
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Object Detection in Images: A Survey

Sabyasachi Moitra
1
, Sambhunath Biswas

2

1 Department of Computer Science & Engineering, Techno India University, West Bengal, India

 moitrasabyasachi[at]gmail.com

2 Department of Computer Science & Engineering, Techno India University, West Bengal, India

sambhunathbiswas17[at]gmail.com)
2Ex-Indian Statistical Institute, Kolkata, India

Abstract: Object detection in a static or dynamic scene, such as a video, is a well-known problem in the computer or machine vision

community. Some techniques have already been developed so far. Such detected objects have applications in many different areas. The

literature in this domain is vast; as a result it is really very difficult for a beginner to work in this domain. A guideline, therefore, is very

helpful, particularly to the young researchers working in the area of computer vision. We have therefore felt the need of a review in this

domain. With this objective in mind, we have written this article. We have studied some major existing state-of-the-art object detection

methods and chronologically summarize each of them. Each summarization narrates a detailed description on motivation, work

description, merits and demerits, followed by some discussion.

Keywords: Computer vision, Convolutional neural network, Deep learning, Image classification, Image localization, Object detection.

1. Introduction

Humans can easily identify (or classify) and locate objects

present in an image, i.e., different types of objects are

present in an image, where they are located in that image,

and how they interact with each other. The goal is to train a

computer like humans to have understanding about a given

image, i.e., what objects are present in the image and where

are they located. With the availability of a large amount of

data, faster GPUs, and improved algorithms, computers can

be easily trained so that they can detect (identify and locate)

objects present within a given image with a high degree of

accuracy.

Image classification aids the classification of a single object

within an image, whereas image localization specifies the

exact location of the classified object within an image.

Object detection is associated with both the class and

location of multiple objects in an image (see Fig. 1). In

computer vision, the most common method for localizing an

object in an image is to draw a bounding box around the

object with its coordinates.

Our review paper deals with some cutting-edge object

detection methods and a comparative study among some of

them.

Figure 1: Image Classification vs. Image Localization vs.

Object Detection

2. Some Related Works

Detecting objects within an image can be accomplished

using various techniques, each of which has better

performance in some respects.

Object detection methods can be divided in two categories

that use (i) classical computer vision techniques and the (ii)

modern or deep learning-based techniques. A brief

summarization can be found in Fig 2.

Figure 2: Classification of object detection methods

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 10

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2.1 Viola-Jones

In 2001, P. Viola and M. Jones proposed an efficient

algorithm [1] for face detection. They showed faces in real-

time on a webcam feed. It was the most stunning

demonstration of machine vision with high degree of

potential during that time.

2.1.1. Motivation

Face detection as well as its recognition, now-a-days has 2

immense roles in our daily life, starting from school, office-

attendance to different security measures used in

surveillance. The human face is one of the most popular and

significant area objects because it has numerous applications

in security and entertainment. Faces have striking features

that differentiate one from the other. However, it may not

always be obvious to us.

2.1.2. Work description

Overview

The 3 main contributions in [1] are – (i) creating a new

image from an existing image known as the integral image

to compute the Haar features quickly, (ii) development of

learning algorithm based on AdaBoost for extremely

efficient face classifier from a reduced set of visual features,

and (iii) cascading of classifiers for rejecting background

regions of images and ensuring prominent object-like

regions.

Haar features are similar to the convolutional kernels. Each

feature yields a single value computed by deducting the sum

of pixels in the white rectangle from that in the black

rectangle. 3 kinds of Haar features that are used in [1] are –

(i) 2-rectangle, (ii) 3-rectangle, and (iii) 4-rectangle features,

and they are computed using an integral image [2], which is

an intermediate representation of the original image,

𝐼𝐼 𝑥, 𝑦 = 𝐼 𝑥 ′ , 𝑦′

𝑥 ′≤𝑥 ,𝑦 ′≤𝑦

, (1)

where 𝐼𝐼(𝑥, 𝑦) and 𝐼(𝑥′, 𝑦′) are the integral and original

(must be in grayscale) images, respectively.

For evaluating the Haar features in a given image, the

method uses a 24 × 24 window. Within this window,

approximately 160,000+ feature values are calculated, taking

into account all possible feature parameters such as position,

scale, and type. However, only a few sets of these features

are useful to detect a face. AdaBoost [3] aids in the

discovery of these useful features and builds a strong

classifier as a linear combination of these useful features,

which are also known as weak classifiers,

𝐹 𝑥 = 𝑤𝑖𝑓𝑖(𝑥)

𝑛

𝑖=1

, (2)

where 𝐹 𝑥 is the strong classifier, 𝑓𝑖 𝑥 is a weak classifier,

and 𝑤𝑖 is a weight associated with the weak classifier.

The final evaluation is carried out using a cascade classifier

[1] composed of stages, each of which contains a strong

classifier. Each of these stages determines whether a given

window contains a face or not and immediately is discarded

if it fails. For localization (if face), a bounding box is drawn

with the help of the window coordinates within the image.

The architecture

The architecture of the Viola-Jones face detection model is

shown in Fig. 3.

Figure 3: The Viola-Jones face detection model architecture

Training and testing

The Viola-Jones face detection model is trained [4] using

frontal upright face images [1].

2.1.3. Merits, demerits and discussion

Viola-Jones does sophisticated feature selection and an

invariant detector that locates scales [5]. Rather than scaling

the image, the features can be scaled. Because it is a general

detection scheme, it can be trained to detect other objects

(e.g., automobiles).

The method in [1] – (i) is less effective at detecting faces

that are tilted/turned, (ii) is sensitive to illumination

conditions, and (iii) suffers from multiple detections of the

exact face due to overlapping sub-windows.

Viola-Jones is one of the most powerful methodologies of its

time and sets its foundation in the facial detection field, and

many modern technologies benefited from it.

2.2. HOG

In 2005, N. Dalal and B. Triggs proposed an efficient feature

extraction algorithm [6] for detecting pedestrians in images.

2.2.1. Motivation

The need for a strong feature set that for a human was felt

for long time. One of the requirements was to distinguish

cleanly even in complex backgrounds with poor lighting.

This was successfully done in their work.

2.2.2. Work description

Overview

The distribution of gradient directions is used as image

features in the HOG feature descriptor. A small patch in the

ratio of 1:2 (width: height) is cropped out of an input image

of size M × N and resized to 64 × 128 [7], and the gradient

magnitude (𝑔) and direction (𝜃) of this resized patch are

computed,

𝑔 = 𝑔𝑥
2 + 𝑔𝑦

2 ,
(3)

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑔𝑦

𝑔𝑥
 ,

where 𝑔𝑥 and 𝑔𝑦 are the horizontal and vertical gradients,

respectively. The resized patch is divided into 8 × 16 grid

blocks with 8 × 8 cells per block. For each 8 × 8 patch, a

histogram of gradients is created. Each patch's gradient has 2

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 11

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

values per pixel – (i) magnitude and (ii) direction. Each

gradient magnitude is chosen and placed into the desired bin

based on the corresponding value in the gradient direction.

The final feature vector for the entire 64 × 128 image patch

is computed by concatenating the 36 × 1 vectors (9 × 4 = 36

(9 → number of histogram bins, 4 → number of histograms

in a 16 × 16 patch)) into a single vector of size 3780 × 1 (7 ×

15 × 36 = 3780 (7 × 15 → number of feature vectors, 36 →

size of each feature vector)). These extracted features are fed

to a linear SVM trained for human/non-human classification

to determine whether or not the image contains a human.

For detection of objects (pedestrians) at various locations in

the image, a 64 × 128 window slides across the original

image at all positions. For each sliding window crop, HOG

+ SVM is performed to check whether the object within the

window is human or not and localize it (if human) by

drawing a bounding box with the help of the sliding window

coordinates (x, y, w, h) within the image. An image pyramid

of different scales [8] is used to detect variable-sized objects

at various locations within an image. Non-maximum

suppression (NMS) is applied to suppress weak detections

for final prediction.

The architecture

The complete human detection pipeline using HOG is shown

in Fig. 4.

Figure 4: Human detection using HOG

Training and testing

The model is trained and tested on both MIT Pedestrian and

INRIA Person datasets. 1239 positive and 1218 negative

image samples [6] are used in training the model. During

training, data is also augmented.

2.2.3. Merits, demerits and discussion

The HOG algorithm creates histograms of edge orientations

from certain patches in an image, and even with a change in

color, clothing, and other factors for a person (say), the

general edges remain relatively constant, thus succeeding in

human detection.

HOG works well, for a rigid body [6] but not for a non-rigid

or deformed one.

HOG is a dense sampling based feature extraction technique.

It significantly outperforms existing algorithms [9][10] in

the task of human detection. The average precision of the

detector on the INRIA Person dataset is 75% [11] and won

the 2006 PASCAL object detection challenge [12].

2.3. DPM

In 2008, Felzenszwalb et al. proposed an improved version

[12] of HOG.

2.3.1. Motivation

The requirement for such a model is to take care of that

works well a non-rigid body (e.g., a human in various

poses), intra-class variability (e.g., different shaped cars),

variations caused by different perspectives and lighting on

an object. The previous approach [6] could not handle these

problems.

2.3.2. Work description

Overview

DPM is a star-structured part-based model based on a root

filter, a set of part filters, and the associated deformation

costs. The score of the model (𝑀) at a particular location (𝑙0)

and scale (𝑠) within an image (𝐼) is,

𝑠𝑐𝑜𝑟𝑒 𝑀, 𝑙0, 𝑠, 𝐼 =

𝑠𝑐𝑜𝑟𝑒 𝐹0, 𝑙0

+ 𝑚𝑎𝑥𝑙𝑖 𝑠𝑐𝑜𝑟𝑒 𝐹𝑖 , 𝑙𝑖

𝑛

𝑖=1

− 𝑐𝑜𝑠𝑡 𝑙𝑖
′ , 𝑙𝑖

(4)

where 𝑠𝑐𝑜𝑟𝑒 𝐹0, 𝑙0 is the score of the root filter 𝐹0 at the

given location 𝑙0, 𝑠𝑐𝑜𝑟𝑒 𝐹𝑖 , 𝑙𝑖 is the score of the part filter

𝐹𝑖 at the location 𝑙𝑖 , and 𝑐𝑜𝑠𝑡 𝑙𝑖
′ , 𝑙𝑖 is the deformation cost

measuring the deviation of the location of the 𝑖th part (𝑙𝑖)

from its ideal location relative to the root (𝑙𝑖
′).

The complete configuration of the object hypothesis (the

position of each part and the root width) is used in predicting

a bounding box for the object [12]. For predicting the

bounding box coordinates (x1, y1, x2, y2), four linear

functions are learned by linear least-square regression on the

training data. Like HOG, NMS is applied to suppress weak

detections (per class) and, the final predictions are obtained.

The architecture

The complete human detection pipeline using DPM is shown

in Fig. 5.

Figure 5: The human detection process at 1 scale [12]. The

root and part filters’ responses are computed at different

resolutions and the transformed responses are added together

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 12

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

to produce a final score for each root location (assuming at

most one object per root location).

Training and testing

A latent SVM [12][11] is constructed to learn the model

parameters (root filter, part filters, and deformation costs)

and must be able to determine the best values for the latent

variables (part location).

The model is trained and tested on both INRIA Person and

PASCAL VOC datasets.

2.3.3. Merits, demerits and discussion

The model works fine for a non-rigid or deformed body. But

the process is a bit lengthy and complex. The manually

designed feature extraction technique in this model leads to

a lower object detection performance [13]. The object

detection model relies on multiscale deformable part model

mixtures. The model is heavily reliant on new methods for

discriminative training of classifiers that use latent

information and fast techniques for matching deformable

models to images. In comparison to the previous

methodology [6], the resulting system is both efficient and

accurate.

A good survey paper [14] on pedestrian detection (using

classical computer vision techniques) is also written by

Gerónimo et al. The survey is helpful to all the researchers

in the computer vision community. It includes some

important comparative results in this domain.

2.4. AlexNet

In 2012, Krizhevsky et al. proposed an efficient deep

learning algorithm [13] for image classification by building

a deep CNN and marked the beginning of the deep learning

era.

2.4.1. Motivation

Previous approaches [1][6][12] to object detection relied on

small image datasets of tens of thousands of images. With

datasets of this size, simple detection tasks are solved quite

well. However, real-life objects show significant variability,

so to learn to recognize them and improve performance,

much larger training datasets with millions of images and a

potent model with a high learning capacity are required.

Convolutional neural network (CNN) helps in classifying

different objects, identify their boundaries, differences, and

relations to one another from complicated sights (or scenes)

with multiple overlapping objects. It is also a good feature

extractor compared to the previously manually designed

methods [1] [6] [12].

2.4.2. Work description

Overview

Random crops of size M × M are generated from an image of

size S × S to feed the AlexNet for classification (S = 256, M

= 227) [15]. The input image must be converted if it is not S

× S. Images are pre-processed by subtracting from each pixel

the mean RGB value computed on the training set. For each

crop, features are extracted using convolutional (CONV)

layers and then passed to a series of fully-connected (FC)

layers for classification. The final classification score is

calculated, by averaging the network's classification layer's

predictions, on the random crops.

The network architecture

The AlexNet contains 11 layers – 5 CONV, 3 MAXPOOL, 2

FC, and 1 SOFTMAX (classification) layers (see Fig. 6).

The network takes an image of size 227 × 227 × 3 as input.

The final CONV layer produces a 6 × 6 × 256 tensor, which

is flattened and fed to a sequence of FC layers, producing

1000 outputs, i.e., the final classification scores. ReLU is

applied after all of the CONV and FC layers, and a local

response normalization (LRN) layer is added after the ReLU

in the 1st and 2nd CONV layers. A dropout layer with a 0.5

rate is added after the first and second FC layers to avoid

overfitting.

Figure 6: The AlexNet architecture

Training and testing

The network is trained on multiple GPUs (batch size: 128,

number of epochs: 90, optimizer: stochastic gradient descent

(SGD) with momentum (momentum = 0.9), learning rate:

0.01) [13]. To reduce overfitting, 2 types of data

augmentation are used – (i) generating translations and

horizontal reflections of the image and (ii) altering the

intensities of the RGB channels of the image. The 1st type of

data augmentation is used during both training and testing,

while the 2nd type is only used during training.

The model is trained and tested on the ImageNet 1000-class

dataset. The image classification using AlexNet is shown in

Fig. 7.

Figure 7: Image classification using AlexNet

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 13

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2.4.3. Merits, demerits and discussion

Training on multiple GPUs reduces TOP-1 and TOP-5 error

rates by 1.7% and 1.2%, respectively, compared to a single

GPU and take slightly less time [13]. The 2nd form of data

augmentation brings down the TOP-1 error rate by over 1%.

The batch normalization reduces TOP-1 and TOP-5 error

rates by 1.4% and 1.2%, respectively. The overlapping max-

pooling lowers TOP-1 and TOP-5 error rates by 0.4% and

0.3%, respectively, compared to the non-overlapping max-

pooling.

The approach uses a set of 10 views (4 corners and 1 center,

with their respective horizontal flip) of fixed size (due to the

fixed input size constraint) as input to the network, resulting

in an excessive number of inputs [13]. This method also

ignores many image regions (i.e., it cannot detect objects of

varying sizes at different locations in the image) and is

computationally superfluous when views overlap.

In ILSVRC-2010, the model attains TOP-1 and TOP-5 test

error rates of 37.5% and 17.0%, respectively, and a TOP-5

test error rate of 15.3% in ILSVRC-2012 using its variant

[13]. When a single CONV layer is removed, the model's

performance suffers, resulting in a loss of about 2% for the

network's TOP-1 performance, indicating that the depth of a

network is very important for achieving the results.

2.5. OverFeat

In 2013, Sermanet et el. proposed an integrated framework

[16] for classification, localization, and detection of objects

using CNN.

2.5.1. Motivation

The previous approach [13] used a set of 10 fixed-size views

as input to the network, ending up with too many inputs.

This approach also ignored many image regions, i.e., it

couldn’t detect objects of varying sizes at different locations

in the image and was computationally superfluous when

views overlap. It was only used on a single scale, which may

not be the scale at which the CNN will respond with the

greatest confidence.

2.5.2. Work description

Overview

The OverFeat model removes the fixed-size input constraint

[17][18] by converting the network's FC layers as

convolution operations. An image pyramid of different

scales is used to detect objects of different sizes at different

locations in the image. Like AlexNet, features are extracted

using CONV layers and then passed to a series of FC layers

converted as CONV layers for classification and

localization. Greedy merge [16][19] is used to get the final

predictions.

The network architecture

OverFeat uses AlexNet as the base network [20]. The first 5

CONV layers are modified, and the 2 FC layers and 1

classification layer (SOFTMAX) are implemented as 3

CONV layers. An image pyramid of 6 different scales (245

× 245, 281 × 317, 317 × 389, 389 × 461, 425 × 497, and 461

× 569) is fed into the network, producing a C-dimensional

vector as an output for each scale (C = 1000 (number of

classes)) (see Fig. 8). A bounding box regression network

replaces the classification network for localization.

Figure 8: The OverFeat architecture

Training and testing

The classification is done through the classification network

using the 6 different scales and their horizontally flipped

versions. For each scale and flip, the final classification

layer of the network generates a class score map that

provides a confidence score that an object of class c (say) is

present in the corresponding field of view. Following a

series of steps [16], the final classification scores for an

image are derived from these class score maps.

The regression network is trained using the same set of

scales as the classification network. The regressor net's

prediction at each spatial location is compared to the

ground-truth bounding box. An L2 loss between the

predicted and ground-truth boxes is used to train the

network. The network is not trained on boxes that have less

than 50% overlap with the ground-truth. Instead of the class

score map, the final regressor layer produces a set of

bounding box predictions.

The model is trained and tested on the ImageNet dataset

(batch size: 128, optimizer: SGD with momentum

(momentum = 0.6), learning rate: 5 × 10
-2

 and is reduced by

a factor of 0.5 after each (30, 50, 60, 70, 80) epoch). Object

detection by the OverFeat model is shown in Fig. 9.

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 14

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 9: Object detection by OverFeat model.

2.5.3. Merits, demerits and discussion
The approach – (i) removes the fixed input size constraint by

converting the FC layers as convolution operations, (ii) has

no too many inputs to the network, (iii) is able to classify,

localize, and detect objects of different sizes at different

locations of an image due to the multi-scale, sliding window

approach, (iv) uses CONV layers for classification,

localization, and detection tasks instead of FC layers, and (v)

uses an integrated pipeline that performs various tasks

(classification, localization, and detection) while sharing a

common base for feature extraction learned entirely from

pixels.

For localization, the approach does not back-propagate

through the entire network. Use of L2 loss, rather than

improving the IoU measure directly to get the bounding

boxes. The multi-scale, sliding window approach for

classification, localization and detection of objects is

computationally expensive and time-consuming.

OverFeat uses a multi-scale, sliding window approach for

classification with localization and detection of objects using

ConvNets. The methodology uses an integrated pipeline that

performs various tasks (classification, localization, and

detection) while sharing a common base for feature

extraction learned entirely from pixels. The accuracy of the

OverFeat network is improved by lowering the network's

resolution [21] from 36 to 12. As a result, it will be able to

detect more objects. The model ranks 4th in classification

(13.6% top-5 test error rate), 1st in localization (29.9% top-5

test error rate), and 3rd in detection (19.4% mAP) in

ILSVRC-2013 competition [16].

2.6. R-CNN

In 2014, Girshick et el. proposed a region-based CNN model

[22] for object detection.

2.6.1. Motivation

The previous method [16] took a dense sampling approach

at different scales and their respective horizontal flipped

versions to determine the presence and type of the object at

every location, which was very time-consuming. The

method also lowered the network resolution for better

accuracy, which increased the computational cost. Use of L2

loss, rather than improving the IoU measure directly to get

the bounding boxes affected the model's accuracy.

2.6.2. Work description

Overview

R-CNN is a 2-stage object detector model – (i) the 1st stage

– generates region proposals or RoIs, and (ii) at the 2nd

stage – these regions are fed to a CNN for feature extraction

and classification.

Using selective search [23], the object detection model

generates around 2000 RoIs for an input image, each of

which is warped to a fixed size (227 × 227) and fed to a

CNN, which produces a 4096-d feature vector as output,

which is then passed to an SVM for classification.

Bounding-box regression is used to improve localization.

NMS is applied to suppress weak detections (per class) for

the final predictions.

The network architecture

R-CNN also uses AlexNet as the base network [24]

containing 11 layers – 5 CONV layers, 3 MAXPOOL layers,

2 FC layers, and 1 classification layer. A 227 × 227 RGB

image is fed into the network, producing output for C

different classes (see Fig. 10). The FC layers are removed

for localization, and the classification layer is replaced with

a bounding box regression layer.

Figure 10: The R-CNN architecture

Training and testing

The model is trained and tested on PASCAL VOC dataset.

The training needs mainly 4 different stages [25] – (i)

supervised pre-training, (ii) domain-specific fine-tuning, (iii)

object category classification, and (iv) bounding box

regression.

The network is first trained on the ImageNet dataset so that

it can learn the basic image features. For adapting to the

detection task and the warped VOC windows, the ImageNet-

specific 1000-way classification layer of the network is

replaced with a 21-way classification layer (20 VOC classes

plus background) and ultimately the model fine-tuned with

this layer (batch size: 128 (32 positive and 96 negative),

optimizer: SGD, learning rate: 0.001). The final

classification layer is removed after fine-tuning, and a 4096-

d feature vector is obtained for each of the 2000 RoIs. Next

a linear SVM is trained for each class using the obtained

feature vector, and the final output is a set of positive object

proposals from the features of 2000 region proposals for

each class.

Bounding box regression is performed using the pool3

features to improve localization. As a result, an accurate and

correct bounding box around the object is obtained for all

the positive object proposals.

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 15

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The object detection using R-CNN is shown in Fig. 11.

Figure 11: Object detection using R-CNN

2.6.3. Merits, demerits and discussion

The approach is faster and more accurate compared to the

previous methods. It uses a region proposal algorithm to

perform multiple object detection in one-shot instead of the

sliding window technique at different scales.

The selective search region proposal method is a fixed

technique; no learning occurs at that stage, which may result

in poor candidate region proposals. R-CNN consumes both

time and space because it computes the feature map for each

RoI, and each feature map of each RoI must be saved, which

requires a large amount of memory. Furthermore, the

training task is difficult because it necessitates four stages of

training.

On the VOC 2007, VOC 2010, and VOC 2011/2012

datasets, R-CNN achieves 58.5%, 53.7%, and 53.3% mAP,

respectively [22]. This performance is achieved by

combining traditional computer vision tools (region

proposals using selective search) with deep learning (CNN).

Supervised pre-training, domain-specific fine-tuning, object

category classification, and bounding box regression

contribute to this level of accuracy.

2.7. VGG-16

In 2014, K. Simonyan and A. Zisserman proposed a very

large and deep CNN [26] for object detection.

2.7.1. Motivation

AlexNet, the base architecture of previous methods [16][22],

had a lot of variations in its CONV and MAXPOOL layers,

i.e., all the CONV and MAXPOOL layers used different

filter size, padding, and stride, which was very difficult to

remember. Moreover, due to the fewer layers, the methods

failed to achieve high accuracy.

2.7.2. Work description

Overview

The model uses the methodology of [13] at the time of

training, and the methodology of [16] at the time of testing

[26]. Both the training and testing are done using single and

multiple scale images.

The network architecture

The VGG-16 contains 24 layers – 16 CONV, 5 MAXPOOL,

2 FC, and 1 SOFTMAX (classification) layers (see Fig. 12).

The network takes an image of size 224 × 224 × 3 as input.

The final CONV layer produces a 7 × 7 × 512 tensor, which

is flattened and fed to a sequence of FC layers, producing

1000 outputs, i.e., the final classification scores. ReLU is

applied after all of the CONV and FC layers. LRN is not

used. A dropout layer with a 0.5 rate is added after the 1st

and 2nd FC layers to avoid overfitting. A bounding box

regression network replaces the classification network for

localization.

Figure 12: The VGG-16 architecture.

Training and testing

Random crops of size M × M are generated from an image of

size S × S to feed the VGG-16 for classification training (S =

{256, 384} for single-scale training and S = [Smin, Smax] for

multi-scale training (Smin = 256, Smax = 512), M = 224) [26].

The input image must be converted if it is not S × S. Like

AlexNet, images are pre-processed by subtracting from each

pixel the mean RGB value computed on the training set. For

each crop, features are extracted using CONV layers and

then passed to a series of FC layers for classification. The

final classification score is calculated by averaging the

network's classification layer's predictions on the random

crops. The network is trained by optimizing the multinomial

logistic regression objective with a mini-batch of size 256.

The optimizer and learning rate used for training is similar to

that of AlexNet. The multi-scale models are trained by fine-

tuning all the layers of the single-scale model with the same

configuration, pre-trained with fixed S = 384. Localization

training is similar to classification training, except that the

objective is Euclidean loss rather than multinomial logistic

regression, and the learning rate is 0.001. Multi-scale

training is not used for localization.

At the classification test time, the image is first rescaled to N

× N, where N is set as – (i) N = S for fixed S, and N = 0.5 *

(Smin + Smax) for jittered S ϵ [Smin, Smax] (for single-scale

evaluation) (e.g., if S = 256 then N = 256, and if S = [256,

512] then N = 0.5 * (256 + 512) = 384), and (ii) N = [Smin,

0.5 * (Smin + Smax), Smax] for S ϵ [Smin, Smax] (for multi-scale

evaluation) (e.g., if S = [256, 512] then N = [256, 0.5 * (256

+ 512), 512] = [256, 384, 512]) [26]. Like OverFeat, the

entire rescaled image is fed to the network, as the FC layers

(FC1, FC2, and SOFTMAX) are converted to CONV layers.

For each scale, the final classification layer of the network

generates a class score map with the number of channels

equal to the number of classes. The class score map is

spatially averaged to get a fixed-size vector of class scores.

The test set is also augmented by horizontal flipping. The

final classification scores for an image are obtained by

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 16

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

averaging the predictions made by the network’s

classification layer on the original and flipped versions.

Localization testing is similar to classification testing, except

that the output of the last FC layer is a set of bounding box

predictions rather than the class score map, as the

classification layer (SOFTMAX) is replaced by the

bounding box regression layer. Greedy merge [16][19] is

used to get the final predictions. Multi-scale evaluation is

not used for localization.

The model is trained and tested on the ImageNet dataset.

Image recognition using VGG-16 is shown in Fig. 13.

Figure 13: Image recognition using VGG-16.

2.7.3. Merits, demerits and discussion

The architecture of VGG-16 is simple, i.e., all the CONV

layers use the same filter size, padding, and stride, and all

the MAXPOOL layers use the same filter size, padding, and

stride, which is very easy to remember. It extracts more

parameters from the images compared to the previous

methods, which increases the model accuracy. The model

also generalizes effectively to a variety of tasks and datasets,

matching or surpassing more complex recognition pipelines

based on shallower image representations.

VGG-16 is a heavier model and takes more training time.

Like AlexNet and OverFeat, the model also takes too many

inputs to the network.

In classification, the network achieves the TOP-1 and TOP-5

validation error rates of 25.5% and 8.0%, respectively, at a

single test scale and 24.8% and 7.5%, respectively, at

multiple test scales in ILSVRC-2014 [26]. In localization,

the network achieves the TOP-5 test error rate of 25.3% in

ILSVRC-2014. The network depth contributes to this level

of accuracy, i.e., as the network depth increases, so do the

accuracy.

2.8. Fast R-CNN

In 2015, R. Girshick proposed an improved version [27] of

R-CNN.

2.8.1. Motivation

Due to the fixed-size input constraint, the previous method

[22] warped the input image to a fixed size, resulting in an

unwanted geometric distortion affecting the accuracy. The

training was a multi-stage process that included feature

extraction, network fine-tuning, SVM training, and

bounding-box regression. The method was slow because it

extracted features by repeatedly applying the deep CNN to

the warped regions per image. The features were saved to

disc and took up a lot of memory space. The training

algorithm was unable to update the weights below the FC

layers, limiting the model's accuracy.

2.8.2. Work description

Overview

Fast R-CNN eliminates the network's fixed-size input

constraint by inserting an RoI pooling layer between the last

CONV layer and the 1st FC layer, which is similar to the

SPP layer of SPP-net [28] with only one pyramid level. The

layer employs max-pooling for converting the features

within any valid RoI (as determined by mapping RoI to

feature maps [29]) into a small feature map of fixed size H ×

W. It divides the h × w RoI window into a H × W grid of

sub-windows of approximately h/H × w/W size and then

max-pools the values in each sub-window into the

corresponding output grid cell [30]. The RoI pooling is

independently applied to each feature map channel, resulting

in a feature map of size R × H × W × D that is fed to a series

of FC layers for classification and localization (R = number

of RoIs, H = W = 7, D = 512) [31]. Like R-CNN, NMS is

applied to obtain the final predictions.

The network architecture

Fast R-CNN uses VGG-16 as the base network [27]. An RoI

pooling layer is added after the last CONV layer (replacing

the last MAXPOOL layer) and before the 1st FC layer. The

FC layers finally branch into 2 output layers – (i) the

SOFTMAX classification layer and (ii) the bounding box

regression layer (see Fig. 14).

Figure 14: The Fast R-CNN architecture [27]

Training and testing

Like R-CNN, the network is pre-trained on the ImageNet

dataset. The network is fed 2 sets of data – (i) a list of

images and (ii) a list of RoIs within those images.

During training, SGD mini-batches of size B are

hierarchically sampled, first by sampling I images, then by

sampling B/I RoIs from each image, resulting in

computation and memory sharing by RoIs from the same

image in both the forward and backward passes (B = 128, I =

2 [27]). In addition, Fast R-CNN employs a smooth training

process with a single fine-tuning stage that optimizes both

the SOFTMAX classifier and the bounding-box regressor.

Unlike previous methods, the entire network is trained via

back propagation.

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 17

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The loss function is a multi-task loss,

𝐿 𝑝,𝑢, 𝑡𝑢 , 𝑣 = 𝐿𝑐𝑙𝑠 𝑝,𝑢 + 𝜆 𝑢 ≥ 1 𝐿𝑙𝑜𝑐 𝑡
𝑢 , 𝑣 , (5)

where 𝐿𝑐𝑙𝑠 is the classification loss (log loss), 𝐿𝑙𝑜𝑐 is the

localization loss (smooth L1 loss), 𝑝 is the predicted class, 𝑢

is the actual class, 𝑡𝑢 = (𝑡𝑥
𝑢 , 𝑡𝑦

𝑢 , 𝑡𝑤
𝑢 , 𝑡

𝑢) is the predicted

bounding box for class 𝑢, 𝑣 = (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑤 , 𝑣) is the actual

bounding box for the same class, [𝑢 ≥ 1] is a function that

evaluates to 1 for the foreground and 0 for the background

class, and 𝜆 is a hyperparameter for controlling the balance

between the two losses.

For achieving a scale-invariant detection of objects, 2

methods are used – (i) single-scale approach (brute-force

learning) and (ii) multi-scale approach. In a single-scale

approach, the input images are resized so that the shortest

side is M pixels and the longest side is no more than N pixels

while maintaining the aspect ratio (M = 600 and N = 1000

[27]). In a multi-scale approach, an image pyramid of

randomly sampled size (480, 576, 688, 864, and 1200 [27])

of input images is used.

The model is trained and tested on PASCAL VOC and MS

COCO datasets. The object detection using Fast R-CNN is

shown in Fig. 15.

Figure 15: Object detection using Fast R-CNN

2.8.3. Merits, demerits and discussion

The Fast R-CNN has several advantages – (i) faster than R-

CNN because it does not need to feed 2000 RoIs to the CNN

every time; instead, the convolution operation is performed

only once per image; (ii) higher detection quality than R-

CNN; (iii) training is a single stage using a multi-task loss

and updates all network layers’ weights; and (iv) features are

not stored on disc.

When comparison is done not using region proposals, Fast

R-CNN performance during testing time significantly slows

down [32].

On the VOC 2007, VOC 2010, and VOC 2012 datasets, Fast

R-CNN achieves 70.0%, 68.8%, and 68.4% mAP,

respectively [27]. This level of accuracy is achieved through

multi-task training of the entire network. It processes images

9x and 45x faster than R-CNN at training and testing time,

respectively. The detection time of the network is reduced

by more than 30% when truncated SVD [27] is used, with

only a 0.3 drop in mAP. On the COCO dataset, Fast R-CNN

achieves a 19.7% mAP@[.5, .95].

2.9. Faster R-CNN

In 2015, Ren et al. also proposed an improved version [33]

of Fast R-CNN.

2.9.1. Motivation

Methods in [22][27] used the selective search technique [23]

to extract RoIs from an image but it is a time-consuming

process (around 2s/image with CPU computation) and it

degrades the network performance.

2.9.2. Work description

Overview

Faster R-CNN consists of 2 modules – i) RPN (RoI

generator), and ii) Fast R-CNN (object detector).

Region proposal network (RPN) is a deep fully

convolutional network (FCN) that accepts any size image as

input and outputs a set of RoIs, each with an objectness

score. RPN works on dedicated CONV layers, with the

previous layers shared by Fast R-CNN.

The input image is resized in the same way that Fast R-CNN

does so that the shortest side is M pixels and the longest side

is no more than N pixels (M = 600 and N = 1000) and is fed

to a backbone network producing a feature map of size M' ×

N' × D (M' = 40, N' = 60, D = 512 (for VGG-16 [26]) and

256 (for ZFNet [34])). The output feature map is shared by

both the RPN and Fast R-CNN networks.

RPN consists of 1 P × P CONV layer with D units or filters

(P = 3) followed by 2 Q × Q CONV sibling layers (box

classification and regression layers) with U and V units

respectively (Q = 1, U = 18, V = 36) [35]. The output of the

P × P CONV layer is subjected to ReLU. The RPN receives

the backbone feature map. The network's 1st layer slides

over this feature map, creating a D-dimensional feature at

each sliding window location. This output feature is then

passed to the 2 sibling layers, resulting in M' × N' × U and

M' × N' × V outputs. At each sliding window location, the

network learns about the presence of an object(s) in the input

image with the help of a K set of anchors (K = 9).

The RoIs produced from the RPN module are passed to the

Fast R-CNN module for detection.

The network architecture

Faster R-CNN architecture consists of 3 parts – i) CONV

layers, ii) RPN, and iii) classification and bounding box

regression layers (see Fig. 16). Faster R-CNN uses VGG-16

and ZFNet as the backbone network.

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 18

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 16: The Faster R-CNN architecture

Training and testing

A 4-Step Alternating Training [33] is used to train the entire

model for object detection. This type of training mechanism

assists the model in sharing the backbone ConvNet weights

between RPN and Fast R-CNN.

During RPN training, an anchor is considered as a positive

sample if it has an IoU > 0.7 with any of the ground-truth

boxes and negative if it has an IoU < 0.3 with all the ground-

truth boxes. The remaining anchors, which are neither

positive nor negative, are discarded. A mini-batch of size

256 (128 positive and 128 negative samples from a single

image) is used for training the RPN (optimizer: SGD with

momentum (momentum = 0.9), learning rate: 0.001 (for 60k

mini-batches), 0.0001 (for next 20k mini-batches)).

Like Fast R-CNN, the loss function for RPN is a multi-task

loss,

𝐿 𝑝𝑖 , 𝑡𝑖 =
1

𝑁𝑐𝑙𝑠
 𝐿𝑐𝑙𝑠 𝑝𝑖 , 𝑝𝑖

∗

𝑖

+ 𝜆
1

𝑁𝑟𝑒𝑔
 𝑝𝑖

∗𝐿𝑟𝑒𝑔 𝑡𝑖 , 𝑡𝑖
∗

𝑖

,
(6)

where 𝑝𝑖 is the predicted probability of the 𝑖th anchor being

an object, 𝑝𝑖
∗ is the ground-truth label (1 if the 𝑖th anchor is

positive and 0 if it is negative), 𝑡𝑖 is the four parameterized

coordinates of the predicted bounding box, 𝑡𝑖
∗ is the ground-

truth box overlapped with the positive anchor, 𝐿𝑐𝑙𝑠 is the

classification loss which is the log loss over binary classes

(object vs. non-object), and 𝐿𝑟𝑒𝑔 is the regression loss which

is the smooth L1 loss [27]. These two terms (classification

and regression) are normalized by 𝑁𝑐𝑙𝑠 (mini-batch size) and

𝑁𝑟𝑒𝑔 (number of anchor locations), respectively and the

second term is multiplied by a hyperparameter 𝜆.

The Rk anchors from each image go through a sequence of

post-processing steps [33] to get the final rk RoIs (r < R)

from RPN and are passed to the object detector network for

both training and testing.

The model is trained and tested on both PASCAL VOC and

MS COCO datasets. The object detection using Faster R-

CNN is shown in Fig. 17.

Figure 17 Object detection using Faster R-CNN

2.9.3. Merits, demerits and discussion

Faster R-CNN has several advantages – (i) introduction to

RPN for region proposals makes it faster than its

predecessors [32], (ii) introduction to anchors for object

detection is cost-efficient than previous methodologies like

image pyramid and filter pyramid, and (iii) sharing of

ConvNet between the two network modules (RoI generator

and object detector) makes it a single, unified model for

object detection.

Each component of the Faster R-CNN model (RoI generator

and object detector) is trained separately.

RPN is an efficient and accurate model for RoI generation.

By sharing the ConvNet features with the object detector,

the RoI generation step is nearly cost-free. RPN improves

the RoI quality compared to other region proposal

techniques (selective search and edge boxes [36]), thus

improving the overall model accuracy. Faster R-CNN runs

at nearly real-time frame rates.

With only 300 RoIs per image, Faster R-CNN achieved

state-of-the-art object detection accuracy of 73.2% and

70.4% on VOC 2007 and VOC 2012 datasets, respectively,

and 21.9% mAP@[.5, .95] on COCO dataset [33]. In the

ILSVRC and COCO 2015 competitions, Faster R-CNN and

RPN occupy the first place in various tracks.

2.10 YOLO

In 2015, Redmon et al. proposed an efficient unified, real-

time, one-stage object detector model [37] that takes an

entire image as input and concurrently learns the class label

probabilities and bounding box coordinates of the object(s)

present in that image.

2.10.1. Motivation

Previous object detection methods [22][27][33] used

separate region proposal techniques [23][33] to generate all

the possible bounding boxes in an image at first and then ran

a classification and localization network on these RoIs for

detection, i.e., a two-stage object detector model. Because

each of these components was separately trained, the object

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 19

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

detection pipeline was very complex, slow, and difficult to

optimize.

2.10.2. Work description

Overview

YOLO divides an image into S × S grid cells. Each of these

grid cells predicts B bounding boxes and C class

probabilities. If an object’s (present within the image) center

falls within a grid cell, then that grid cell is subject to

detecting that object only, i.e., each grid cell predicts only

one object.

The predicted bounding box has 5 components (𝑏𝑥 , 𝑏𝑦 , 𝑏𝑤 ,

𝑏 , 𝑏𝑐𝑜𝑛𝑓), where (𝑏𝑥 , 𝑏𝑦) is the box’s center relative to the

grid cell location (𝑔𝑥 , 𝑔𝑦), (𝑏𝑤 , 𝑏) is the box's dimensions

relative to the image size (𝐼𝑤 , 𝐼), and 𝑏𝑐𝑜𝑛𝑓 is the box’s

confidence score, i.e., how certain the model is that an object

is contained within the box (the higher the confidence score

thicker the box is),

𝑏𝑥 = (𝑥 − 𝑔𝑥) 𝑔𝑥 , 𝑏𝑦 = (𝑦 − 𝑔𝑦) 𝑔𝑦 ,

(7) 𝑏𝑤 = 𝑤 𝐼𝑤 , 𝑏 = 𝐼 ,

𝑏𝑐𝑜𝑛𝑓 = P(object) ∗ IoU(truth, pred),

where (𝑥, 𝑦) and (𝑤,) are the box’s actual center (ground

truths) and dimensions respectively, P(object) is the

probability that the predicted box contains an object (1 if an

object is present in that grid cell, otherwise 0), and

IoU(truth, pred) is the IoU between the ground-truth and

predicted boxes. Therefore, there are total S × S × (B * 5)

outputs associated with the bounding box predictions in an

image.

The model predicts C conditional class probabilities per grid

cell, despite the number of boxes B, i.e., a total of S × S × C

class probabilities are predicted across an image,

P(classi) = P(classi | object), (8)

where P(classi | object) is the probability that the object

belongs to the ith class, given that the object is present in the

grid cell. If no object is present in that grid cell, the loss

function will not penalize it during training for incorrect

class prediction.

The final score, i.e., the category-specific confidence scores

for each box, is obtained by combining the individual box’s

confidence score and the conditional class probabilities,

producing S × S × (B * 5 + C) outputs (S = 7, B = 2, C = 20)

[37]. NMS is applied to suppress weak detections (per class)

and, the final predictions are obtained.

The network architecture

YOLO makes use of the Darknet [37] network having 30

layers (24 CONV, 4 MAXPOOL, and 2 FC layers) (see Fig.

18). The network takes an image of size 448 × 448 × 3 as

input. The final CONV layer produces a 7 × 7 × 1024 tensor

[38], which is flattened and fed to a sequence of FC layers,

producing 1470 outputs, which are then reshaped to produce

a 7 × 7 × 30 tensor as the final output. The last layer (FC2)

employs a linear activation function, while the remaining

layers employ Leaky ReLU. A dropout layer with a 0.5 rate

is added after the 1st FC layer to avoid overfitting.

Figure 18: The Darknet architecture [37].

Training and testing

The network is first trained on the ImageNet dataset using

the first 20 CONV layers followed by an AVGPOOL layer

and an FC layer at an input resolution of 224 × 224 because

the ImageNet images are of size 224 × 224. For detection, 4

CONV layers and 2 FC layers with randomly initialized

weights are added to the pre-trained network, removing the

AVGPOOL and FC layers. The network’s input resolution is

increased to 448 × 448. A mini-batch of size 64 is used for

training the network (number of epochs: 135, optimizer:

SGD with momentum (momentum = 0.9), learning rate: 0.01

(for first 75 epochs), 0.001 (for next 30 epochs), 0.0001 (for

final 30 epochs)).

The loss function is a multi-part function,

 𝜆𝑐𝑜𝑜𝑟𝑑 𝕝𝑖𝑗
𝑜𝑏𝑗 𝑥𝑖 − 𝑥 𝑖

2 + 𝑦𝑖 − 𝑦 𝑖
2

𝐵

𝑗=0

𝑆2

𝑖=0

(9)

 +𝜆𝑐𝑜𝑜𝑟𝑑 𝕝𝑖𝑗
𝑜𝑏𝑗

 𝑤𝑖 − 𝑤 𝑖
2

𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝑖 − 𝑖

2

 +

 𝕝𝑖𝑗
𝑜𝑏𝑗
 𝐶𝑖 − 𝐶 𝑖

2
𝐵

𝑗=0

𝑆2

𝑖=0

 +𝜆𝑛𝑜𝑜𝑏𝑗 𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 𝐶𝑖 − 𝐶 𝑖
2

𝐵

𝑗=0

𝑆2

𝑖=0

 +

 𝕝𝑖
𝑜𝑏𝑗

𝑆2

𝑖=0

 𝑝𝑖 𝑐 − 𝑝 𝑖 𝑐
2

𝑐 𝜖 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

 ,

where the 1st part is the localization loss, the 2nd part is the

confidence loss, and the 3rd part is the classification loss

[39].

The model is trained and tested on PASCAL VOC dataset.

The object detection using YOLO is shown in Fig. 19.

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 20

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 19: Object detection using YOLO

2.10.3. Merits, demerits and discussion

YOLO is faster compared to previously discussed object

detectors due to its one-stage detector strategy, and good for

real-time processing. The model is more generalized because

it outperforms other methods when applied to domains other

than natural images, such as artwork. Unlike the sliding

window [16][26] and region proposal-based object detection

approaches previously discussed, YOLO sees the entire

image during training and testing and implicitly encodes

contextual information about classes as well as their

appearances. It produces fewer false positives in background

areas.

YOLO is less accurate than the previously discussed two-

stage object detectors. It imposes a strong spatial constraint

on predicting bounding boxes since each grid cell predicts

only 2 boxes and can have only 1 class (i.e., each grid cell

predicts only one object). Due to this constraint, the model

predicts a limited number of adjacent objects (e.g., if two

objects (i.e., their centers) accidentally fall within the same

grid, YOLO can detect only one).

YOLO is a unified object detection model. It is simple to

construct and trained directly on entire images. Unlike the

object detection methods discussed previously, YOLO is fast

at training and testing time as it requires a single network

training and evaluation only. It achieves 63.4% and 57.9%

mAP on VOC 2007 and VOC 2012 datasets, respectively

[37].

2.11. YOLOv2

In 2016, J. Redmon and A. Farhadi proposed an improved

version [40] of YOLO.

2.11.1. Motivation

As it struggles with tiny objects that appear in groups [37]

and nearby objects, YOLO made a significant number of

localization errors and had a low recall when compared to

object proposal-based methods [22][27][33].

2.11.2. Work description

Overview

The FC layers responsible for bounding box prediction in

YOLO are removed in YOLOv2, and anchor boxes are used

to predict them instead. It shifts the class prediction

mechanism from the cell to the anchor box level, which

means that instead of predicting objectness and class for

every cell, it predicts them for every anchor box within that

cell. In contrast to [33], YOLOv2 finds good anchor boxes

using the k-means clustering technique [40] on the bounding

boxes of the training set and predicts the bounding box

coordinates relative to the grid cell, like YOLO, using those

anchor boxes.

YOLOv2 jointly trains on the classification and detection

datasets to broaden the classes it can detect. The

classification and detection dataset labels are combined to

form a tree known as WordTree (see Fig. 20), with each

child forming an is-a relationship with its parent (e.g., a jet is

an airplane).

To classify using WordTree, conditional probabilities for

each child of that parent given that parent is predicted at

each node using SOFTMAX, P(classchildi
| classparent) [39].

For e.g., at the airplane node of Fig. 20, the model predicts

P(biplane | airplane), P(jet | airplane), ..., P(stealth fighter |

airplane) conditional probabilities. The probability of a

specific node (say jet) is calculated by following the path

from the specified node to the root node and multiplying the

conditional probabilities,

P(jet) = P(jet | airplane)

(10)

 ∗ P(airplane | air)

 ∗ … ∗
 ∗ P(artifact | physical object)

 ∗ P(physical object),

assuming that an object is already detected (P(physical

object) = 1).

In object detection, the value of P(physical object) equals

the bounding box confidence score [39], which determines

whether the box contains an object. YOLOv2 descends the

tree, taking the most confident path at each split until it

reaches a certain threshold and predicts the object class. Like

YOLO, NMS is applied to suppress weak detections (per

class) and, the final predictions are obtained.

Figure 20: The WordTree [40].

The network architecture

YOLOv2 uses an FCN having 22 CONV layers, 5

MAXPOOL layers, and 1 passthrough layer (see Fig. 21).

The network takes an image of size 416 × 416 × 3 as input

instead of 448 × 448 × 3 in YOLO [39]. The final CONV

layer predicts 5 bounding boxes, each with 5 coordinates and

20 classes per box. Instead of a dropout layer, batch

normalization layers are added to all the hidden CONV

layers. Like YOLO, the last layer employs a linear activation

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 21

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

function, while the remaining layers employ Leaky ReLU.

YOLOv2 uses Darknet-19 [40] as the backbone network.

Figure 21: The YOLOv2 architecture

Training and testing

The base network is first trained on the ImageNet dataset

(number of epochs: 160, optimizer: SGD with momentum

(momentum = 0.9), learning rate: 0.1 at starting and decayed

polynomially with a power of 4). The network initially trains

with 224 × 224 images and then retunes with 448 × 448

(number of epochs: 10, optimizer: SGD with momentum

(momentum = 0.9), learning rate: 0.001). For detection, the

last CONV layer, the AVGPOOL layer, and the SOFTMAX

layer of the pre-trained network are removed, and 3 3 × 3

CONV layers, each with 1024 filters, are added, followed by

a final 1 × 1 CONV layer with 125 filters. A passthrough

layer from the final 3 × 3 × 512 layer to the second last

CONV layer is also added, as shown in Fig. 21 so that the

network can use fine-grained features to detect small

objects. The network’s input resolution is decreased to 416 ×

416. The detection network is trained for 160 epochs using

SGD with momentum (momentum = 0.9) with a starting

learning rate of 0.001 and then divides the rate by 10 at 60

and 90 epochs. The network is also trained on images with

different scales [40].

The loss function is a multi-part function [41] like YOLO.

The model is trained and tested on both PASCAL VOC and

MS COCO datasets. The object detection using YOLOv2 is

shown in Fig. 22.

Figure 22: Object detection using YOLOv2.

2.11.3. Merits, demerits and discussion

YOLOv2 overcomes the localization errors and low recall of

YOLO. The model performs well with the new varieties of a

class not found in the COCO dataset because it can easily

generalize their shapes from their parent classes.

YOLOv2 struggles with categories like ―sunglasses‖ or

―swimming trunks‖ [40] as the COCO dataset does not have

annotations for any clothing.

YOLOv2 is a cutting-edge, real-time object detection

system. It is faster, accurate, and more generalized than

other object detection models (previously discussed) across

a wide range of detection datasets. It achieves 78.6%,

73.4%, and 48.1% mAP on VOC 2007, VOC 2012, and

COCO datasets, respectively [40][42].

2.12. YOLOv3

In 2018, J. Redmon and A. Farhadi proposed an improved

version [43] of YOLOv2.

2.12.1 Motivation

Although YOLOv2 was the fastest and most accurate model,

it was sometimes unable to detect small objects, losing out

to models such as RetinaNet [44] and SSD [45] in terms of

accuracy [42].

2.12.2. Work description

Overview

YOLOv3 predicts bounding boxes across 3 different scales

by extracting features from those scales. The output is

generated by convolving a S × S × (B * 5 + C) detection

kernel with the feature map (S = 1, B = 3 (number of boxes a

cell on a feature map can predict), 5 → box attributes (x, y,

w, h, confidence), C = 80 (number of classes)) [43].

YOLOv3 uses anchor boxes for bounding box prediction

and logistic regression for objectness score calculation and

class prediction. NMS is applied to suppress weak detections

(per class) and, the final predictions are obtained.

The network architecture

YOLOv3 uses an FCN having 106 CONV layers (see Fig.

23). CONV layers are used instead of MAXPOOL layers

because they prevent the loss of low-level features, allowing

the architecture to detect small objects. Like YOLOv2, the

network also takes an image of size 416 × 416 × 3 as input.

Like ResNet [46] and FPN [47], the network contains

skipped connections and 3 detection heads, respectively.

These 3 detection heads (82nd, 94th, and 106th layers)

detect objects (large, medium, and small) at 3 different

scales (13 × 13, 26 × 26, and 52 × 52) of the image [48].

YOLOv3 uses Darknet-53[43] as the backbone network.

Figure 23: The YOLOv3 architecture

Training and testing

Like YOLOv2, the base network of YOLOv3 is first trained

on the ImageNet dataset. For detection, the AVGPOOL

layer and the SOFTMAX layer of the pre-trained network

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 22

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

are removed, and 53 more layers are added. The authors

employed multi-scale training, extensive data augmentation,

batch normalization, and other standard techniques like

YOLOv2. YOLOv3 calculates the classification loss using

binary cross-entropy loss rather than mean square error like

YOLOv2.

The model is trained and tested on MS COCO dataset. The

object detection using YOLOv3 is shown in Fig. 24.

Figure 24: Object detection using YOLOv3.

2.12.3. Merits, demerits and discussion

YOLOv3 has several advantages – (i) increase in average

precision for small objects, (ii) decrease in localization

errors due to an increase in mAP [49], and (iii) addition of

the feature pyramid method improved predictions at

different scales for the same object.

YOLOv3 is comparatively slower than YOLOv2 due to its

architecture and struggles to align the boxes perfectly with

the object [43].

YOLOv3 can compete with the best two-stage object

detection models in terms of speed and accuracy. YOLOv3

is used in object detection applications where speed is

prioritized over accuracy. However, in the opposite case, it

may be ineffective. On the COCO dataset, YOLOv3

achieves a 33.0% mAP@[.5, .95] [49].

2.13 EfficientDet

In 2019, the Google Brain team (Tan et al.) proposed a

scalable object detection model [50] that followed the one-

stage object detector paradigm and had superior accuracy

and efficiency across a wide range of resource constraints.

2.13.1. Motivation

The brain team wanted to maximize the model accuracy

under any given set of resource restrictions, since most of

the previous works (like R-CNN family, YOLO family) only

focused on a certain or narrow range of resource needs, but

the variety of real-world applications of object detection,

which are executed on several platforms, frequently needs

various resource limits.

2.13.2. Work description

Overview

EfficientDet consists of 3 main components – i) backbone

network, ii) feature network, and iii) detection head. Here,

the backbone network is a pre-trained ConvNet for feature

extraction. The feature network is used to collect feature

maps from different backbone stages to build a feature

pyramid. EfficientDet uses a weighted bidirectional feature

pyramid network (BiFPN) [50] with cross-scale connections

as shown in the feature network. The detection head is a

class and box network, used to produce object class and

bounding box predictions. It takes feature maps from the

feature pyramid as input.

The authors use the compound scaling method [50] for

object detection, which jointly scales up all dimensions of

the input size, backbone network, feature network, and

detection head to develop EfficientDet-D0 to D7 models.

The network architecture

EfficientDet uses EfficientNet [51] as the backbone network.

The BiFPN takes level 3-7 features {P3, P4, P5, P6, P7} from

the backbone network and repeatedly applies top-down and

bottom-up bidirectional feature fusion. These fused features

are fed to the class and box network for final prediction

(shown in Fig. 25). The class and box network weights are

shared across all levels of features.

Figure 25: The EfficientDet architecture

Training and testing

The EfficientDet model is trained and tested on the MS

COCO dataset (the backbone of the model is pre-trained on

the ImageNet dataset). Each model (D0-D7) is trained using

SGD optimizer with a momentum of 0.9. The learning rate is

linearly increased from 0 to 0.16 in the first training epoch

and then annealed down using the cosine decay rule. For

D0-D6, each model is trained for 300 epochs on a total batch

size of 128 and D7 for 600 epochs on 128. Like the previous

works, data augmentation (horizontal flipping, scale

jittering) is also applied during training. Soft-NMS [52] is

used for evaluation.

2.13.3. Merits, demerits and discussion

EfficientDet has multiple advantages – i) smaller and lighter

than previous object detectors, ii) scalable, iii) efficient and

accurate across a wide variety of resource restrictions, iv)

can be used in real-world object detection applications.

The model's accuracy degrades as the FPS increases [53].

EfficientDet achieves cutting-edge accuracy with much

fewer parameters and FLOPs than previous object detectors

(EfficientDet-D0: mAP@[.5, .95] – 33.8%, BFLOPs – 2.5B;

YOLOv3: mAP@[.5, .95] – 33.0%, BFLOPs – 71B) [50].

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 23

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

On the COCO dataset, EfficientDet achieves a 55.1%

mAP@[.5, .95].

2.14. SpineNet

Du et al. in the Google Brain team, in 2019 also proposed a

scale-permuted backbone with cross-scale connections [54]

for object detection.

2.14.1. Motivation

The scale-decreased backbone discards spatial information

by down-sampling, which a decoder
1
 attempts to retrieve

[50]. But as the backbone layers get deeper, the features

become more abstract and less localized, making it difficult

for the decoder to retrieve the exact required features.

2.14.2. Work description

Overview

Unlike the previous architectures, the scales of feature maps

can increase or decrease at any time in the architecture using

permuting blocks, which enables the maintenance of spatial

information. Moreover, the connections between feature

maps are permitted to go across feature scales to perform

multi-scale feature fusion.

Instead of handcrafted, Neural Architecture Search (NAS)

[55] methodology is used to find an effective scale-permuted

model with cross-scale connections in a given search space

(scale permutations, cross-scale connections, and block

adjustments) [54].

While performing cross-scale feature fusion, resampling

operations in [54] are performed for dimension matching.

The network architecture

The architecture uses SpineNet, formed by first permuting

the blocks of the ResNet [46] backbone and then by adding

cross-scale connections using NAS. SpineNet-49 is the

baseline model based on which SpineNet-49S/96/143/190 in

[54] is constructed. The architecture of SpineNet is as shown

in Fig. 26.

Figure 26: The SpineNet architecture [54].

Training and testing

SpineNet with RetinaNet [44] detector is used for object

detection by the author(s), and the model is trained (from

scratch) and tested on the MS COCO dataset. They have

employed various protocols described in [54] for model

1 A network consists of a series of cross-scale connections that

combine low-level and high-level features from a backbone to

generate strong multi-scale feature maps [54].

training. Like the previous works, data augmentation (scale

and aspect ratio augmentation, random cropping, horizontal

flipping) is also applied during training. NMS is used for

evaluation. The author(s) have also applied SpineNet for

classification tasks. They have used ImageNet and

iNaturalist classification datasets for it.

2.14.3. Merits, demerits and discussion

The use of scale-permuted blocks enables the maintenance

of spatial information, and the use of cross-scale connections

removes the need for a decoder.

Like EfficientDet, the model's accuracy degrades as the FPS

increases [53].Using NAS to search for hyperparameters

consumes more computing power.

SpineNet achieves a state-of-the-art accuracy of 52.1%

mAP@[.5, .95] on the COCO dataset. It is also successful in

achieving cutting-edge accuracy [54] on the image

classification task.

2.15. YOLOv4

Bochkovskiy et al. introduced a new member in [53], in

2020, to the YOLO family that followed the design

paradigm of EfficientDet.

2.15.1. Motivation

The motivation behind this work is to design for a fast

operating speed of the object detection model (achieve FPS)

in production systems and optimization for parallel

computations, rather than the low computation volume

theoretical indicator (BFLOP) [50][54].

2.15.2. Work description

Overview

Like EfficientDet, YOLOv4 also consists of 3 main

components - i) backbone, ii) neck, and iii) head.

The backbone is a pre-trained ConvNet used for feature

extraction. The neck is used to collect feature maps from

different backbone stages to build a feature pyramid. The

head is a dense prediction layer for detecting the bounding

box coordinates and the class confidence score. It takes

feature maps from the feature pyramid as input.

YOLOv4 uses Bag of Freebies
2
 (BoF) and Bag of Specials

3

(BoS) for both the backbone and head components.

BoF for the backbone includes CutMix, Mosaic data

augmentation, DropBlock regularization, and Class label

smoothing. BoS for the backbone includes Mish activation,

Cross-stage partial connections (CSP), and Multi-input

weighted residual connections (MiWRC) [53].

2 The methods that only change the training strategy or only

increase the training cost [53].
3 The plugin modules and post-processing methods that only

increase the inference cost by a small amount but can significantly

improve the accuracy of object detection [53].

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 24

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

BoF for the head includes CIoU-loss, CmBN, DropBlock

regularization, Mosaic data augmentation, Self-Adversarial

Training, Eliminate grid sensitivity, Using multiple anchors

for a single ground-truth, Cosine annealing scheduler,

Optimal hyperparameters, and Random training shapes. BoS

for the head includes Mish activation, SPP-block, SAM-

block, PAN path-aggregation block, and DIoU-NMS [53].

The network architecture

YOLOv4 uses CSPDarknet53 [56] as the backbone, SPP

[28] additional module, PANet [57] path-aggregation neck,

and YOLOv3 head (see Fig. 27).

Figure 27: The YOLOv4 architecture [53].

Training and testing

The YOLOv4 model is trained and tested on the MS COCO

dataset (batch size: 64, training steps: 500,500, optimizer:

SGD with momentum (momentum = 0.9), learning rate:

0.01, and multiplied with a factor of 0.1 at the 400,000 and

450,000 steps, respectively). Like EfficientDet, the

backbone of the YOLOv4 is also pre-trained on the

ImageNet dataset. Like the previous works, multi-scale

training is also employed.

2.15.3. Merits, demerits and discussion

YOLOv4 has several advantages – i) has faster FPS and is

more accurate than available detectors, ii) can be trained and

used on a conventional GPU enabling widespread adoption,

iii) new features (BoF and BoS) improve model accuracy

and may be used for other research projects.

Though YOLOv4 is considered one of the best models for

speed and accuracy, it cannot top EfficientDet's largest

model for overall accuracy.

YOLOv4 is superior to the fastest and most accurate

detectors in terms of both speed and accuracy (YOLOv4:

mAP@[.5, .95] – 43.5%, FPS – 62; EfficientDet-D2:

mAP@[.5, .95] – 43.0%, FPS – 41.7 (on the COCO dataset))

[53].

2.16. PP-YOLO

In 2020, Long et al. proposed a modified version of

YOLOv3 [58] by incorporating various tricks.

2.16.1. Motivation

To construct an object detection model with balanced

effectiveness and efficiency that can be used immediately in

practical applications, rather than proposing a novel one,

exploring different backbone networks and data

augmentation methods [53], and using NAS.

2.16.2. Work description

Overview

PP-YOLO also consists of 3 main components - i) backbone,

ii) detection neck, and iii) detection head.

The backbone is a pre-trained ConvNet used for feature

extraction. The detection neck is used to collect feature maps

from different backbone stages to build a feature pyramid.

The detection head is a dense prediction layer for detecting

the bounding box coordinates and the class confidence

score. It takes feature maps from the feature pyramid as

input.

PP-YOLO uses various existing tricks to improve the overall

performance of the model - i) Larger Batch Size, ii)

Exponential Moving Average (EMA), iii) DropBlock, iv)

IoU Loss, v) IoU Aware, vi) Grid Sensitive, vii) Matrix

NMS, viii) CoordConv, ix) SPP, and x) Better Pre-train

Model [58].

The network architecture

PP-YOLO uses ResNet50-vd-dcn [58] as the backbone, FPN

[47] (with some modification(s)) as the detection neck that

takes level 3-5 features C3, C4, C5 from the backbone as

input and output feature maps P3, P4, and P5, respectively,

forming a feature pyramid of level 3, and YOLOv3 detector

(with some modification(s)) as the detection head that takes

these feature maps for final prediction (see Fig. 28).

Figure 28: The PP-YOLO architecture [58].

Training and testing

PP-YOLO is trained and tested on the MS COCO dataset

(batch size: 192, iterations: 250K, optimizer: SGD with

momentum (momentum = 0.9), learning rate: 0.01, and

divided by 10 at the 150K and 250K iterations,

respectively). The backbone of the PP-YOLO is also pre-

trained on the ImageNet dataset. Multi-scale training is

performed, as in prior works, and only one data

augmentation strategy (MixUp [59]) is used during training.

2.16.3. Merits, demerits and discussion

The tricks do not enhance the infer time, but they improve

the model's overall performance and save developers' time

of trial and error. PP-YOLO can be used immediately in

practical applications.

Though PP-YOLO is considered one of the best models for

speed and accuracy, it cannot also top EfficientDet's largest

model for overall accuracy like YOLOv4.

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 25

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

PP-YOLO is faster and more accurate than other state-of-

the-art detectors (PP-YOLO: mAP@[.5, .95] – 45.2\%, FPS

– 72.9; YOLOv4: mAP@[.5, .95] – 43.5%, FPS – 62;

EfficientDet-D2: mAP@[.5, .95] – 43.0%, FPS – 56.5 (on

the COCO dataset) [58]).

2.17. Scaled-YOLOv4

In 2020, Wang et al. also proposed an improved version [60]

of YOLOv4 by integrating model scaling methods.

2.17.1. Motivation

To develop a network scaling approach that modifies not

only the depth, width, and resolution of the network [50] but

also its structure, which can improve learning capability and

hence increase accuracy while reducing the amount of

computation and memory requirements.

2.17.2. Work description

Overview

YOLOv4 is re-designed to YOLOv4-CSP using the concepts

laid out in [56], and then based on YOLOv4-CSP Scaled-

YOLOv4 is developed (YOLOv4 → YOLOv4-CSP →

YOLOv4-P5 → YOLOv4-P6 → YOLOv4-P7) using

optimal network scaling techniques [60].

As the backbone (CSPDarknet53 [56]), the neck (PAN [57])

also uses CSP connections.

In contrast to YOLOv4, where just one network was trained

for all resolutions, Scaled-YOLOv4 trains a distinct network

for each resolution.

The author designed Scaled-YOLOv4 for general GPUs

(YOLOv4-CSP), low-end GPUs (YOLOv4-tiny), and high-

end GPUs (YOLOv4-large).

The network architecture

The architecture of Scaled-YOLOv4 is shown in Fig. 29.

Figure 29: The Scaled-YOLOv4 architecture [60]

Training and testing

The Scaled-YOLOv4 model is trained and tested on the MS

COCO dataset. Unlike earlier detectors, ImageNet pre-

trained models are not employed in this detector; instead, all

Scaled-YOLOv4 models are built from scratch (optimizer:

SGD, epochs: 300 (YOLOv4-CSP), 600 (YOLOv4-tiny),

450 (YOLOv4-large)). The authors also performed TTA

(Test Time Augmentation).

2.17.3. Merits, demerits and discussion

Scaled-YOLOv4 has multiple advantages – i) increase in

accuracy while decreasing computation and memory needs,

ii) can be deployed on general, low-end, and high-end

devices.

Scaled-YOLOv4 outperforms the fastest and most accurate

detectors in terms of both speed and accuracy (Scaled-

YOLOv4: mAP@[.5, .95] – 55.5%, FPS – ~16;

EfficientDet: mAP@[.5, .95] – 55.1%, FPS – ~6 (on the

COCO dataset) [60]) and overcomes the drawback of

YOLOv4.

2.18. PP-YOLOv2

In 2021, Huang et al. proposed an improved version [61] of

PP-YOLO.

2.18.1. Motivation

To achieve a better balance between effectiveness and

efficiency.

2.18.2. Work description

Overview

PP-YOLOv2 only uses additional tricks (existing) over PP-

YOLO - i) Mish Activation Function, ii) Larger Input Size,

and iii) IoU Aware Branch [61].

The network architecture

PP-YOLOv2 follows the architecture of PP-YOLO but uses

PAN [57] (with some modification(s)) instead of FPN as the

detection neck (see Fig. 30).

Figure 30: The PP-YOLOv2 architecture [61]

Training and testing

Like PP-YOLO, PP-YOLOv2 is trained and tested on the

MS COCO dataset using the same strategy, but during multi-

scale training, 320 to 768 pixels is applied instead of 320 to

608 pixels.

2.18.3. Merits, demerits and discussion

By combining multiple effective refinements, PP-YOLOv2

achieves a better balance between speed and accuracy than

other famous detectors.

Though PP-YOLOv2 outperforms PP-YOLO in terms of

accuracy, it cannot outperform in terms of speed.

PP-YOLOv2 achieves a mAP@[.5, .95] of 49.5% (+~4%

than PP-YOLO, +~6% than YOLOv4) on the COCO dataset

with an FPS of 68.9 (-~4 than PP-YOLO, +~7 than

YOLOv4) [61].

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 26

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A good survey paper [62] on object detection (using deep

learning-based techniques) is also written by Zaidi et al. The

survey is helpful to all the researchers in the computer vision

community. It includes some important comparative results

in this domain.

3. Discussion

Fig. 31 shows a comparative study among some of the

reviewed cutting-edge object detection models in terms of

their accuracy. According to the study, the YOLO family

object detection models outperform the others and can be

used in real-world object detection applications and other

research projects.

Figure 31: A comparative study among some of the

reviewed cutting-edge object detection models

4. Conclusion

In this paper, we made some state-of-the-art reviews. The

papers are analysed and the underlying concepts are

highlighted and written concisely so that readers can obtain

a brief summary of each of the articles. The merits of the

article are also indicated. As a result, readers can focus to

their work straightaway.

Acknowledgment

The authors would like to acknowledge Techno India

University, West Bengal for its support to this work.

References

[1] P. Viola and M. Jones, ―Rapid object detection using a

boosted cascade of simple features,‖ in Proceedings of

the 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. CVPR

2001, vol. 1, pp. I–I, 2001.

[2] R. Patil, ―Viola jones face detection explained

@ONLINE.‖

https://www.youtube.com/watch?v=_QZLbR67fUU,

May 2014.

[3] Y. Shakrina, ―The viola-jones algorithm @ONLINE.‖

https://www.youtube.com/watch?v=p9vq90NYHMs,

Apr 2020.

[4] P. Irgens, C. Bader, T. L´e, D. Saxena, and C. Ababei,

―An efficient and cost effective fpga based

implementation of the viola-jones face detection

algorithm,‖ HardwareX, vol. 1, 03 2017.

[5] K. Aashish and A. Vijayalakshmi, ―Comparison of

viola-jones and kanade-lucas-tomasi face detection

algorithms,‖ Oriental journal of computer science and

technology, vol. 10, pp. 151–159, 2017.

[6] N. Dalal and B. Triggs, ―Histograms of oriented

gradients for human detection,‖ in 2005 IEEE

Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’05), vol. 1, pp. 886–

893, 2005.

[7] S. Mallick, ―Histogram of oriented gradients

@ONLINE.‖ https://www.learnopencv.com/

histogram-of-oriented-gradients/, December 2016.

[8] Cogneethi, ―C37 dalal & triggs object detection hog +

svm computer vision machine learning evodn

@ONLINE.‖

https://www.youtube.com/watch?v=sDByl84n5mY&li

st=PL1GQaVhO4f_jLxOokW7CS5kY_J1t1T17S, Aug

2019.

[9] A. Mohan, C. Papageorgiou, and T. Poggio, ―Example-

based object detection in images by components,‖

IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 23, no. 4, pp. 349–361, 2001.

[10] P. Viola, M. J. Jones, and D. Snow, ―Detecting

pedestrians using patterns of motion and appearance,‖

International Journal of Computer Vision, vol. 63, pp.

153–161, 2005.

[11] U. CRCV, ―Lecture 18- deformable part models (dpm)

-2014 @ONLINE.‖

https://www.youtube.com/watch?v=

2DihVLm8v38&list=PLd3hlSJsX_ImKP68wfKZJVIP

Td8Ie5u-9&index=19&t=0s, Jan 2015.

[12] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and

D. Ramanan, ―Object detection with discriminatively

trained part-based models,‖ IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 32, no.

9, pp. 1627–1645, 2010.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

―Imagenet classification with deep convolutional

neural networks,‖ in Advances in Neural Information

Processing Systems 25, pp. 1097–1105, Curran

Associates, Inc., 2012.

[14] D. Gerónimo, A. M. López, A. D. Sappa, and T. Graf,

―Survey of pedestrian detection for advanced driver

assistance systems,‖ IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 32, no. 7, pp.

1239–1258, 2010.

[15] S. Nayak, ―Understanding alexnet @ONLINE.‖

https://www.learnopencv.com/understanding-alexnet/,

June 2018.

[16] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R.

Fergus, and Y. LeCun, ―Overfeat: Integrated

recognition, localization and detection using

convolutional networks,‖ CoRR, vol. abs/1312.6229,

2014.

[17] Cogneethi, ―C 5.2 convnet input size constraints cnn

object detection machine learning evodn

@ONLINE.‖

https://www.youtube.com/watch?v=Mb79KKdluYI&li

st=PL1GQaVhO4f_jLxOokW7CS5kY_J1t1T17S, Aug

2019.

[18] Cogneethi, ―C 5.4 overfeat intuition important-dont

skip cnn object detection machine learning evodn

@ON- LINE.‖

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 27

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

https://www.youtube.com/watch?v=t5PHp8uSMKo&li

st=PL1GQaVhO4f_jLxOokW7CS5kY_J1t1T17S,

Aug 2019.

[19] C. Deledalle, ―Mlip - chapter 5 - detection,

segmentation, captioning @ONLINE.‖

https://www.slideshare.net/ CharlesDeledalle/mlip-

chapter-5-detection-segmentation-captioning, Mar

2019.

[20] Cogneethi, ―C 5.6 overfeat network design important-

dont skip cnn object detection evodn @ONLINE.‖

https://www.youtube.com/watch?v=JKTzkcaWfuk&lis

t=PL1GQaVhO4f_jLxOokW7CS5kY_J1t1T17S, Aug

2019.

[21] Cogneethi, ―C 5.5 overfeat effective stride important-

dont skip cnn object detection evodn @ONLINE.‖

https://www.youtube.com/watch?v=50-

PhoCJEOk&list=PL1GQaVhO4f_jLxOokW7CS5kY_

J1t1T17S, Aug 2019.

[22] R. Girshick, J. Donahue, T. Darrell, and J. Malik,

―Rich feature hierarchies for accurate object detection

and semantic segmentation,‖ in The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR),

2014.

[23] J. Uijlings, K. van de Sande, T. Gevers, and A.

Smeulders, ―Selective search for object recognition,‖

International Journal of Computer Vision, 2013.

[24] Cogneethi, ―C 6.3 rcnn network architecture cnn

machine learning object detection evodn

@ONLINE.‖

https://www.youtube.com/watch?v=x_TGsU9_vcc&lis

t=PL1GQaVhO4f_jLxOokW7CS5kY_J1t1T17S, Aug

2019.

[25] S. Ananth, ―R-cnn for object detection - a technical

paper summary @ONLINE.‖

https://towardsdatascience. com/r-cnn-for-object-

detection-a-technical-summary-9e7bfa8a557c, April

2019.

[26] K. Simonyan and A. Zisserman, ―Very deep

convolutional networks for large-scale image

recognition,‖ CoRR, vol. abs/1409.1556, 2015.

[27] R. Girshick, ―Fast r-cnn,‖ in The IEEE International

Conference on Computer Vision (ICCV), December

2015.

[28] K. He, X. Zhang, S. Ren, and J. Sun, ―Spatial pyramid

pooling in deep convolutional networks for visual

recognition‖, IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 37, no. 9, pp. 1904–

1916, 2015.

[29] Cogneethi, ―C 7.5 roi projection subsampling ratio

sppnet fast rcnn cnn machine learning evodn

@ONLINE.‖

https://www.youtube.com/watch?v=wGa6ddEXg7w&l

ist=PL1GQaVhO4f_jLxOokW7CS5kY_J1t1T17S,

Aug 2019.

[30] S. Elfouly, ―Introduction: Fast r-cnn (object

detection) @ONLINE.‖

https://medium.com/@selfouly/ part-2-fast-r-cnn-

object-detection-7303e1988464, Jul 2019.

[31] S. Ananth, ―Fast r-cnn for object detection - a

technical paper summary @ONLINE.‖

https://towardsdatascience.com/fast-r-cnn-for-object-

detection-a-technical-summary-a0ff94faa022, Aug

2019.

[32] R. Gandhi, ―R-cnn, fast r-cnn, faster r-cnn, yolo —

object detection algorithms @ONLINE.‖ https://

towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-

yolo-object-detection-algorithms-36d53571365e, July

2018.

[33] S. Ren, K. He, R. Girshick, and J. Sun, ―Faster r-cnn:

Towards real-time object detection with region

proposal networks,‖ in Advances in Neural

Information Processing Systems 28, pp. 91–99, Curran

Associates, Inc., 2015.

[34] M. D. Zeiler and R. Fergus, ―Visualizing and

understanding convolutional networks,‖ in ECCV,

2014.

[35] S. Ananth, ―Faster r-cnn for object detection - a

technical paper summary @ONLINE.‖ https://

towardsdatascience.com/faster-r-cnn-for-object-

detection-a-technical-summary-474c5b857b46, Aug

2019.

[36] C. L. Zitnick and P. Doll´ar, ―Edge boxes: Locating

object proposals from edges,‖ in Computer Vision –

ECCV 2014, pp. 391–405, Springer International

Publishing, 2014.

[37] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

―You only look once: Unified, real-time object

detection,‖ in The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016.

[38] M. Menegaz, ―Understanding yolo @ONLINE.‖

https://hackernoon.com/understanding-yolo-

f5a74bbc7967, March 2018.

[39] J. Hui, ―Real-time object detection with yolo, yolov2

and now yolov3 @ONLINE.‖

https://medium.com/@jonathan_ hui/real-time-object-

detection-with-yolo-yolov2-28b1b93e2088, March

2018.

[40] J. Redmon and A. Farhadi, ―Yolo9000: Better, faster,

stronger,‖ in The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), July 2017.

[41] P. Sought, ―Yolo-v2 loss function understanding.‖

https://www.programmersought.com/article/78354890

194/.

[42] J. C. Redmon, ―Yolo: Real-time object detection

@ONLINE.‖ https://pjreddie.com/darknet/yolov2/.

[43] J. Redmon and A. Farhadi, ―Yolov3: An incremental

improvement,‖ ArXiv, vol. abs/1804.02767, 2018.

[44] T. Lin, P. Goyal, R. B. Girshick, K. He, and P.

Doll´ar, ―Focal loss for dense object detection,‖

CoRR, vol. abs/1708.02002, 2017.

[45] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E.

Reed, C. Fu, and A. C. Berg, ―SSD: single shot

multibox detector‖, CoRR, vol. abs/1512.02325, 2015.

[46] K. He, X. Zhang, S. Ren, and J. Sun, ―Deep residual

learning for image recognition,‖ CoRR, vol.

abs/1512.03385, 2015.

[47] T. Lin, P. Doll´ar, R. B. Girshick, K. He, B.

Hariharan, and S. J. Belongie, ―Feature pyramid

networks for object detection,‖ CoRR, vol.

abs/1612.03144, 2016.

[48] A. Kathuria, ―What’s new in yolov3? @ONLINE.‖

https://towardsdatascience.com/yolo-v3-object-

detection-53fb7d3bfe6b, April 2018.

[49] J. C. Redmon, ―Yolo: Real-time object detection

@ONLINE.‖ https://pjreddie.com/darknet/yolo/.

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 28

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 4, April 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[50] M. Tan, R. Pang, and Q. V. Le, "Efficientdet: Scalable

and efficient object detection," CoRR, vol.

abs/1911.09070, 2019.

[51] M. Tan and Q. V. Le, "Efficientnet: Rethinking model

scaling for convolutional neural networks," CoRR, vol.

abs/1905.11946, 2019.

[52] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis,

"Soft-nms – improving object detection with one line

of code," 2017.

[53] A. Bochkovskiy, C. Wang, and H. M. Liao, "Yolov4:

Optimal speed and accuracy of object detection,"

CoRR, vol. abs/2004.10934, 2020.

[54] X. Du, T. Lin, P. Jin, G. Ghiasi, M. Tan, Y. Cui, Q. V.

Le, and X. Song, ―Spinenet: Learning scale-permuted

backbone for recognition and localization,‖ CoRR, vol.

abs/1912.05027, 2019.

[55] B. Zoph and Q. V. Le, ―Neural architecture search with

reinforcement learning,‖ CoRR, vol. abs/1611.01578,

2016.

[56] C. Wang, H. M. Liao, I. Yeh, Y. Wu, P. Chen, and J.

Hsieh, "Cspnet: A new backbone that can enhance

learning capability of CNN," CoRR, vol.

abs/1911.11929, 2019.

[57] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, "Path

aggregation network for instance segmentation,"

CoRR, vol. abs/1803.01534, 2018.

[58] X. Long, K. Deng, G. Wang, Y. Zhang, Q. Dang, Y.

Gao, H. Shen, J. Ren, S. Han, E. Ding, and S. Wen,

―PP-YOLO: an effective and efficient implementation

of object detector,‖ CoRR, vol. abs/2007.12099, 2020.

[59] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz,

―mixup: Beyond empirical risk minimization,‖ CoRR,

vol. abs/1710.09412, 2017.

[60] C. Wang, A. Bochkovskiy, and H. M. Liao, "Scaled-

yolov4: Scaling cross stage partial network," CoRR,

vol. abs/2011.08036, 2020.

[61] X. Huang, X. Wang, W. Lv, X. Bai, X. Long, K. Deng,

Q. Dang, S. Han, Q. Liu, X. Hu, D. Yu, Y. Ma, and O.

Yoshie, ―Pp-yolov2: A practical object detector,‖

CoRR, vol. abs/2104.10419, 2021.

[62] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M.

Asghar, and B. Lee, ―A survey of modern deep

learning based object detection models,‖ Digital Signal

Processing, vol. 126, p. 103514, 2022.

Paper ID: SR23330184650 DOI: 10.21275/SR23330184650 29

