height) is cropped out of an input image 

of size M × N and resized to 64 × 128 [7], and the gradient 

magnitude (𝑔) and direction (𝜃) of this resized patch are 

computed, 
 

𝑔 =   𝑔𝑥
2 + 𝑔𝑦

2  , 
(3) 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑔𝑦

𝑔𝑥
 , 

 

where 𝑔𝑥  and 𝑔𝑦  are the horizontal and vertical gradients, 

respectively. The resized patch is divided into 8 × 16 grid 

blocks with 8 × 8 cells per block. For each 8 × 8 patch, a 

histogram of gradients is created. Each patch's gradient has 2 
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values per pixel – (i) magnitude and (ii) direction. Each 

gradient magnitude is chosen and placed into the desired bin 

based on the corresponding value in the gradient direction. 

The final feature vector for the entire 64 × 128 image patch 

is computed by concatenating the 36 × 1 vectors (9 × 4 = 36 

(9 → number of histogram bins, 4 → number of histograms 

in a 16 × 16 patch)) into a single vector of size 3780 × 1 (7 × 

15 × 36 = 3780 (7 × 15 → number of feature vectors, 36 → 

size of each feature vector)). These extracted features are fed 

to a linear SVM trained for human/non-human classification 

to determine whether or not the image contains a human. 

 

For detection of objects (pedestrians) at various locations in 

the image, a 64 × 128 window slides across the original 

image at all positions. For each sliding window crop, HOG 

+ SVM is performed to check whether the object within the 

window is human or not and localize it (if human) by 

drawing a bounding box with the help of the sliding window 

coordinates (x, y, w, h) within the image. An image pyramid 

of different scales [8] is used to detect variable-sized objects 

at various locations within an image. Non-maximum 

suppression (NMS) is applied to suppress weak detections 

for final prediction. 

 

The architecture  

The complete human detection pipeline using HOG is shown 

in Fig. 4. 

 
Figure 4: Human detection using HOG 

 

 

Training and testing  

The model is trained and tested on both MIT Pedestrian and 

INRIA Person datasets. 1239 positive and 1218 negative 

image samples [6] are used in training the model. During 

training, data is also augmented. 

 

2.2.3. Merits, demerits and discussion  

The HOG algorithm creates histograms of edge orientations 

from certain patches in an image, and even with a change in 

color, clothing, and other factors for a person (say), the 

general edges remain relatively constant, thus succeeding in 

human detection. 

 

HOG works well, for a rigid body [6] but not for a non-rigid 

or deformed one. 

 

HOG is a dense sampling based feature extraction technique. 

It significantly outperforms existing algorithms [9][10] in 

the task of human detection. The average precision of the 

detector on the INRIA Person dataset is 75% [11] and won 

the 2006 PASCAL object detection challenge [12]. 

 

2.3. DPM 

 

In 2008, Felzenszwalb et al. proposed an improved version 

[12] of HOG. 

2.3.1. Motivation  

The requirement for such a model is to take care of that 

works well a non-rigid body (e.g., a human in various 

poses), intra-class variability (e.g., different shaped cars), 

variations caused by different perspectives and lighting on 

an object. The previous approach [6] could not handle these 

problems. 

 

2.3.2. Work description 

Overview  

DPM is a star-structured part-based model based on a root 

filter, a set of part filters, and the associated deformation 

costs. The score of the model (𝑀) at a particular location (𝑙0) 

and scale (𝑠) within an image (𝐼) is,  

 

𝑠𝑐𝑜𝑟𝑒 𝑀, 𝑙0, 𝑠, 𝐼  = 

𝑠𝑐𝑜𝑟𝑒 𝐹0, 𝑙0 

+  𝑚𝑎𝑥𝑙𝑖  𝑠𝑐𝑜𝑟𝑒 𝐹𝑖 , 𝑙𝑖 

𝑛

𝑖=1

−  𝑐𝑜𝑠𝑡 𝑙𝑖
′ , 𝑙𝑖   

(4) 

 

where 𝑠𝑐𝑜𝑟𝑒 𝐹0, 𝑙0  is the score of the root filter 𝐹0 at the 

given location 𝑙0, 𝑠𝑐𝑜𝑟𝑒 𝐹𝑖 , 𝑙𝑖  is the score of the part filter 

𝐹𝑖  at the location 𝑙𝑖 , and 𝑐𝑜𝑠𝑡 𝑙𝑖
′ , 𝑙𝑖  is the deformation cost 

measuring the deviation of the location of the 𝑖th part (𝑙𝑖) 

from its ideal location relative to the root (𝑙𝑖
′ ). 

 

The complete configuration of the object hypothesis (the 

position of each part and the root width) is used in predicting 

a bounding box for the object [12]. For predicting the 

bounding box coordinates (x1, y1, x2, y2), four linear 

functions are learned by linear least-square regression on the 

training data. Like HOG, NMS is applied to suppress weak 

detections (per class) and, the final predictions are obtained. 

 

The architecture  

The complete human detection pipeline using DPM is shown 

in Fig. 5. 

 

 
Figure 5: The human detection process at 1 scale [12]. The 

root and part filters’ responses are computed at different 

resolutions and the transformed responses are added together 
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to produce a final score for each root location (assuming at 

most one object per root location). 
 

Training and testing  

A latent SVM [12][11] is constructed to learn the model 

parameters (root filter, part filters, and deformation costs) 

and must be able to determine the best values for the latent 

variables (part location). 

 

The model is trained and tested on both INRIA Person and 

PASCAL VOC datasets. 

 

2.3.3. Merits, demerits and discussion  

The model works fine for a non-rigid or deformed body. But 

the process is a bit lengthy and complex. The manually 

designed feature extraction technique in this model leads to 

a lower object detection performance [13]. The object 

detection model relies on multiscale deformable part model 

mixtures. The model is heavily reliant on new methods for 

discriminative training of classifiers that use latent 

information and fast techniques for matching deformable 

models to images. In comparison to the previous 

methodology [6], the resulting system is both efficient and 

accurate. 

 

A good survey paper [14] on pedestrian detection (using 

classical computer vision techniques) is also written by 

Gerónimo et al. The survey is helpful to all the researchers 

in the computer vision community. It includes some 

important comparative results in this domain. 

 

2.4. AlexNet 

 

In 2012, Krizhevsky et al. proposed an efficient deep 

learning algorithm [13] for image classification by building 

a deep CNN and marked the beginning of the deep learning 

era. 

 

2.4.1. Motivation  

Previous approaches [1][6][12] to object detection relied on 

small image datasets of tens of thousands of images. With 

datasets of this size, simple detection tasks are solved quite 

well. However, real-life objects show significant variability, 

so to learn to recognize them and improve performance, 

much larger training datasets with millions of images and a 

potent model with a high learning capacity are required. 

 

Convolutional neural network (CNN) helps in classifying 

different objects, identify their boundaries, differences, and 

relations to one another from complicated sights (or scenes) 

with multiple overlapping objects. It is also a good feature 

extractor compared to the previously manually designed 

methods [1] [6] [12]. 

 

2.4.2. Work description 

 

Overview  

Random crops of size M × M are generated from an image of 

size S × S to feed the AlexNet for classification (S = 256, M 

= 227) [15]. The input image must be converted if it is not S 

× S. Images are pre-processed by subtracting from each pixel 

the mean RGB value computed on the training set. For each 

crop, features are extracted using convolutional (CONV) 

layers and then passed to a series of fully-connected (FC) 

layers for classification. The final classification score is 

calculated, by averaging the network's classification layer's 

predictions, on the random crops. 

 

The network architecture  

The AlexNet contains 11 layers – 5 CONV, 3 MAXPOOL, 2 

FC, and 1 SOFTMAX (classification) layers (see Fig. 6). 

The network takes an image of size 227 × 227 × 3 as input. 

The final CONV layer produces a 6 × 6 × 256 tensor, which 

is flattened and fed to a sequence of FC layers, producing 

1000 outputs, i.e., the final classification scores. ReLU is 

applied after all of the CONV and FC layers, and a local 

response normalization (LRN) layer is added after the ReLU 

in the 1st and 2nd CONV layers. A dropout layer with a 0.5 

rate is added after the first and second FC layers to avoid 

overfitting. 

 

 
Figure 6: The AlexNet architecture 

 

Training and testing  

The network is trained on multiple GPUs (batch size: 128, 

number of epochs: 90, optimizer: stochastic gradient descent 

(SGD) with momentum (momentum = 0.9), learning rate: 

0.01) [13]. To reduce overfitting, 2 types of data 

augmentation are used – (i) generating translations and 

horizontal reflections of the image and (ii) altering the 

intensities of the RGB channels of the image. The 1st type of 

data augmentation is used during both training and testing, 

while the 2nd type is only used during training. 

 

The model is trained and tested on the ImageNet 1000-class 

dataset. The image classification using AlexNet is shown in 

Fig. 7. 

 
Figure 7: Image classification using AlexNet 
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2.4.3. Merits, demerits and discussion  

Training on multiple GPUs reduces TOP-1 and TOP-5 error 

rates by 1.7% and 1.2%, respectively, compared to a single 

GPU and take slightly less time [13]. The 2nd form of data 

augmentation brings down the TOP-1 error rate by over 1%. 

The batch normalization reduces TOP-1 and TOP-5 error 

rates by 1.4% and 1.2%, respectively. The overlapping max-

pooling lowers TOP-1 and TOP-5 error rates by 0.4% and 

0.3%, respectively, compared to the non-overlapping max-

pooling. 

 

The approach uses a set of 10 views (4 corners and 1 center, 

with their respective horizontal flip) of fixed size (due to the 

fixed input size constraint) as input to the network, resulting 

in an excessive number of inputs [13]. This method also 

ignores many image regions (i.e., it cannot detect objects of 

varying sizes at different locations in the image) and is 

computationally superfluous when views overlap. 

 

In ILSVRC-2010, the model attains TOP-1 and TOP-5 test 

error rates of 37.5% and 17.0%, respectively, and a TOP-5 

test error rate of 15.3% in ILSVRC-2012 using its variant 

[13]. When a single CONV layer is removed, the model's 

performance suffers, resulting in a loss of about 2% for the 

network's TOP-1 performance, indicating that the depth of a 

network is very important for achieving the results. 

 

2.5. OverFeat 

 

In 2013, Sermanet et el.  proposed an integrated framework 

[16] for classification, localization, and detection of objects 

using CNN. 

 

2.5.1. Motivation  

The previous approach [13] used a set of 10 fixed-size views 

as input to the network, ending up with too many inputs. 

This approach also ignored many image regions, i.e., it 

couldn’t detect objects of varying sizes at different locations 

in the image and was computationally superfluous when 

views overlap. It was only used on a single scale, which may 

not be the scale at which the CNN will respond with the 

greatest confidence. 

  

2.5.2. Work description 

Overview  

The OverFeat model removes the fixed-size input constraint 

[17][18] by converting the network's FC layers as 

convolution operations. An image pyramid of different 

scales is used to detect objects of different sizes at different 

locations in the image. Like AlexNet, features are extracted 

using CONV layers and then passed to a series of FC layers 

converted as CONV layers for classification and 

localization. Greedy merge [16][19] is used to get the final 

predictions. 

 

The network architecture  

OverFeat uses AlexNet as the base network [20]. The first 5 

CONV layers are modified, and the 2 FC layers and 1 

classification layer (SOFTMAX) are implemented as 3 

CONV layers. An image pyramid of 6 different scales (245 

× 245, 281 × 317, 317 × 389, 389 × 461, 425 × 497, and 461 

× 569) is fed into the network, producing a C-dimensional 

vector as an output for each scale (C = 1000 (number of 

classes)) (see Fig. 8). A bounding box regression network 

replaces the classification network for localization. 

 

 
Figure 8: The OverFeat architecture 

 

Training and testing  

The classification is done through the classification network 

using the 6 different scales and their horizontally flipped 

versions. For each scale and flip, the final classification 

layer of the network generates a class score map that 

provides a confidence score that an object of class c (say) is 

present in the corresponding field of view. Following a 

series of steps [16], the final classification scores for an 

image are derived from these class score maps. 

 

The regression network is trained using the same set of 

scales as the classification network. The regressor net's 

prediction at each spatial location is compared to the 

ground-truth bounding box. An L2 loss between the 

predicted and ground-truth boxes is used to train the 

network. The network is not trained on boxes that have less 

than 50% overlap with the ground-truth. Instead of the class 

score map, the final regressor layer produces a set of 

bounding box predictions. 

 

The model is trained and tested on the ImageNet dataset 

(batch size: 128, optimizer: SGD with momentum 

(momentum = 0.6), learning rate: 5 × 10
-2

 and is reduced by 

a factor of 0.5 after each (30, 50, 60, 70, 80) epoch). Object 

detection by the OverFeat model is shown in Fig. 9. 
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Figure 9: Object detection by OverFeat model. 

 

2.5.3. Merits, demerits and discussion  
The approach – (i) removes the fixed input size constraint by 

converting the FC layers as convolution operations, (ii) has 

no too many inputs to the network, (iii) is able to classify, 

localize, and detect objects of different sizes at different 

locations of an image due to the multi-scale, sliding window 

approach, (iv) uses CONV layers for classification, 

localization, and detection tasks instead of FC layers, and (v) 

uses an integrated pipeline that performs various tasks 

(classification, localization, and detection) while sharing a 

common base for feature extraction learned entirely from 

pixels. 

 

For localization, the approach does not back-propagate 

through the entire network. Use of L2 loss, rather than 

improving the IoU measure directly to get the bounding 

boxes. The multi-scale, sliding window approach for 

classification, localization and detection of objects is 

computationally expensive and time-consuming. 

 

OverFeat uses a multi-scale, sliding window approach for 

classification with localization and detection of objects using 

ConvNets. The methodology uses an integrated pipeline that 

performs various tasks (classification, localization, and 

detection) while sharing a common base for feature 

extraction learned entirely from pixels. The accuracy of the 

OverFeat network is improved by lowering the network's 

resolution [21] from 36 to 12. As a result, it will be able to 

detect more objects. The model ranks 4th in classification 

(13.6% top-5 test error rate), 1st in localization (29.9% top-5 

test error rate), and 3rd in detection (19.4% mAP) in 

ILSVRC-2013 competition [16]. 

 

2.6. R-CNN 

 

In 2014, Girshick et el. proposed a region-based CNN model 

[22] for object detection. 

 

2.6.1. Motivation  

The previous method [16] took a dense sampling approach 

at different scales and their respective horizontal flipped 

versions to determine the presence and type of the object at 

every location, which was very time-consuming. The 

method also lowered the network resolution for better 

accuracy, which increased the computational cost. Use of L2 

loss, rather than improving the IoU measure directly to get 

the bounding boxes affected the model's accuracy. 

2.6.2. Work description 

Overview  

R-CNN is a 2-stage object detector model – (i) the 1st stage 

– generates region proposals or RoIs, and (ii) at the 2nd 

stage – these regions are fed to a CNN for feature extraction 

and classification. 

 

Using selective search [23], the object detection model 

generates around 2000 RoIs for an input image, each of 

which is warped to a fixed size (227 × 227) and fed to a 

CNN, which produces a 4096-d feature vector as output, 

which is then passed to an SVM for classification. 

Bounding-box regression is used to improve localization. 

NMS is applied to suppress weak detections (per class) for 

the final predictions. 

 

The network architecture  

R-CNN also uses AlexNet as the base network [24] 

containing 11 layers – 5 CONV layers, 3 MAXPOOL layers, 

2 FC layers, and 1 classification layer. A 227 × 227 RGB 

image is fed into the network, producing output for C 

different classes (see Fig. 10). The FC layers are removed 

for localization, and the classification layer is replaced with 

a bounding box regression layer. 

 

 
Figure 10: The R-CNN architecture 

 

Training and testing  

The model is trained and tested on PASCAL VOC dataset. 

The training needs mainly 4 different stages [25] – (i) 

supervised pre-training, (ii) domain-specific fine-tuning, (iii) 

object category classification, and (iv) bounding box 

regression. 

 

The network is first trained on the ImageNet dataset so that 

it can learn the basic image features. For adapting to the 

detection task and the warped VOC windows, the ImageNet-

specific 1000-way classification layer of the network is 

replaced with a 21-way classification layer (20 VOC classes 

plus background) and ultimately the model fine-tuned with 

this layer (batch size: 128 (32 positive and 96 negative), 

optimizer: SGD, learning rate: 0.001). The final 

classification layer is removed after fine-tuning, and a 4096-

d feature vector is obtained for each of the 2000 RoIs. Next 

a linear SVM is trained for each class using the obtained 

feature vector, and the final output is a set of positive object 

proposals from the features of 2000 region proposals for 

each class.  

 

Bounding box regression is performed using the pool3 

features to improve localization. As a result, an accurate and 

correct bounding box around the object is obtained for all 

the positive object proposals. 
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The object detection using R-CNN is shown in Fig. 11. 

 
Figure 11: Object detection using R-CNN 

 

2.6.3. Merits, demerits and discussion  

The approach is faster and more accurate compared to the 

previous methods. It uses a region proposal algorithm to 

perform multiple object detection in one-shot instead of the 

sliding window technique at different scales. 

 

The selective search region proposal method is a fixed 

technique; no learning occurs at that stage, which may result 

in poor candidate region proposals. R-CNN consumes both 

time and space because it computes the feature map for each 

RoI, and each feature map of each RoI must be saved, which 

requires a large amount of memory. Furthermore, the 

training task is difficult because it necessitates four stages of 

training. 

 

On the VOC 2007, VOC 2010, and VOC 2011/2012 

datasets, R-CNN achieves 58.5%, 53.7%, and 53.3% mAP, 

respectively [22]. This performance is achieved by 

combining traditional computer vision tools (region 

proposals using selective search) with deep learning (CNN). 

Supervised pre-training, domain-specific fine-tuning, object 

category classification, and bounding box regression 

contribute to this level of accuracy. 

 

2.7. VGG-16 

 

In 2014, K. Simonyan and A. Zisserman proposed a very 

large and deep CNN [26] for object detection. 

 

2.7.1. Motivation  

AlexNet, the base architecture of previous methods [16][22], 

had a lot of variations in its CONV and MAXPOOL layers, 

i.e., all the CONV and MAXPOOL layers used different 

filter size, padding, and stride, which was very difficult to 

remember. Moreover, due to the fewer layers, the methods 

failed to achieve high accuracy. 

 

2.7.2. Work description 

Overview  

The model uses the methodology of [13] at the time of 

training, and the methodology of [16] at the time of testing 

[26]. Both the training and testing are done using single and 

multiple scale images. 

 

The network architecture  

The VGG-16 contains 24 layers – 16 CONV, 5 MAXPOOL, 

2 FC, and 1 SOFTMAX (classification) layers (see Fig. 12). 

The network takes an image of size 224 × 224 × 3 as input. 

The final CONV layer produces a 7 × 7 × 512 tensor, which 

is flattened and fed to a sequence of FC layers, producing 

1000 outputs, i.e., the final classification scores. ReLU is 

applied after all of the CONV and FC layers. LRN is not 

used. A dropout layer with a 0.5 rate is added after the 1st 

and 2nd FC layers to avoid overfitting. A bounding box 

regression network replaces the classification network for 

localization. 

 

 
Figure 12: The VGG-16 architecture. 

 

Training and testing  

Random crops of size M × M are generated from an image of 

size S × S to feed the VGG-16 for classification training (S = 

{256, 384} for single-scale training and S = [Smin, Smax] for 

multi-scale training (Smin = 256, Smax = 512), M = 224) [26]. 

The input image must be converted if it is not S × S. Like 

AlexNet, images are pre-processed by subtracting from each 

pixel the mean RGB value computed on the training set. For 

each crop, features are extracted using CONV layers and 

then passed to a series of FC layers for classification. The 

final classification score is calculated by averaging the 

network's classification layer's predictions on the random 

crops. The network is trained by optimizing the multinomial 

logistic regression objective with a mini-batch of size 256. 

The optimizer and learning rate used for training is similar to 

that of AlexNet. The multi-scale models are trained by fine-

tuning all the layers of the single-scale model with the same 

configuration, pre-trained with fixed S = 384. Localization 

training is similar to classification training, except that the 

objective is Euclidean loss rather than multinomial logistic 

regression, and the learning rate is 0.001. Multi-scale 

training is not used for localization. 

 

At the classification test time, the image is first rescaled to N 

× N, where N is set as – (i) N = S for fixed S, and N = 0.5 * 

(Smin + Smax) for jittered S ϵ [Smin, Smax] (for single-scale 

evaluation) (e.g., if S = 256 then N = 256, and if S = [256, 

512] then N = 0.5 * (256 + 512) = 384), and (ii) N = [Smin, 

0.5 * (Smin + Smax), Smax] for S ϵ [Smin, Smax] (for multi-scale 

evaluation) (e.g., if S = [256, 512] then N = [256, 0.5 * (256 

+ 512), 512] = [256, 384, 512]) [26]. Like OverFeat, the 

entire rescaled image is fed to the network, as the FC layers 

(FC1, FC2, and SOFTMAX) are converted to CONV layers. 

For each scale, the final classification layer of the network 

generates a class score map with the number of channels 

equal to the number of classes. The class score map is 

spatially averaged to get a fixed-size vector of class scores. 

The test set is also augmented by horizontal flipping. The 

final classification scores for an image are obtained by 
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averaging the predictions made by the network’s 

classification layer on the original and flipped versions. 

Localization testing is similar to classification testing, except 

that the output of the last FC layer is a set of bounding box 

predictions rather than the class score map, as the 

classification layer (SOFTMAX) is replaced by the 

bounding box regression layer. Greedy merge [16][19] is 

used to get the final predictions. Multi-scale evaluation is 

not used for localization. 

 

The model is trained and tested on the ImageNet dataset. 

Image recognition using VGG-16 is shown in Fig. 13. 

 

 
Figure 13: Image recognition using VGG-16. 

 

2.7.3. Merits, demerits and discussion  

The architecture of VGG-16 is simple, i.e., all the CONV 

layers use the same filter size, padding, and stride, and all 

the MAXPOOL layers use the same filter size, padding, and 

stride, which is very easy to remember. It extracts more 

parameters from the images compared to the previous 

methods, which increases the model accuracy. The model 

also generalizes effectively to a variety of tasks and datasets, 

matching or surpassing more complex recognition pipelines 

based on shallower image representations. 

 

VGG-16 is a heavier model and takes more training time. 

Like AlexNet and OverFeat, the model also takes too many 

inputs to the network. 

 

In classification, the network achieves the TOP-1 and TOP-5 

validation error rates of 25.5% and 8.0%, respectively, at a 

single test scale and 24.8% and 7.5%, respectively, at 

multiple test scales in ILSVRC-2014 [26]. In localization, 

the network achieves the TOP-5 test error rate of 25.3% in 

ILSVRC-2014. The network depth contributes to this level 

of accuracy, i.e., as the network depth increases, so do the 

accuracy. 

 

2.8. Fast R-CNN 

 

In 2015, R. Girshick proposed an improved version [27] of 

R-CNN. 

 

2.8.1. Motivation  

Due to the fixed-size input constraint, the previous method 

[22] warped the input image to a fixed size, resulting in an 

unwanted geometric distortion affecting the accuracy. The 

training was a multi-stage process that included feature 

extraction, network fine-tuning, SVM training, and 

bounding-box regression. The method was slow because it 

extracted features by repeatedly applying the deep CNN to 

the warped regions per image. The features were saved to 

disc and took up a lot of memory space. The training 

algorithm was unable to update the weights below the FC 

layers, limiting the model's accuracy. 

 

2.8.2. Work description 

Overview  

Fast R-CNN eliminates the network's fixed-size input 

constraint by inserting an RoI pooling layer between the last 

CONV layer and the 1st FC layer, which is similar to the 

SPP layer of SPP-net [28] with only one pyramid level. The 

layer employs max-pooling for converting the features 

within any valid RoI (as determined by mapping RoI to 

feature maps [29]) into a small feature map of fixed size H × 

W. It divides the h × w RoI window into a H × W grid of 

sub-windows of approximately h/H × w/W size and then 

max-pools the values in each sub-window into the 

corresponding output grid cell [30]. The RoI pooling is 

independently applied to each feature map channel, resulting 

in a feature map of size R × H × W × D that is fed to a series 

of FC layers for classification and localization (R = number 

of RoIs, H = W = 7, D = 512) [31]. Like R-CNN, NMS is 

applied to obtain the final predictions. 

 

The network architecture  

Fast R-CNN uses VGG-16 as the base network [27]. An RoI 

pooling layer is added after the last CONV layer (replacing 

the last MAXPOOL layer) and before the 1st FC layer. The 

FC layers finally branch into 2 output layers – (i) the 

SOFTMAX classification layer and (ii) the bounding box 

regression layer (see Fig. 14). 

 

 
Figure 14: The Fast R-CNN architecture [27] 

 

Training and testing  

Like R-CNN, the network is pre-trained on the ImageNet 

dataset. The network is fed 2 sets of data – (i) a list of 

images and (ii) a list of RoIs within those images.  

 

During training, SGD mini-batches of size B are 

hierarchically sampled, first by sampling I images, then by 

sampling B/I RoIs from each image, resulting in 

computation and memory sharing by RoIs from the same 

image in both the forward and backward passes (B = 128, I = 

2 [27]). In addition, Fast R-CNN employs a smooth training 

process with a single fine-tuning stage that optimizes both 

the SOFTMAX classifier and the bounding-box regressor. 

Unlike previous methods, the entire network is trained via 

back propagation. 
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The loss function is a multi-task loss, 

 

𝐿 𝑝,𝑢, 𝑡𝑢 , 𝑣 = 𝐿𝑐𝑙𝑠  𝑝,𝑢 + 𝜆 𝑢 ≥ 1 𝐿𝑙𝑜𝑐  𝑡
𝑢 , 𝑣 , (5) 

where 𝐿𝑐𝑙𝑠  is the classification loss (log loss), 𝐿𝑙𝑜𝑐  is the 

localization loss (smooth L1 loss), 𝑝 is the predicted class, 𝑢 

is the actual class, 𝑡𝑢 = (𝑡𝑥
𝑢 , 𝑡𝑦

𝑢 , 𝑡𝑤
𝑢 , 𝑡

𝑢) is the predicted 

bounding box for class 𝑢, 𝑣 = (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑤 , 𝑣) is the actual 

bounding box for the same class, [𝑢 ≥ 1] is a function that 

evaluates to 1 for the foreground and 0 for the background 

class, and 𝜆 is a hyperparameter for controlling the balance 

between the two losses. 

 

For achieving a scale-invariant detection of objects, 2 

methods are used – (i) single-scale approach (brute-force 

learning) and (ii) multi-scale approach. In a single-scale 

approach, the input images are resized so that the shortest 

side is M pixels and the longest side is no more than N pixels 

while maintaining the aspect ratio (M = 600 and N = 1000 

[27]). In a multi-scale approach, an image pyramid of 

randomly sampled size (480, 576, 688, 864, and 1200 [27]) 

of input images is used. 

 

The model is trained and tested on PASCAL VOC and MS 

COCO datasets. The object detection using Fast R-CNN is 

shown in Fig. 15. 

 
Figure 15: Object detection using Fast R-CNN 

 
2.8.3. Merits, demerits and discussion  

The Fast R-CNN has several advantages – (i) faster than R-

CNN because it does not need to feed 2000 RoIs to the CNN 

every time; instead, the convolution operation is performed 

only once per image; (ii) higher detection quality than R-

CNN; (iii) training is a single stage using a multi-task loss 

and updates all network layers’ weights; and (iv) features are 

not stored on disc. 

 

When comparison is done not using region proposals, Fast 

R-CNN performance during testing time significantly slows 

down [32]. 

 

On the VOC 2007, VOC 2010, and VOC 2012 datasets, Fast 

R-CNN achieves 70.0%, 68.8%, and 68.4% mAP, 

respectively [27]. This level of accuracy is achieved through 

multi-task training of the entire network. It processes images 

9x and 45x faster than R-CNN at training and testing time, 

respectively. The detection time of the network is reduced 

by more than 30% when truncated SVD [27] is used, with 

only a 0.3 drop in mAP. On the COCO dataset, Fast R-CNN 

achieves a 19.7% mAP@[.5, .95]. 

 

 

2.9. Faster R-CNN 

In 2015, Ren et al. also proposed an improved version [33] 

of Fast R-CNN. 

 

2.9.1. Motivation  

Methods in [22][27] used the selective search technique [23] 

to extract RoIs from an image but it is a time-consuming 

process (around 2s/image with CPU computation) and it 

degrades the network performance. 

 

2.9.2. Work description 

 

Overview  

Faster R-CNN consists of 2 modules – i) RPN (RoI 

generator), and ii) Fast R-CNN (object detector). 

 

Region proposal network (RPN) is a deep fully 

convolutional network (FCN) that accepts any size image as 

input and outputs a set of RoIs, each with an objectness 

score. RPN works on dedicated CONV layers, with the 

previous layers shared by Fast R-CNN. 

 

The input image is resized in the same way that Fast R-CNN 

does so that the shortest side is M pixels and the longest side 

is no more than N pixels (M = 600 and N = 1000) and is fed 

to a backbone network producing a feature map of size M' × 

N' × D (M' = 40, N' = 60, D = 512 (for VGG-16 [26]) and 

256 (for ZFNet [34])). The output feature map is shared by 

both the RPN and Fast R-CNN networks. 

 

RPN consists of 1 P × P CONV layer with D units or filters 

(P = 3) followed by 2 Q × Q CONV sibling layers (box 

classification and regression layers) with U and V units 

respectively (Q = 1, U = 18, V = 36) [35]. The output of the 

P × P CONV layer is subjected to ReLU. The RPN receives 

the backbone feature map. The network's 1st layer slides 

over this feature map, creating a D-dimensional feature at 

each sliding window location. This output feature is then 

passed to the 2 sibling layers, resulting in M' × N' × U and 

M' × N' × V outputs. At each sliding window location, the 

network learns about the presence of an object(s) in the input 

image with the help of a K set of anchors (K = 9). 

 

The RoIs produced from the RPN module are passed to the 

Fast R-CNN module for detection. 

 

The network architecture  

Faster R-CNN architecture consists of 3 parts – i) CONV 

layers, ii) RPN, and iii) classification and bounding box 

regression layers (see Fig. 16). Faster R-CNN uses VGG-16 

and ZFNet as the backbone network. 
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Figure 16: The Faster R-CNN architecture 

 

Training and testing  

A 4-Step Alternating Training [33] is used to train the entire 

model for object detection. This type of training mechanism 

assists the model in sharing the backbone ConvNet weights 

between RPN and Fast R-CNN. 

 

During RPN training, an anchor is considered as a positive 

sample if it has an IoU > 0.7 with any of the ground-truth 

boxes and negative if it has an IoU < 0.3 with all the ground-

truth boxes. The remaining anchors, which are neither 

positive nor negative, are discarded. A mini-batch of size 

256 (128 positive and 128 negative samples from a single 

image) is used for training the RPN (optimizer: SGD with 

momentum (momentum = 0.9), learning rate: 0.001 (for 60k 

mini-batches), 0.0001 (for next 20k mini-batches)). 

 

Like Fast R-CNN, the loss function for RPN is a multi-task 

loss, 

 

𝐿  𝑝𝑖 ,  𝑡𝑖  =
1

𝑁𝑐𝑙𝑠
 𝐿𝑐𝑙𝑠  𝑝𝑖 , 𝑝𝑖

∗ 

𝑖

+ 𝜆
1

𝑁𝑟𝑒𝑔
 𝑝𝑖

∗𝐿𝑟𝑒𝑔  𝑡𝑖 , 𝑡𝑖
∗ 

𝑖

, 
(6) 

 

where 𝑝𝑖  is the predicted probability of the 𝑖th anchor being 

an object, 𝑝𝑖
∗ is the ground-truth label (1 if the 𝑖th anchor is 

positive and 0 if it is negative), 𝑡𝑖  is the four parameterized 

coordinates of the predicted bounding box, 𝑡𝑖
∗ is the ground-

truth box overlapped with the positive anchor, 𝐿𝑐𝑙𝑠  is the 

classification loss which is the log loss over binary classes 

(object vs. non-object), and 𝐿𝑟𝑒𝑔  is the regression loss which 

is the smooth L1 loss [27]. These two terms (classification 

and regression) are normalized by 𝑁𝑐𝑙𝑠  (mini-batch size) and 

𝑁𝑟𝑒𝑔  (number of anchor locations), respectively and the 

second term is multiplied by a hyperparameter 𝜆.  

 

The Rk anchors from each image go through a sequence of 

post-processing steps [33] to get the final rk RoIs (r < R) 

from RPN and are passed to the object detector network for 

both training and testing. 

 

The model is trained and tested on both PASCAL VOC and 

MS COCO datasets. The object detection using Faster R-

CNN is shown in Fig. 17. 

 

 
Figure 17 Object detection using Faster R-CNN 

 

2.9.3. Merits, demerits and discussion  

Faster R-CNN has several advantages – (i) introduction to 

RPN for region proposals makes it faster than its 

predecessors [32], (ii) introduction to anchors for object 

detection is cost-efficient than previous methodologies like 

image pyramid and filter pyramid, and (iii) sharing of 

ConvNet between the two network modules (RoI generator 

and object detector) makes it a single, unified model for 

object detection. 

 

Each component of the Faster R-CNN model (RoI generator 

and object detector) is trained separately.  

 

RPN is an efficient and accurate model for RoI generation. 

By sharing the ConvNet features with the object detector, 

the RoI generation step is nearly cost-free. RPN improves 

the RoI quality compared to other region proposal 

techniques (selective search and edge boxes [36]), thus 

improving the overall model accuracy. Faster R-CNN runs 

at nearly real-time frame rates. 

 

With only 300 RoIs per image,  Faster R-CNN achieved 

state-of-the-art object detection accuracy of 73.2% and 

70.4% on VOC 2007 and VOC 2012 datasets, respectively, 

and 21.9% mAP@[.5, .95] on COCO dataset [33]. In the 

ILSVRC and COCO 2015 competitions, Faster R-CNN and 

RPN occupy the first place in various tracks. 

 

2.10 YOLO 

 

In 2015, Redmon et al. proposed an efficient unified, real-

time, one-stage object detector model [37] that takes an 

entire image as input and concurrently learns the class label 

probabilities and bounding box coordinates of the object(s) 

present in that image. 

 

2.10.1. Motivation  

Previous object detection methods [22][27][33] used 

separate region proposal techniques [23][33] to generate all 

the possible bounding boxes in an image at first and then ran 

a classification and localization network on these RoIs for 

detection, i.e., a two-stage object detector model. Because 

each of these components was separately trained, the object 
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detection pipeline was very complex, slow, and difficult to 

optimize. 

 

2.10.2. Work description 

Overview  

YOLO divides an image into S × S grid cells. Each of these 

grid cells predicts B bounding boxes and C class 

probabilities. If an object’s (present within the image) center 

falls within a grid cell, then that grid cell is subject to 

detecting that object only, i.e., each grid cell predicts only 

one object. 

 

The predicted bounding box has 5 components (𝑏𝑥 , 𝑏𝑦 , 𝑏𝑤 , 

𝑏 , 𝑏𝑐𝑜𝑛𝑓 ), where (𝑏𝑥 , 𝑏𝑦 ) is the box’s center relative to the 

grid cell location (𝑔𝑥 , 𝑔𝑦 ), (𝑏𝑤 , 𝑏 ) is the box's dimensions 

relative to the image size (𝐼𝑤 , 𝐼 ), and 𝑏𝑐𝑜𝑛𝑓  is the box’s 

confidence score, i.e., how certain the model is that an object 

is contained within the box (the higher the confidence score 

thicker the box is), 

 

𝑏𝑥 = (𝑥 − 𝑔𝑥) 𝑔𝑥 , 𝑏𝑦 = (𝑦 − 𝑔𝑦) 𝑔𝑦 , 

(7) 𝑏𝑤 = 𝑤 𝐼𝑤 , 𝑏 =  𝐼 , 

𝑏𝑐𝑜𝑛𝑓 = P(object) ∗ IoU(truth, pred), 

 

where (𝑥, 𝑦) and (𝑤, ) are the box’s actual center (ground 

truths) and dimensions respectively, P(object) is the 

probability that the predicted box contains an object (1 if an 

object is present in that grid cell, otherwise 0), and 

IoU(truth, pred) is the IoU between the ground-truth and 

predicted boxes. Therefore, there are total S × S × (B * 5) 

outputs associated with the bounding box predictions in an 

image. 

 

The model predicts C conditional class probabilities per grid 

cell, despite the number of boxes B, i.e., a total of S × S × C 

class probabilities are predicted across an image, 

 

P(classi) = P(classi | object), (8) 

 

where P(classi | object) is the probability that the object 

belongs to the ith class, given that the object is present in the 

grid cell. If no object is present in that grid cell, the loss 

function will not penalize it during training for incorrect 

class prediction. 

 

The final score, i.e., the category-specific confidence scores 

for each box, is obtained by combining the individual box’s 

confidence score and the conditional class probabilities, 

producing S × S × (B * 5 + C) outputs (S = 7, B = 2, C = 20) 

[37]. NMS is applied to suppress weak detections (per class) 

and, the final predictions are obtained. 

 

The network architecture  

YOLO makes use of the Darknet [37] network having 30 

layers (24 CONV, 4 MAXPOOL, and 2 FC layers) (see Fig. 

18). The network takes an image of size 448 × 448 × 3 as 

input. The final CONV layer produces a 7 × 7 × 1024 tensor 

[38], which is flattened and fed to a sequence of FC layers, 

producing 1470 outputs, which are then reshaped to produce 

a 7 × 7 × 30 tensor as the final output. The last layer (FC2) 

employs a linear activation function, while the remaining 

layers employ Leaky ReLU. A dropout layer with a 0.5 rate 

is added after the 1st FC layer to avoid overfitting. 

 

 
Figure 18: The Darknet architecture [37]. 

 

Training and testing  

The network is first trained on the ImageNet dataset using 

the first 20 CONV layers followed by an AVGPOOL layer 

and an FC layer at an input resolution of 224 × 224 because 

the ImageNet images are of size 224 × 224. For detection, 4 

CONV layers and 2 FC layers with randomly initialized 

weights are added to the pre-trained network, removing the 

AVGPOOL and FC layers. The network’s input resolution is 

increased to 448 × 448. A mini-batch of size 64 is used for 

training the network (number of epochs: 135, optimizer: 

SGD with momentum (momentum = 0.9), learning rate: 0.01 

(for first 75 epochs), 0.001 (for next 30 epochs), 0.0001 (for 

final 30 epochs)). 

 

The loss function is a multi-part function, 

 

 𝜆𝑐𝑜𝑜𝑟𝑑   𝕝𝑖𝑗
𝑜𝑏𝑗   𝑥𝑖 − 𝑥 𝑖 

2 +  𝑦𝑖 − 𝑦 𝑖 
2 

𝐵

𝑗=0

𝑆2

𝑖=0

  

(9) 

 +𝜆𝑐𝑜𝑜𝑟𝑑   𝕝𝑖𝑗
𝑜𝑏𝑗

   𝑤𝑖 −  𝑤 𝑖 
2

𝐵

𝑗=0

𝑆2

𝑖=0

+   𝑖 −   𝑖 

2

  + 

   𝕝𝑖𝑗
𝑜𝑏𝑗
 𝐶𝑖 − 𝐶 𝑖 

2
𝐵

𝑗=0

𝑆2

𝑖=0

  

 +𝜆𝑛𝑜𝑜𝑏𝑗   𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 𝐶𝑖 − 𝐶 𝑖 
2

𝐵

𝑗=0

𝑆2

𝑖=0

 + 

  𝕝𝑖
𝑜𝑏𝑗

𝑆2

𝑖=0

  𝑝𝑖 𝑐 − 𝑝 𝑖 𝑐  
2

𝑐  𝜖  𝑐𝑙𝑎𝑠𝑠𝑒𝑠

 , 

where the 1st part is the localization loss, the 2nd part is the 

confidence loss, and the 3rd part is the classification loss 

[39]. 

 

The model is trained and tested on PASCAL VOC dataset. 

The object detection using YOLO is shown in Fig. 19. 
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Figure 19: Object detection using YOLO 

 

2.10.3. Merits, demerits and discussion  

YOLO is faster compared to previously discussed object 

detectors due to its one-stage detector strategy, and good for 

real-time processing. The model is more generalized because 

it outperforms other methods when applied to domains other 

than natural images, such as artwork. Unlike the sliding 

window [16][26] and region proposal-based object detection 

approaches previously discussed, YOLO sees the entire 

image during training and testing and implicitly encodes 

contextual information about classes as well as their 

appearances. It produces fewer false positives in background 

areas. 

 

YOLO is less accurate than the previously discussed two-

stage object detectors. It imposes a strong spatial constraint 

on predicting bounding boxes since each grid cell predicts 

only 2 boxes and can have only 1 class (i.e., each grid cell 

predicts only one object). Due to this constraint, the model 

predicts a limited number of adjacent objects (e.g., if two 

objects (i.e., their centers) accidentally fall within the same 

grid, YOLO can detect only one). 

 

YOLO is a unified object detection model. It is simple to 

construct and trained directly on entire images. Unlike the 

object detection methods discussed previously, YOLO is fast 

at training and testing time as it requires a single network 

training and evaluation only. It achieves 63.4% and 57.9% 

mAP on VOC 2007 and VOC 2012 datasets, respectively 

[37]. 

 

2.11. YOLOv2 

 

In 2016, J. Redmon and A. Farhadi proposed an improved 

version [40] of YOLO. 

 

2.11.1. Motivation  

As it struggles with tiny objects that appear in groups [37] 

and nearby objects, YOLO made a significant number of 

localization errors and had a low recall when compared to 

object proposal-based methods [22][27][33]. 

 

2.11.2. Work description 

 

Overview  

The FC layers responsible for bounding box prediction in 

YOLO are removed in YOLOv2, and anchor boxes are used 

to predict them instead. It shifts the class prediction 

mechanism from the cell to the anchor box level, which 

means that instead of predicting objectness and class for 

every cell, it predicts them for every anchor box within that 

cell. In contrast to [33], YOLOv2 finds good anchor boxes 

using the k-means clustering technique [40] on the bounding 

boxes of the training set and predicts the bounding box 

coordinates relative to the grid cell, like YOLO, using those 

anchor boxes. 

 

YOLOv2 jointly trains on the classification and detection 

datasets to broaden the classes it can detect. The 

classification and detection dataset labels are combined to 

form a tree known as WordTree (see Fig. 20), with each 

child forming an is-a relationship with its parent (e.g., a jet is 

an airplane). 

 

To classify using WordTree, conditional probabilities for 

each child of that parent given that parent is predicted at 

each node using SOFTMAX, P(classchildi
| classparent) [39]. 

For e.g., at the airplane node of Fig. 20, the model predicts 

P(biplane | airplane), P(jet | airplane), ..., P(stealth fighter | 

airplane) conditional probabilities. The probability of a 

specific node (say jet) is calculated by following the path 

from the specified node to the root node and multiplying the 

conditional probabilities, 
 

P(jet) = P(jet | airplane) 

(10) 

  ∗ P(airplane | air) 

  ∗ … ∗ 
  ∗ P(artifact | physical object) 

  ∗ P(physical object), 

assuming that an object is already detected (P(physical 

object) = 1). 

 

In object detection, the value of P(physical object) equals 

the bounding box confidence score [39], which determines 

whether the box contains an object. YOLOv2 descends the 

tree, taking the most confident path at each split until it 

reaches a certain threshold and predicts the object class. Like 

YOLO, NMS is applied to suppress weak detections (per 

class) and, the final predictions are obtained. 

 

 
Figure 20: The WordTree [40]. 

 

The network architecture  

YOLOv2 uses an FCN having 22 CONV layers, 5 

MAXPOOL layers, and 1 passthrough layer (see Fig. 21). 

The network takes an image of size 416 × 416 × 3 as input 

instead of 448 × 448 × 3 in YOLO [39]. The final CONV 

layer predicts 5 bounding boxes, each with 5 coordinates and 

20 classes per box. Instead of a dropout layer, batch 

normalization layers are added to all the hidden CONV 

layers. Like YOLO, the last layer employs a linear activation 

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 21 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 4, April 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

function, while the remaining layers employ Leaky ReLU. 

YOLOv2 uses Darknet-19 [40] as the backbone network. 

 

 
Figure 21: The YOLOv2 architecture 

 

Training and testing  

The base network is first trained on the ImageNet dataset 

(number of epochs: 160, optimizer: SGD with momentum 

(momentum = 0.9), learning rate: 0.1 at starting and decayed 

polynomially with a power of 4). The network initially trains 

with 224 × 224 images and then retunes with 448 × 448 

(number of epochs: 10, optimizer: SGD with momentum 

(momentum = 0.9), learning rate: 0.001). For detection, the 

last CONV layer, the AVGPOOL layer, and the SOFTMAX 

layer of the pre-trained network are removed, and 3 3 × 3 

CONV layers, each with 1024 filters, are added, followed by 

a final 1 × 1 CONV layer with 125 filters. A passthrough 

layer from the final 3 × 3 × 512 layer to the second last 

CONV layer is also added, as shown in Fig. 21 so that the 

network can use fine-grained features to detect small 

objects. The network’s input resolution is decreased to 416 × 

416. The detection network is trained for 160 epochs using 

SGD with momentum (momentum = 0.9) with a starting 

learning rate of 0.001 and then divides the rate by 10 at 60 

and 90 epochs. The network is also trained on images with 

different scales [40]. 

 

The loss function is a multi-part function [41] like YOLO. 

 

The model is trained and tested on both PASCAL VOC and 

MS COCO datasets.  The object detection using YOLOv2 is 

shown in Fig. 22. 

 
Figure 22: Object detection using YOLOv2. 

 

2.11.3. Merits, demerits and discussion  

YOLOv2 overcomes the localization errors and low recall of 

YOLO. The model performs well with the new varieties of a 

class not found in the COCO dataset because it can easily 

generalize their shapes from their parent classes. 

 

YOLOv2 struggles with categories like ―sunglasses‖ or 

―swimming trunks‖ [40] as the COCO dataset does not have 

annotations for any clothing. 

 

YOLOv2 is a cutting-edge, real-time object detection 

system. It is faster, accurate, and more generalized than 

other object detection models (previously discussed) across 

a wide range of detection datasets. It achieves 78.6%, 

73.4%, and 48.1% mAP on VOC 2007, VOC 2012, and 

COCO datasets, respectively [40][42]. 

 

2.12. YOLOv3 

 

In 2018, J. Redmon and A. Farhadi proposed an improved 

version [43] of YOLOv2. 

 

2.12.1 Motivation  

Although YOLOv2 was the fastest and most accurate model, 

it was sometimes unable to detect small objects, losing out 

to models such as RetinaNet [44] and SSD [45] in terms of 

accuracy [42]. 

 

2.12.2. Work description 

Overview  

YOLOv3 predicts bounding boxes across 3 different scales 

by extracting features from those scales. The output is 

generated by convolving a S × S × (B * 5 + C) detection 

kernel with the feature map (S = 1, B = 3 (number of boxes a 

cell on a feature map can predict), 5 → box attributes (x, y, 

w, h, confidence), C = 80 (number of classes)) [43]. 

YOLOv3 uses anchor boxes for bounding box prediction 

and logistic regression for objectness score calculation and 

class prediction. NMS is applied to suppress weak detections 

(per class) and, the final predictions are obtained. 

 

The network architecture  

YOLOv3 uses an FCN having 106 CONV layers (see Fig. 

23). CONV layers are used instead of MAXPOOL layers 

because they prevent the loss of low-level features, allowing 

the architecture to detect small objects. Like YOLOv2, the 

network also takes an image of size 416 × 416 × 3 as input. 

Like ResNet [46] and FPN [47], the network contains 

skipped connections and 3 detection heads, respectively. 

These 3 detection heads (82nd, 94th, and 106th layers) 

detect objects (large, medium, and small) at 3 different 

scales (13 × 13, 26 × 26, and 52 × 52) of the image [48]. 

YOLOv3 uses Darknet-53[43] as the backbone network. 

 

 
Figure 23: The YOLOv3 architecture 

 

Training and testing  

Like YOLOv2, the base network of YOLOv3 is first trained 

on the ImageNet dataset. For detection, the AVGPOOL 

layer and the SOFTMAX layer of the pre-trained network 
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are removed, and 53 more layers are added. The authors 

employed multi-scale training, extensive data augmentation, 

batch normalization, and other standard techniques like 

YOLOv2. YOLOv3 calculates the classification loss using 

binary cross-entropy loss rather than mean square error like 

YOLOv2.  

 

The model is trained and tested on MS COCO dataset. The 

object detection using YOLOv3 is shown in Fig. 24. 

 

 
Figure 24: Object detection using YOLOv3. 

 

2.12.3. Merits, demerits and discussion  

YOLOv3 has several advantages – (i) increase in average 

precision for small objects, (ii) decrease in localization 

errors due to an increase in mAP [49], and (iii) addition of 

the feature pyramid method improved predictions at 

different scales for the same object. 

 

YOLOv3 is comparatively slower than YOLOv2 due to its 

architecture and struggles to align the boxes perfectly with 

the object [43]. 

 

YOLOv3 can compete with the best two-stage object 

detection models in terms of speed and accuracy. YOLOv3 

is used in object detection applications where speed is 

prioritized over accuracy. However, in the opposite case, it 

may be ineffective. On the COCO dataset, YOLOv3 

achieves a 33.0% mAP@[.5, .95] [49]. 

 

2.13 EfficientDet 

 

In 2019, the Google Brain team (Tan et al.) proposed a 

scalable object detection model [50] that followed the one-

stage object detector paradigm and had superior accuracy 

and efficiency across a wide range of resource constraints. 

 

2.13.1. Motivation  

The brain team wanted to maximize the model accuracy 

under any given set of resource restrictions, since most of 

the previous works (like R-CNN family, YOLO family) only 

focused on a certain or narrow range of resource needs, but 

the variety of real-world applications of object detection, 

which are executed on several platforms, frequently needs 

various resource limits. 

 

2.13.2. Work description 

Overview  

EfficientDet consists of 3 main components – i) backbone 

network, ii) feature network, and iii) detection head. Here, 

the backbone network is a pre-trained ConvNet for feature 

extraction. The feature network is used to collect feature 

maps from different backbone stages to build a feature 

pyramid. EfficientDet uses a weighted bidirectional feature 

pyramid network (BiFPN) [50] with cross-scale connections 

as shown in the feature network. The detection head is a 

class and box network, used to produce object class and 

bounding box predictions. It takes feature maps from the 

feature pyramid as input. 

 

The authors use the compound scaling method [50] for 

object detection, which jointly scales up all dimensions of 

the input size, backbone network, feature network, and 

detection head to develop EfficientDet-D0 to D7 models. 

 

The network architecture  

EfficientDet uses EfficientNet [51] as the backbone network. 

The BiFPN takes level 3-7 features {P3, P4, P5, P6, P7} from 

the backbone network and repeatedly applies top-down and 

bottom-up bidirectional feature fusion. These fused features 

are fed to the class and box network for final prediction 

(shown in Fig. 25). The class and box network weights are 

shared across all levels of features. 

 

 
Figure 25: The EfficientDet architecture 

 

Training and testing  

The EfficientDet model is trained and tested on the MS 

COCO dataset (the backbone of the model is pre-trained on 

the ImageNet dataset). Each model (D0-D7) is trained using 

SGD optimizer with a momentum of 0.9. The learning rate is 

linearly increased from 0 to 0.16 in the first training epoch 

and then annealed down using the cosine decay rule. For 

D0-D6, each model is trained for 300 epochs on a total batch 

size of 128 and D7 for 600 epochs on 128. Like the previous 

works, data augmentation (horizontal flipping, scale 

jittering) is also applied during training. Soft-NMS [52] is 

used for evaluation. 

 

2.13.3. Merits, demerits and discussion  

EfficientDet has multiple advantages – i) smaller and lighter 

than previous object detectors, ii) scalable, iii) efficient and 

accurate across a wide variety of resource restrictions, iv) 

can be used in real-world object detection applications. 

 

The model's accuracy degrades as the FPS increases [53]. 

 

EfficientDet achieves cutting-edge accuracy with much 

fewer parameters and FLOPs than previous object detectors 

(EfficientDet-D0: mAP@[.5, .95] – 33.8%, BFLOPs – 2.5B; 

YOLOv3: mAP@[.5, .95] – 33.0%, BFLOPs – 71B) [50]. 
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On the COCO dataset, EfficientDet achieves a 55.1% 

mAP@[.5, .95]. 

 

2.14. SpineNet 

 

Du et al. in the Google Brain team, in 2019 also proposed a 

scale-permuted backbone with cross-scale connections [54] 

for object detection. 

 

2.14.1. Motivation 

The scale-decreased backbone discards spatial information 

by down-sampling, which a decoder
1
 attempts to retrieve 

[50]. But as the backbone layers get deeper, the features 

become more abstract and less localized, making it difficult 

for the decoder to retrieve the exact required features. 

 

2.14.2. Work description 

Overview 

Unlike the previous architectures, the scales of feature maps 

can increase or decrease at any time in the architecture using 

permuting blocks, which enables the maintenance of spatial 

information. Moreover, the connections between feature 

maps are permitted to go across feature scales to perform 

multi-scale feature fusion. 

 

Instead of handcrafted, Neural Architecture Search (NAS) 

[55] methodology is used to find an effective scale-permuted 

model with cross-scale connections in a given search space 

(scale permutations, cross-scale connections, and block 

adjustments) [54]. 

 

While performing cross-scale feature fusion, resampling 

operations in [54] are performed for dimension matching. 

 

The network architecture 

The architecture uses SpineNet, formed by first permuting 

the blocks of the ResNet [46] backbone and then by adding 

cross-scale connections using NAS. SpineNet-49 is the 

baseline model based on which SpineNet-49S/96/143/190 in 

[54] is constructed. The architecture of SpineNet is as shown 

in Fig. 26. 

 

 
Figure 26: The SpineNet architecture [54]. 

 

Training and testing 

SpineNet with RetinaNet [44] detector is used for object 

detection by the author(s), and the model is trained (from 

scratch) and tested on the MS COCO dataset. They have 

employed various protocols described in [54] for model 

                                                           
1 A network consists of a series of cross-scale connections that 

combine low-level and high-level features from a backbone to 

generate strong multi-scale feature maps [54]. 

training. Like the previous works, data augmentation (scale 

and aspect ratio augmentation, random cropping, horizontal 

flipping) is also applied during training. NMS is used for 

evaluation. The author(s) have also applied SpineNet for 

classification tasks. They have used ImageNet and 

iNaturalist classification datasets for it. 

 

2.14.3. Merits, demerits and discussion 

The use of scale-permuted blocks enables the maintenance 

of spatial information, and the use of cross-scale connections 

removes the need for a decoder. 

 

Like EfficientDet, the model's accuracy degrades as the FPS 

increases [53].Using NAS to search for hyperparameters 

consumes more computing power. 

 

SpineNet achieves a state-of-the-art accuracy of 52.1% 

mAP@[.5, .95] on the COCO dataset. It is also successful in 

achieving cutting-edge accuracy [54] on the image 

classification task. 

 

2.15. YOLOv4 
 

Bochkovskiy et al. introduced a new member in [53], in 

2020, to the YOLO family that followed the design 

paradigm of EfficientDet. 

 

2.15.1. Motivation  

The motivation behind this work is to design for a fast 

operating speed of the object detection model (achieve FPS) 

in production systems and optimization for parallel 

computations, rather than the low computation volume 

theoretical indicator (BFLOP) [50][54]. 

 

2.15.2. Work description 

Overview  

Like EfficientDet, YOLOv4 also consists of 3 main 

components - i) backbone, ii) neck, and iii) head. 

 

The backbone is a pre-trained ConvNet used for feature 

extraction. The neck is used to collect feature maps from 

different backbone stages to build a feature pyramid. The 

head is a dense prediction layer for detecting the bounding 

box coordinates and the class confidence score. It takes 

feature maps from the feature pyramid as input. 

 

YOLOv4 uses Bag of Freebies
2
 (BoF) and Bag of Specials

3
 

(BoS) for both the backbone and head components. 

 

BoF for the backbone includes CutMix, Mosaic data 

augmentation, DropBlock regularization, and Class label 

smoothing. BoS for the backbone includes Mish activation, 

Cross-stage partial connections (CSP), and Multi-input 

weighted residual connections (MiWRC) [53]. 

 

                                                           
2 The methods that only change the training strategy or only 

increase the training cost [53]. 
3 The plugin modules and post-processing methods that only 

increase the inference cost by a small amount but can significantly 

improve the accuracy of object detection [53]. 
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BoF for the head includes CIoU-loss, CmBN, DropBlock 

regularization, Mosaic data augmentation, Self-Adversarial 

Training, Eliminate grid sensitivity, Using multiple anchors 

for a single ground-truth, Cosine annealing scheduler, 

Optimal hyperparameters, and Random training shapes. BoS 

for the head includes Mish activation, SPP-block, SAM-

block, PAN path-aggregation block, and DIoU-NMS [53]. 

 

The network architecture  

YOLOv4 uses CSPDarknet53 [56] as the backbone, SPP 

[28] additional module, PANet [57] path-aggregation neck, 

and YOLOv3 head (see Fig. 27). 

 

 
Figure 27: The YOLOv4 architecture [53]. 

 

Training and testing  

The YOLOv4 model is trained and tested on the MS COCO 

dataset (batch size: 64, training steps: 500,500, optimizer: 

SGD with momentum (momentum = 0.9), learning rate: 

0.01, and multiplied with a factor of 0.1 at the 400,000 and 

450,000 steps, respectively). Like EfficientDet, the 

backbone of the YOLOv4 is also pre-trained on the 

ImageNet dataset. Like the previous works, multi-scale 

training is also employed. 

 

2.15.3. Merits, demerits and discussion  

YOLOv4 has several advantages – i) has faster FPS and is 

more accurate than available detectors, ii) can be trained and 

used on a conventional GPU enabling widespread adoption, 

iii) new features (BoF and BoS) improve model accuracy 

and may be used for other research projects. 

 

Though YOLOv4 is considered one of the best models for 

speed and accuracy, it cannot top EfficientDet's largest 

model for overall accuracy. 

 

YOLOv4 is superior to the fastest and most accurate 

detectors in terms of both speed and accuracy (YOLOv4: 

mAP@[.5, .95] – 43.5%, FPS – 62; EfficientDet-D2: 

mAP@[.5, .95] – 43.0%, FPS – 41.7 (on the COCO dataset)) 

[53]. 

 

2.16. PP-YOLO 

In 2020, Long et al. proposed a modified version of 

YOLOv3 [58] by incorporating various tricks. 

 

2.16.1. Motivation 

To construct an object detection model with balanced 

effectiveness and efficiency that can be used immediately in 

practical applications, rather than proposing a novel one, 

exploring different backbone networks and data 

augmentation methods [53], and using NAS. 

 

 

2.16.2. Work description 

Overview 

PP-YOLO also consists of 3 main components - i) backbone, 

ii) detection neck, and iii) detection head. 

 

The backbone is a pre-trained ConvNet used for feature 

extraction. The detection neck is used to collect feature maps 

from different backbone stages to build a feature pyramid. 

The detection head is a dense prediction layer for detecting 

the bounding box coordinates and the class confidence 

score. It takes feature maps from the feature pyramid as 

input. 

 

PP-YOLO uses various existing tricks to improve the overall 

performance of the model - i) Larger Batch Size, ii) 

Exponential Moving Average (EMA), iii) DropBlock, iv) 

IoU Loss, v) IoU Aware, vi) Grid Sensitive, vii) Matrix 

NMS, viii) CoordConv, ix) SPP, and x) Better Pre-train 

Model [58]. 

 

The network architecture 

PP-YOLO uses ResNet50-vd-dcn [58] as the backbone, FPN 

[47] (with some modification(s)) as the detection neck that 

takes level 3-5 features C3, C4, C5 from the backbone as 

input and output feature maps P3, P4, and P5, respectively, 

forming a feature pyramid of level 3, and YOLOv3 detector 

(with some modification(s)) as the detection head that takes 

these feature maps for final prediction (see Fig. 28). 

 

 
Figure 28: The PP-YOLO architecture [58]. 

 

Training and testing 

PP-YOLO is trained and tested on the MS COCO dataset 

(batch size: 192, iterations: 250K, optimizer: SGD with 

momentum (momentum = 0.9), learning rate: 0.01, and 

divided by 10 at the 150K and 250K iterations, 

respectively). The backbone of the PP-YOLO is also pre-

trained on the ImageNet dataset. Multi-scale training is 

performed, as in prior works, and only one data 

augmentation strategy (MixUp [59]) is used during training. 

 

2.16.3. Merits, demerits and discussion 

The tricks do not enhance the infer time, but they improve 

the model's overall performance and save developers' time 

of trial and error. PP-YOLO can be used immediately in 

practical applications. 

 

Though PP-YOLO is considered one of the best models for 

speed and accuracy, it cannot also top EfficientDet's largest 

model for overall accuracy like YOLOv4. 
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PP-YOLO is faster and more accurate than other state-of-

the-art detectors (PP-YOLO: mAP@[.5, .95] – 45.2\%, FPS 

– 72.9; YOLOv4: mAP@[.5, .95] – 43.5%, FPS – 62; 

EfficientDet-D2: mAP@[.5, .95] – 43.0%, FPS – 56.5 (on 

the COCO dataset) [58]). 

 

2.17. Scaled-YOLOv4 

 

In 2020, Wang et al. also proposed an improved version [60] 

of YOLOv4 by integrating model scaling methods. 

 

2.17.1. Motivation  

To develop a network scaling approach that modifies not 

only the depth, width, and resolution of the network [50] but 

also its structure, which can improve learning capability and 

hence increase accuracy while reducing the amount of 

computation and memory requirements. 

 

2.17.2. Work description 

Overview  

YOLOv4 is re-designed to YOLOv4-CSP using the concepts 

laid out in [56], and then based on YOLOv4-CSP Scaled-

YOLOv4 is developed (YOLOv4 → YOLOv4-CSP → 

YOLOv4-P5 → YOLOv4-P6 → YOLOv4-P7) using 

optimal network scaling techniques [60]. 

 

As the backbone (CSPDarknet53 [56]), the neck (PAN [57]) 

also uses CSP connections. 

 

In contrast to YOLOv4, where just one network was trained 

for all resolutions, Scaled-YOLOv4 trains a distinct network 

for each resolution. 

 

The author designed Scaled-YOLOv4 for general GPUs 

(YOLOv4-CSP), low-end GPUs (YOLOv4-tiny), and high-

end GPUs (YOLOv4-large). 

 

The network architecture  

The architecture of Scaled-YOLOv4 is shown in Fig. 29. 

 

 
Figure 29: The Scaled-YOLOv4 architecture [60] 

 

Training and testing  

The Scaled-YOLOv4 model is trained and tested on the MS 

COCO dataset. Unlike earlier detectors, ImageNet pre-

trained models are not employed in this detector; instead, all 

Scaled-YOLOv4 models are built from scratch (optimizer: 

SGD, epochs: 300 (YOLOv4-CSP), 600 (YOLOv4-tiny), 

450 (YOLOv4-large)). The authors also performed TTA 

(Test Time Augmentation). 

 

2.17.3. Merits, demerits and discussion  

Scaled-YOLOv4 has multiple advantages – i) increase in 

accuracy while decreasing computation and memory needs, 

ii) can be deployed on general, low-end, and high-end 

devices. 

 

Scaled-YOLOv4 outperforms the fastest and most accurate 

detectors in terms of both speed and accuracy (Scaled-

YOLOv4: mAP@[.5, .95] – 55.5%, FPS – ~16; 

EfficientDet: mAP@[.5, .95] – 55.1%, FPS – ~6 (on the 

COCO dataset) [60]) and overcomes the drawback of 

YOLOv4. 

 

2.18. PP-YOLOv2 

In 2021, Huang et al. proposed an improved version [61] of 

PP-YOLO. 

 

2.18.1. Motivation 

To achieve a better balance between effectiveness and 

efficiency. 

 

2.18.2. Work description 

 

Overview 

PP-YOLOv2 only uses additional tricks (existing) over PP-

YOLO - i) Mish Activation Function, ii) Larger Input Size, 

and iii) IoU Aware Branch [61]. 

 

The network architecture 

PP-YOLOv2 follows the architecture of PP-YOLO but uses 

PAN [57] (with some modification(s)) instead of FPN as the 

detection neck (see Fig. 30). 

 
Figure 30: The PP-YOLOv2 architecture [61] 

 

Training and testing 

Like PP-YOLO, PP-YOLOv2 is trained and tested on the 

MS COCO dataset using the same strategy, but during multi-

scale training, 320 to 768 pixels is applied instead of 320 to 

608 pixels. 

 

2.18.3. Merits, demerits and discussion 

By combining multiple effective refinements, PP-YOLOv2 

achieves a better balance between speed and accuracy than 

other famous detectors. 

 

Though PP-YOLOv2 outperforms PP-YOLO in terms of 

accuracy, it cannot outperform in terms of speed. 

 

PP-YOLOv2 achieves a mAP@[.5, .95] of 49.5% (+~4% 

than PP-YOLO, +~6% than YOLOv4) on the COCO dataset 

with an FPS of 68.9 (-~4 than PP-YOLO, +~7 than 

YOLOv4) [61]. 
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A good survey paper [62] on object detection (using deep 

learning-based techniques) is also written by Zaidi et al. The 

survey is helpful to all the researchers in the computer vision 

community. It includes some important comparative results 

in this domain. 

 

3. Discussion 
 

Fig. 31 shows a comparative study among some of the 

reviewed cutting-edge object detection models in terms of 

their accuracy. According to the study, the YOLO family 

object detection models outperform the others and can be 

used in real-world object detection applications and other 

research projects. 

 

 
Figure 31: A comparative study among some of the 

reviewed cutting-edge object detection models 

 

4. Conclusion 
 

In this paper, we made some state-of-the-art reviews. The 

papers are analysed and the underlying concepts are 

highlighted and written concisely so that readers can obtain 

a brief summary of each of the articles. The merits of the 

article are also indicated. As a result, readers can focus to 

their work straightaway. 
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