
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 3, March 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Greening the Digital Frontier: A Sustainable

Approach to Software Solutions

Srividhya Chandrasekaran1, Sriram Pollachi Subburaman2

1Senior Product Manager

Email: schandrasekaran[at]spotify.com

2Senior Software Engineer

Email: pollach[at]adobe.com

Abstract: In the 21st century, Sustainable Software Engineering practices have emerged as a pivotal process, transforming the landscape

of traditional software engineering. In previous eras the focus was primarily on hardware and software development, and sustainability

was often overlooked. Little attention was given to the technical, economic, environmental, social, and individual dimensions of

sustainability. As software continues to play a crucial role in various aspects of our lives, contemporary software development practices

have yielded significant negative impacts on the economy, society, humans, and the environment. To address these challenges, the concept

of Climate Conscious Software Engineering has gained prominence. The shift towards green and sustainable software development seeks

to create software that not only caters to the present and future needs of users but also minimizes adverse effects on the environment and

society. This paradigm is increasingly influencing Global Software Engineering (GSE) practices. This paper delves into the foundational

principles of Sustainable Software Engineering as defined by the Green Software Engineering foundation. It explores the issues and

challenges in climate conscious software engineering and suggests a few recommendations based on reference studies.

Keywords: Green Software, carbon reduction, software development, sustainability, software waste

1. Introduction

In current technological landscapes, the need to address

environmental concerns has given rise to the concept of green

software. This is a paradigm shift in software development

that prioritizes the reduction of greenhouse gas emissions.

Unlike usual approaches that often aim for carbon neutrality,

the essence of sustainable software lies in actively minimizing

emissions throughout its life cycle [1]. At the center of this

paradigm is the pursuit of carbon efficiency, a strategy that

revolves around enhancing energy efficiency, fostering

carbon awareness, and optimizing hardware utilization [2].

As we delve into the nuanced realm of green software, it

becomes imperative to understand the characteristics that

define it and the pivotal role it plays in mitigating the

ecological footprint of the digital domain. By focusing

beyond the conventional path of carbon neutrality, green

software endeavors to redefine the benchmarks for

environmental sustainability in software development.

The crux of building sustainable software lies in an

organizations commitment to minimizing carbon emissions

through strategic interventions. This article explores the three

primary activities involved in green software's carbon

efficiency: the enhancement of energy efficiency, the

cultivation of carbon awareness, and the optimization of

hardware utilization [2]. Through a comprehensive

examination of these facets, we aim to elucidate the

transformative potential of green software in fostering a more

sustainable and ecologically responsible digital future.

As we navigate through the landscape of green software, our

objective is to contribute to sustainable computing. By

clarifying these existing principles and practices that define

green software, this article seeks to provide valuable insights

for researchers, developers, and policymakers alike, fostering

a joint commitment to building a carbon - neutral digital

ecosystem.

2. Principles of Climate Conscious Software

6 core competencies are required to define, build, and run

sustainable software applications according to Microsoft’s

training on sustainable software [4].

Figure 1: Green Software Principles [2] - Source:

greensoftware. org

a) Carbon efficiency

This principle aims to minimize the amount of carbon,

emitted from the most common Green House Gas. As per the

United Nations Net - Zero coalition [5], carbon emissions

need to be reduced by 45% by 2030 and reach net zero by

2050. For software development, this means efficient use of

computational resources like reducing server load and

maximizing the use of hardware resources.

b) Energy efficiency

Energy measures the amount of electricity used, and

electricity is closely related to carbon emissions. This

principle aims to maximize utilization rates by consolidating

workload onto fewer servers with the highest utilization rates

possible.

Paper ID: SR24304114256 DOI: https://dx.doi.org/10.21275/SR24304114256 1820

https://www.ijsr.net/
mailto:schandrasekaran@spotify.com
mailto:pollach@adobe.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 3, March 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

c) Carbon awareness:

This principle advocates for aligning application operation

with the availability of carbon resources. In software

development, this entails adjusting application runtime based

on demand shifting, such as computing during periods or in

regions with lower carbon intensity, which measures the

amount of carbon emissions per kilowatt - hour of electricity

consumed.

d) Hardware efficiency

This principle seeks to reduce the carbon emissions associated

with device disposal by minimizing the amount of embedded

carbon. One approach is to spread the carbon emissions over

the expected lifespan of the device, thus mitigating

environmental impact.

e) Measurement:

Software carbon intensity [6] quantifies the carbon emissions

across various software applications. It represents the carbon

equivalent emitted during specific times and locations where

the software operates, measured in grams of carbon

equivalent per kilowatt - hour

Figure 2: SCI calculation [6]

f) Climate commitments

• Carbon Reduction: At the highest level, carbon

mitigation involves either offsets or abatement.

Offsetting entails reducing emissions elsewhere, while

reduction or elimination focuses on preventing carbon

emissions. Offsets offer a means to complement carbon

reduction efforts, with mechanisms like compensation

and neutralization.

• Carbon neutral: The PAS 2060 standard was published

by the British Standards Institution and its principles are

used as the widely accepted carbon neutrality standard

[7]

• Net zero: Net zero entails both reducing and offsetting

residual emissions by employing carbon removal

techniques. Mostly 90% of emissions are eliminated and

the remaining 10% are permanently neutralized.

3. Process Issues and Challenges with

Sustainable Software

The software development process continues to face

challenges in maintaining relevance and sustainability,

crucial for ensuring the quality of the end product. ‘The Green

Software development model’ [3] introduces

recommendations in each phase of software development:

considering the shelf life of the software during Requirement

gathering, achieving simplicity in design, using hardware

resilient Application programming interface (API),

Automating tests and promoting performance testing and

resource profiling.

3.1 Challenges during the Software development process

Software development encompasses a broad spectrum of

skills and disciplines, which include identifying user needs,

values, and features essential for supporting the final product

[8]. Typically, the software process consists of five primary

phases: requirement specification, design, implementation,

testing, and maintenance [9]. Certain activities within these

phases may pose challenges, particularly in meeting

contemporary demands such as reducing paper usage,

minimizing e - waste generation, and managing carbon

footprint and energy efficiency.

a) Requirement phase

 The software requirements specification (SRS) is produced

as a result of the requirement gathering and analysis process

[10]. Some potential green analysis criteria consist of

assessing viability, requirements, and tests [11]. Gathering

requirement specifications electronically is essential to

conserve resources like paper and protecting the environment.

Software should also embrace new hardware technologies for

improved energy efficiency and adaptability to power - down

modes during operation [12]

b) Design phase

The software requirements specification (SRS) is the primary

artifact during the design phase. The initial design should

strike a balance to minimize the need for frequent design

changes. It should not be overly extensive, but should instead

encourage practices that conserve resources [13]

c) Implementation phase

During this phase, developers write source code in specific

programming languages according to their preferences and

the project's approach. The implementation phase focuses on

programming, emphasizing the avoidance of duplicate code,

custom hardware APIs, and resource - intensive APIs.

Furthermore, practices such as paired programming, code

reuse, and automated code generation support the

minimization of energy consumption, thereby supporting

energy conservation. [14]

d) Testing phase

The testing phase involves identifying and rectifying product

errors until they align with the quality standards outlined in

the SRS. Various types of tests, including integration and

system testing, are conducted to ensure software's reliability

and functionality. It is recommended to utilize automated

testing and reuse test cases to assess performance scalability

and resource usage [10]. Functionality and measurement

could be used for the analysis of sustainable practices [8].

While functionality refers to all tests in the requirement,

measurement specifies the product energy consumption [15]

e) Maintenance phase

Software maintenance occurs when issues arise that require

repair or improvement. Maintenance ensures that the

sustainability and quality of the product are upheld and

Paper ID: SR24304114256 DOI: https://dx.doi.org/10.21275/SR24304114256 1821

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 3, March 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

ensured beyond the development phase [15]. To enhance cost

- effectiveness and energy efficiency, managers should offer

training or courses to staff on both old and new programming

languages to support the maintenance process. Environmental

sustainability can be promoted during the implementation

phase by ensuring that program development is clear and

comprehensible to programmers. This facilitates swift

internal maintenance work and contributes to improved

energy efficiency, quality, and longevity of the product. [13]

3.2 Software waste

In essence, software waste refers to resources utilized without

yielding any benefit, encompassing characteristics, objects,

conditions, processes, and actions within project elements. In

software development, wastes serve as friction and persists

throughout the entire development process until the final

product is produced [16]. Software waste frequently occurs

due to issues such as scope ambiguity, unclear requirements,

inadequate specification and design, unnecessary features,

technical challenges, team conflicts, and disorganized

programming throughout the development process [18].

Building Incorrect features or products, backlog

mismanagement, rework, overly complex solutions,

unnecessary cognitive load, psychological stress, waiting or

multitasking, knowledge loss, and ineffective communication

in software development also result in software waste.

Enhancements to software engineering productivity involves

integrating sustainability principles, policies, and practices

into Extreme Programming methodologies [19]. These

include fostering knowledge sharing, maintaining a positive

team attitude, and prioritizing code quality. Additionally,

implementing policies like team code ownership,

standardized schedules, with the aim of reducing technical

debt can improve productivity. Developers can adopt

practices like test - driven development, continuous

refactoring, pair programming, and knowledge sharing.

3.3 Green Software Process

The Green software methodology entails efficiently utilizing

resources to address software needs while considering

economic, social, and environmental impacts. From a

software standpoint, resources refer to the natural elements

essential to sustain human needs while minimizing waste. For

example, cloud computing offers an alternative approach to

conserve energy and physical space. Software sustainability

involves extending software lifespan and minimizing waste

generation during development and operation. Agarwal,

Nath, and Chowdhury suggest integrating green software

development cycle and sustainability criteria [12]. Building

sustainable software involves using solid principles,

practices, and processes that enhance the resilience of

software's technical sustainability [8]. The ‘green’ factor

serves as a metric for evaluating the environmental

friendliness of the software development process against set

standards. Its application should guarantee environmentally

conscious practices in software development that are

sustainable for future generations.

4. Recommendations
 The authors have consolidated a curated list of

recommendations based on reference studies [20]. These

suggestions can be used at various stages in the software

development lifecycle to build sustainable software products.

Table 1: Recommendations for best practices while building software products and applications

Functional • Minimize hardware usage

• Empower users to manage and monitor resource consumption effectively in the application

• Allow users to disable unnecessary functions

• Support delay tolerance and slow connectivity

• Support an offline version of the software application.

• Disable unsupported features on older hardware.

• Prompt users to remove outdated data or suggest data removal.

• Monitor feature creep

Architecture • Design a Micro - services - based application

• Analyze performance and resource usage before building native client applications

• Decouple back - end and front - end

• Go for a static frontend and shift processing and storage to server - side microservices.

• Operate microservices as switchable function - like services to conserve resources.

• Shift operations into asynchronous background processes for flexibility and resource optimization

• Enable incremental over - the - air updates for efficient updates.

• Provide public APIs for all core functionalities and data export

• Include resource usage measurements in integration tests for actionable insights.

Development • Eliminate unnecessary libraries; prioritize those offering essential functionality.

• Reduce hardware dependencies for client - side applications

• Display resource usage for individual operations to clients.

• Disable staging and test environments when not in use

Paper ID: SR24304114256 DOI: https://dx.doi.org/10.21275/SR24304114256 1822

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 3, March 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Transfer processing and storage to the server - side to mitigate client - side obsolescence.

• Ensure scalability and restart capabilities.

• Prioritize "oldest machine first" principle following "mobile - first" approach.

• Unblock unused resources.

• Minimize resource usage when no work is being done.

• Prevent code and software bloat

• Embrace minimalism in development practices.

References

[1] “Green Software Foundation, ” GSF. https:

//greensoftware. foundation/.

[2] “Introduction, ” Learn Green Software. https: //learn.

greensoftware. foundation/introduction/.

[3] S. S. Shenoy and Raghavendra Eeratta, “Green

software development model: An approach towards

sustainable software development, ” Dec.2011, doi:

https: //doi. org/10.1109/indcon.2011.6139638.

Available: https: //ieeexplore. ieee.

org/abstract/document/6139638

[4] Zimmergren, “The Principles of Sustainable Software

Engineering - Training, ” Microsoft Learn. https:

//learn. microsoft. com/en -

us/training/modules/sustainable - software -

engineering - overview/.

[5] U. Nations, “Net Zero Coalition, ” United Nations.

https: //www.un. org/en/climatechange/net - zero -

coalition.

[6] “Measurement, ” Learn Green Software. https: //learn.

greensoftware. foundation/measurement/#software -

carbon - intensity - specification.

[7] “PAS 2060 The ideal standard for carbon neutrality. ”

Available: https: //info. eco - act. com/hubfs/0%20 -

%20Downloads/PAS%202060/PAS%202060%20fact

sheet%20EN. pdf

[8] T. Sedano, P. Ralph, and C. Peraire, "Software

development waste, " 2017 IEEE/ACM 39th Int. Conf.

Softw. Eng., pp.130–140, 2017.

[9] S. Rohana, A. Ibrahim, J. Yahaya, H. Salehudin, U.

Kebangsaan Malaysia, and M. Deraman, “The

Development of Green Software Process Model A

Qualitative Design and Pilot Study, ” IJACSA)

International Journal of Advanced Computer Science

and Applications, vol.12, no.8, p.2021, Available:

https: //thesai.

org/Downloads/Volume12No8/Paper_69 -

The_Development_of_Green_Software_Process_Mo

del. pdf

[10] J. Yahaya, K. Raisian, S. R. Ahmad Ibrahim, A.

Deraman, "Green software process based on

sustainability dimensions: the empirical investigation,

" in Proceedings of the 1st International Conference on

Informatics, Engineering, Science and Technology

(INCITEST 2019), 2019.

[11] H. Acar, Software development methodology in a

Green IT To cite this version : Software development

methodology in a Green IT environment, Thesis,

Université de Lyon, 2017.

[12] S. Agarwal, A. Nath, and D. Chowdhury, "Sustainable

approaches and good practices in green software

engineering, " Int. J. Res. Rev. Comput. Sci., 2012

[13] S. S. Mahmoud and I. Ahmad, "A green model for

sustainable software engineering, " Int. J. Softw. Eng.

its Appl., vol.7, no.4, pp.55–74, 2013.

[14] S. S. Shenoy and R. Eeratta, "Green software

development model: An approach towards sustainable

software development, " in Proceedings of 2011

Annual IEEE India Conference: Engineering

Sustainable Solutions, INDICON - 2011, 2011.

[15] H. Acar, G. I. Alptekin, J. P. Gelas, and P. Ghodous,

"Towards a green and sustainable software, "

Transdisciplinary Lifecycle Analysis of Systems,

2015.

[16] M. Kramer, "Best practices in systems development

lifecycle: An analyses based on the waterfall model, "

Review of Business & Finance Studies, vol 9, no.1,

pp.77 - 84, 2018.

[17] O. Al - Baik and J. Miller, "Waste identification and

elimination in information technology organisations, "

Empir. Softw. Eng., vol.19, no.6, pp.2019–2061, 2014

[18] H. Alahyari, T. Gorschek, and R. Berntsson Svensson,

"An exploratory study of waste in software

development organisations using agile or lean

approaches: A multiple case study at 14 organisations,

" Information and Software Technology, vol.105,

pp.78 - 94, 2019.

[19] T. Sedano, P. Ralph, and C. Péraire, "Removing

software development waste to improve productivity,

" in Rethinking Productivity in Software Engineering,

Berkeley, CA: Apress, pp.221–240, 2019.

[20] E. Kern et al., “Sustainable software products—

Towards assessment criteria for resource and energy

efficiency, ” Future Generation Computer Systems,

vol.86, pp.199–210, Sep.2018, doi: 10.1016/j.

future.2018.02.044.

Paper ID: SR24304114256 DOI: https://dx.doi.org/10.21275/SR24304114256 1823

https://www.ijsr.net/
https://ieeexplore.ieee.org/abstract/document/6139638
https://ieeexplore.ieee.org/abstract/document/6139638

