AI and The Future of Medicine: Pioneering Drug Discovery with Language Models

Satish Kathiriya¹, Siddhartha Nuthakkii², Sarika Mulukunla³, Bala Vignesh Charlo⁴

¹ Software Engineer, CA, USA
² Sr Data Scientist, First Object Inc, TX, USA ³AI/ML Data Scientist in Healthcare Applications ⁴ Software Engineer, CA, USA

Abstract: The paper explores the transformative potential of Artificial Intelligence (AI), particularly Large Language Models (LLMs), in the pharmaceutical industry for drug discovery. It highlights the significant impact of AI in speeding up and reducing the costs of drug development, offering more precise and efficient methodologies for creating tailored therapies. The collaboration between healthcare providers and data scientists is emphasized as crucial for implementing LLMs in healthcare to improve patient outcomes. The document discusses various applications of AI in the drug discovery process, including open-source developments, the use of big data, and the creation of neural networks to predict drug target interactions and optimize lead compounds. It suggests that AI’s integration into pharmaceutical research promises more effective treatment options and a revolution in patient care, despite potential challenges such as data privacy and ethical considerations.

Keywords: Artificial Intelligence, Medicine, Drug Discovery, Language Models, Generative AI

1. Introduction

Biological technologies, in particular, have benefited greatly from AI - driven innovation, which has slashed the time, money, and failure rate associated with medication research and development [1]. It was difficult for drug discovery experts to come up with an efficient method that could transport therapeutic chemicals to the target while reducing their side effects and making the most of them [2]. To get around the difficulties associated with developing new therapeutic agents—a process that is both time-consuming and expensive—contemporary computational methods, such as molecular docking and Virtual Screening (VS), are used [2]. On the other hand, new methods are needed to overcome these obstacles because of their inefficiency and inaccurate results. The drug discovery process is notoriously long and expensive, taking an estimated twelve years from the beginning (with preclinical studies like Hit and lead discovery and optimization) all the way through phase I, II, and III clinical trials to the end (with the final drug approval to be officially used in humans). The process is also plagued by drugs that are withdrawn from the market because of their negative side effects on humans. Consequently, the drug development process has been sped up and costs have been reduced thanks to an advanced system like Artificial Intelligence (AI), which includes Deep Learning (DL) and Machine Learning (ML).

A form of artificial intelligence (AI), also known as machine intelligence, is a simulation of human intelligence in which a computer system learns and solves problems in a way similar to how the human brain does it. AI systems and software enable autonomous decision-making for predetermined goals by learning and interpreting data inputted into them. Machine learning and artificial intelligence are not synonymous. Using models or algorithms, artificial intelligence (AI) systems may carry out tasks and acquire characteristics like prediction and decision-making. AI is a subfield of computer science, engineering, and statistics. Instead of requiring explicit programming, machine learning can accomplish it automatically. To improve accuracy and reduce system bias, the deep learning method employs a neural network algorithm to guide the machine's incoming data. Machine learning models, which are a subset of artificial intelligence, create effective ML models by data analysis in ML training methods. A key step in the drug development process, these ML technologies aid in the prediction of the target protein's three-dimensional structure.

2. The Adoption of AI to the Drug Industry

There are exciting new possibilities for AI development in the biopharmaceutical industry. Artificial intelligence (AI) is a hot topic in the biopharmaceutical business, which is trying to enhance drug discovery, lower R&D expenditures, lower failure rates, and generate better pharmaceuticals overall [3]. The rapid advancement of ML algorithms and the availability of enormous data in the biological sciences have led to an emergence of AI-based start-ups focused on drug discovery in recent years. In 2016 and 2017, a number of significant Albio pharmaceutical agreements were announced. These included AstraZeneca, Abbvie, Merck, Novartis, GSK Sanofi Genzyme, Recursion Pharmaceuticals, and Exscientia, among others. Among the current AI projects of the leading biopharmaceutical business are:

a) Mobile platforms - The ability to effectively refer patients by collecting data in real-time, leading to better patient outcomes.
b) Personalized medicine - The power to examine a vast database of patients so as to identify remedy alternatives utilizing a cloud-based technology as personalized medicine.
c) Acquisitions galore - A new wave of startups is emerging, catering to the innovation needs of big biotech companies by merging artificial intelligence with healthcare.
d) Drug development - Pharmaceutical firms are attempting to incorporate state-of-the-art technology...
into the time-consuming and expensive process of drug development by partnering with software businesses.

The increasing use of deep learning techniques in drug development, together with the fact that these approaches draw from massive training sets, makes careful data curation and appropriate model benchmarking very necessary [4]. Databases like ZINC and the European Molecular Biology Laboratory serve as a popular jumping off point for ligand-based initiatives, because of the increasing availability and size of chemical compound libraries. A same pattern was seen in structure-based modeling, which relies on databases like protein database bind and binding database to provide extensive structural details on protein-ligand complexes and bioactivity data related to them [4].

3. AI and its possibilities in the field of Drug Discovery

In recent years, there has been a lot of buzz about how medical chemistry may be transformed by using artificial intelligence (AI). Developing novel pharmaceuticals, a process known as drug discovery, is a labor-intensive process that has historically relied on methods like high-throughput screening and trial-and-error research. Machine learning (ML) and natural language processing are two examples of artificial intelligence approaches that might make this process faster and better by allowing for more efficient and accurate analysis of big data sets. Recently, the scientists detailed how they used deep learning (DL) to accurately predict which pharmacological molecules will have the desired effect. Predicting the toxicity of potential drugs is another area where AI-based solutions have proven effective. The potential of AI to enhance the efficacy and efficiency of drug development procedures has been shown in these and other research endeavors. The use of AI to the discovery of novel bioactive chemicals is not, however, devoid of obstacles and restrictions. Additional study is necessary to thoroughly comprehend the benefits and drawbacks of AI in this domain, and ethical aspects must be considered. Regardless of these obstacles, AI is anticipated to play a major role in the creation of novel treatments and medicines in the next few years.

4. Literature Review

Paul, et. al (2020) An increasing number of societal sectors are beginning to reap the benefits of artificial intelligence (AI), with the pharmaceutical business being one of the most prominent. This review focuses on the many ways AI has been used in the pharmaceutical industry to reduce human workload and achieve goals more quickly. Some examples of these applications include drug repurposing, clinical trials, drug discovery and development, pharmaceutical productivity improvements, and many more. There is also discussion on the future of AI in the pharmaceutical sector, crosstalk about the methods and tools used to enforce AI, and ongoing difficulties and solutions to those issues [5].

Blanco - Gonzalez et. al (2022) The use of artificial intelligence (AI) might drastically alter the pharmaceutical industry by facilitating faster, more precise, and more efficient drug development. Nevertheless, acknowledging the limits of AI-based methods, resolving ethical problems, and making high-quality data available are all crucial to the effective deployment of AI. This essay reviews the pros, cons, and difficulties of AI in this area, and then suggests ways forward that might help overcome the current roadblocks. Also covered are the possible benefits of AI in pharmaceutical research, the use of data augmentation, explainable AI, and AI integration with conventional experimental procedures. In sum, this analysis demonstrates the promise of AI in the pharmaceutical industry and sheds light on the obstacles and possibilities that lie ahead for this promising area of research. Important message from the authors: The purpose of this paper is to evaluate ChatGPT, a chatbot trained on the GPT - 3.5 language model, in its capacity to provide human writers with feedback as they compose review articles. We tested the AI's capacity to autonomously produce material using the text it produced after we provided it with instructions (see to the supporting information for details). Following a comprehensive evaluation, human writers essentially rewrote the paper, aiming to strike a compromise between the initial concept and scientific standards. In the previous part, we covered the pros and cons of employing AI for this specific purpose [6].

Ahuja, Varun (2019) The field of computer science known as artificial intelligence (AI) focuses on creating algorithms with the goal of mimicking human intellect. It was probably during a 1956 meeting at Dartmouth College when the term “artificial intelligence” was first used. It was in the early 1970s that the first medical AI projects were initiated. Several domains have begun to see the effects of AI as time has progressed. We review its uses in medicine and drug development in this article [7].

Bhattamisra, et. al (2023) In computer science, artificial intelligence (AI) refers to the ability of computers to learn and improve their performance in difficult tasks and data sets. The amount of research devoted to AI has skyrocketed, and the field is seeing rapid advancements in its ability to improve healthcare delivery and scientific understanding. The paper delves further into the pros and cons of AI in the healthcare and pharmaceutical research industries. Search engines like Google Scholar, PubMed, and Science Direct were used to compile the material. To find research and review papers published in the last five years, we used particular keywords and phrases like ‘Artificial intelligence,’ ‘Pharmaceutical research,’ ‘drug development,’ ‘clinical trial,’ ‘disease diagnosis,’ etc. This article provides a comprehensive overview of the use of artificial intelligence (AI) in illness diagnosis, digital therapy, individualized treatment, medication development, and pandemic or epidemic prediction. Popular artificial intelligence (AI) tools include deep learning and neural networks; promising tools for designing clinical trials include Bayesian nonparametric models; tools for identifying patients and keeping tabs on their progress in trials include wearable devices and natural language processing. Seasonal flu, Zika, Ebola, tuberculosis, and COVID-19 epidemic predictions were made using deep learning and neural networks. Quicker and cheaper healthcare and pharmaceutical research, together with better public service, could be in the horizon as a result of AI’s development [8].
Mak, Kit - Kay & Pichika, Mallikarjuna (2018) By using personalized knowledge and continuously improving its solutions, artificial intelligence (AI) is able to tackle both simple and complicated challenges. The drug development process might be completely transformed by using the incredible breakthroughs in computer power and AI technologies. Increased research and development expenditures and decreased efficiency are now making it difficult for the pharmaceutical sector to fund their medication development programs. This analysis delves into the reasons behind the high attrition rates in new medication approvals, explores how AI may streamline drug development, and examines the partnerships between pharmaceutical industry heavyweights and AI - driven drug discovery companies [9].

5. An Overview of LLMS

Large Language Models (LLMs) are advanced AI systems trained on vast data to understand and process human language. These models undergo pre - training on diverse datasets to learn linguistic patterns, which is then refined through fine - tuning for specific tasks such as medical diagnosis. LLMs’ ability to adapt via transfer learning enables them to efficiently tackle new tasks with minimal additional data. In healthcare, they utilize electronic health records and medical literature to improve diagnosis and treatment recommendations, demonstrating their potential to significantly enhance patient care and outcomes.

5.1. LLMs in Medicine

In the realm of healthcare, the utilization of Large Language Models (LLMs) spans across three pivotal domains: patient care, medical research, and medical education. These advanced technologies are revolutionizing the way healthcare providers interact with patients, particularly through the medium of written communication such as medical records and diagnostic reports. LLMs show remarkable promise in breaking down the complexities of medical jargon, making it more accessible and less intimidating for patients, especially in sensitive areas like sexually transmitted diseases (STDs). Tools like First Derm and Pahola exemplify early successes, assisting doctors in diagnosing and managing conditions related to dermatology and alcohol dependency, respectively.

LLMs excel in areas critical to patient management, such as facilitating multilingual translations of medical terms, enhancing adherence to treatment plans, and improving the quality of clinical documentation. They offer a solution for more structured note - taking, potentially easing the administrative load on healthcare professionals. In the sphere of medical research, LLMs contribute by generating scientific content, summarizing complex ideas, and aiding researchers with limited technical skills in analyzing large datasets and testing hypotheses. The iterative improvement of scientific models through LLMs can significantly boost research productivity.

In medical education, LLMs serve as innovative tools for personalized learning. They provide students with interactive simulations, simplify complex concepts, and offer practice in diagnosis and treatment planning, fostering analytical thinking and problem - solving skills. However, the incorporation of LLMs into educational settings must be carefully monitored to ensure they complement rather than compromise the development of critical thinking and original analysis among students.

5.2. Healthcare applications

- Medical diagnostics: The use of LLMs to aid in medical diagnosis has shown encouraging results. Models like this may analyze patient data including symptoms, medical history, and test results to come up with potential diagnoses and recommendations for more testing or treatments. This improves the overall quality of treatment, speeds up the procedure, and decreases diagnostic mistakes.

- Optimization and treatment planning: By evaluating vast amounts of medical literature and taking patient - specific aspects into account, AI - driven models may aid in the creation of tailored treatment regimens. Improving treatment techniques, forecasting treatment response, and spotting side effects are all possible with their help. In the end, this helps healthcare providers improve outcomes by making better judgments and customizing therapies for each patient. To improve clinical processes and patient care, Moor et al. have presented the idea of Generalist Medical AI (GMAI), which includes a range of AI applications in healthcare. Chatbots for patients, allowing personalized support and advice outside of clinical settings; interactive note - taking, where GMAI models help reduce administrative tasks by drafting documents for clinicians to review and approve; text - to - protein generation, where GMAI models design protein sequences and structures based on textual prompts, potentially accelerating drug discovery and development; and there are many more potential uses for GMAI models in healthcare.

- Medical research & drug discovery: Applying LLMs to medical research and drug development may automate the process of spotting patterns in data, automating the extraction of important information from scientific literature, and producing hypotheses. Predicting molecular attributes, finding possible drug candidates, and proposing novel chemical structures are all ways they help speed up drug development. Because of this, new treatments may be developed and brought to market more quickly.

6. Research Methodology

- Standard Gold Dataset (SGD)

The comparison of modeling approaches for the diagnosis and prediction of breast cancer and other biological problems has gained popularity in recent years. Using data mining techniques and the statistical software packages Python and R, this research attempted to forecast the likelihood of medication target interaction in relation to breast cancer survival. Predicting medication target interaction using Python's many powerful analytical and data filtering capabilities is an unproven strategy. In order to evaluate and anticipate the interaction, this thesis used the statistical analysis software program, which has
comprehensive data analysis, management, and visualization capabilities. The researcher looked at several statistical and machine learning approaches to build prediction models for breast cancer patients using drug molecules and protein structures.

- **Predictive Drug Discovery**
 There are primarily three steps to modern drug development, sometimes known as rational drug discovery: target confirmation, lead identification, and lead optimization. In order to establish if a target is relevant to the pathophysiology of a certain disease, the validation phase investigates it or them. In the lead identification phase, the investigation group is responsible for finding new active chemical entities that have the potential to be developed into a medication.

7. **Medical Multimodal Large Language Model (Med - MLLM)**

In order to address the issue of sparse labeled data, particularly in the context of rare disorders, this study leverages the capabilities of a Medical Multimodal Large Language Model (Med - MLLM), as illustrated in Figure 1. The scarcity of data becomes markedly apparent during the initial stages of emerging epidemics, underscoring the need for innovative solutions. The Med - MLLM model is distinguished by its three-pronged approach to training: first, it employs publicly available image datasets, including chest radiographs, COVID-19 chest X-rays, and COVID-19 computed tomography (CT) images, to refine an image-centric model. This model is adept at extracting the intricate diagnostic details embedded within medical imagery. Second, it harnesses public textual datasets pertaining to medical literature to develop a text-focused model, which excels in discerning textual semantics and clinical insights. Lastly, Med - MLLM utilizes a comprehensive knowledge base, such as the Unified Medical Language System (UMLS), to enhance an image-text model. This model synergizes the insights gleaned from unlinked images and texts, thereby enabling a nuanced representation of disease phenotypes and clinical manifestations. This methodology not only mitigates the issue of sparse labeled data but also facilitates a more holistic understanding of medical conditions, especially in the nascent phases of epidemics.

![Figure 1: COVID-19 medical multimodal large language model](image)

8. **Result & Discussion**

8.1 **Use Logistic Regression to enhance the Standard Gold Dataset (SGD)**

Examining or measuring the relationship between a dependent variable and one or more independent variables is called regression analysis or measurement. It is usual practice to express this relationship as an equation, where the dependent variable's future values may be predicted using the parametric coefficients of the independent variables. Logistic regression is the second most used kind of regression after linear regression. The dependent variable in logistic regression may be discrete or categorical, in contrast to the continuous dependent variable in linear regression. Prior to using logistic regression, the discrete
variable has to be converted into a continuous value that depends on the event's probability of happening. First, to explain the situation; second, to govern the situation; and third, to foresee the situation are the three main uses of regression. By adjusting the data to match a logistic curve, logistic regression may estimate the likelihood of an event happening. Like other types of regression analysis, these make use of predictor variables that may be either numerical or categorical. Protein structures allow researchers to predict an individual's risk of breast cancer over the course of their lifetime. The logistic regression model is used to elucidate the results of the explanatory factors' binary response effects, which are shown as a sequence of data. The value of A in this context may be either 1 or 0, representing the presence or absence of a disease, respectively. Consider the set of all of the explanatory variable's \(X = (x_1, x_2, ..., x_n)\) as an example.

\[
\text{Logistic Regression (LG)} = \log \frac{P(A=1)}{1-P(A=1)} = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 + \ldots + \gamma_k x_k
\]

With \(\gamma_0\) being called the "intercept" and \(\gamma_1, \gamma_2, \gamma_3, \text{etc.} \) being called the "regression coefficients" of \(x_1, x_2, \text{and} x_3, \text{etc.} \) The contribution of each risk factor is quantified by its regression coefficient.

8.2 Findings from the Logistic Regression Experiment

The present study employs classification accuracy as a metric to evaluate the efficacy of logistic regression when applied to open - source medical datasets. The outcomes of this evaluation are systematically presented in Table 1, which details the performance of classification utilizing logistic regression. This initial step involves the organization of features in ascending order according to their entropy values, and the construction of a logistic regression classifier in Python using the respective dataset. To assess the effectiveness of the logistic regression approach, data was collected employing 200, 500, and 1, 000 descriptor features in sequential trials. These varying levels of descriptor features served to evaluate the performance of the proposed standard gold dataset rigorously. The evaluation framework for the proposed system is underpinned by a set of performance metrics, the results of which are encapsulated in Table 2, showcasing the performance of the aforementioned Standard Gold dataset.

Table 1: The Logistic Regression Technique’s Confusion Matrix with SGD

<table>
<thead>
<tr>
<th>Confusion Matrix</th>
<th>200 Descriptor</th>
<th>500 Descriptor</th>
<th>1000 Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>Predicted</td>
<td>286</td>
<td>45</td>
<td>311</td>
</tr>
<tr>
<td>Actual</td>
<td>88</td>
<td>172</td>
<td>65</td>
</tr>
</tbody>
</table>

Table 2: Evaluation of the suggested system via the use of Logistic Regression

<table>
<thead>
<tr>
<th>Parameter (%)</th>
<th>200 Descriptor</th>
<th>500 Descriptor</th>
<th>1000 Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>77.3</td>
<td>82.4</td>
<td>86.5</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>76.3</td>
<td>82.6</td>
<td>88.1</td>
</tr>
<tr>
<td>Specificity</td>
<td>79.1</td>
<td>82.2</td>
<td>84.0</td>
</tr>
<tr>
<td>Precision</td>
<td>86.3</td>
<td>89.0</td>
<td>90.5</td>
</tr>
<tr>
<td>F1 – Score</td>
<td>81.0</td>
<td>85.6</td>
<td>89.2</td>
</tr>
<tr>
<td>AUROC</td>
<td>80.8</td>
<td>86.0</td>
<td>89.3</td>
</tr>
</tbody>
</table>

This investigation into the application of logistic regression on medical datasets delineates the classification accuracy as a crucial measure for assessing the methodology's effectiveness. Through an ordered approach in feature selection and an extensive evaluation across multiple descriptor feature counts, the study provides an in - depth analysis of logistic regression's performance. The inclusion of a confusion matrix and a detailed set of performance metrics further enriches the understanding of the logistic regression technique's applicability and effectiveness in processing open - source medical datasets.

9. Conclusion

This study highlights the significant potential of Large Language Models (LLMs) in transforming medical research and patient care, despite facing challenges such as data privacy and the need for substantial labeled datasets. The Medical Multimodal Large Language Model (Med - MLLM), designed to address sparse labeled data in rare diseases and emerging epidemics, demonstrates promising capabilities in facilitating rapid responses and improving decision - support tasks with minimal data. Moreover, the application of logistic regression to medical datasets underscores the model's effectiveness in enhancing predictive accuracy. As AI and LLM research progresses, we can expect advancements in model performance, interpretability, and application in healthcare. These developments promise to yield more accurate diagnoses, personalized treatments, and a deeper understanding of complex medical conditions. However, ethical concerns and potential job displacement due to automation necessitate careful consideration. The future of LLMs in healthcare is optimistic, offering opportunities to revolutionize patient care and medical knowledge, provided that healthcare professionals are adequately trained and ethical standards are rigorously applied.

References

