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Abstract: In this paper an attempt is made to propose Expected Maximization algorithm for estimating the object belongs to the label 

class. The comparison made is with respect to their methods, merits, and demerits. The methods were implemented for a credit card bank 

data set and evaluated its accuracy.  
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1. Introduction 

 

Dempster, et al [1] established important fundamental 

properties of the algorithm. It is maximizing pastiche 

estimates of parameters based on the observed sample. It is 

an iterative process and is numerically stable, each iteration 

increasing the likelihood i.e. it is slow and, linearly 

converging. No evaluation of the likelihood nor its 

derivatives is involved and requires small storage space. Its 

simplified maximization step appears to be an advantage 

over other methods in some respects; this has proven to be a 

major failing because the algorithm does not seem to provide 

an estimate of the information matrix. Such derivative-based 

algorithms as quadratic optimization methods generally 

compute matrices that approximate the Hessian of the log-

likelihood function, and thereby provide estimators of the 

information matrix as a by-product. McLachlan and 

Krishnan [2] used an iterative method for forming the 

(normal theory-based) linear discriminant function from 

partially classified training data. 

 

The EM algorithm is typically easily implemented in two 

steps, the E-step of each iteration only involves taking 

expectations over complete data conditional distributions and 

the M-step of each iteration only requires complete data ML-

estimation, which is often in simple closed form. 

 

2. Expected Maximization Algorithm 
 

Let x = (x1, x2, x3, … ,xn) be the observed sample drawn from 

a population with probability density function P(x, ), where 

the value of the parameter is unknown.  Let L(x,) be the 

likelihood function of observed sample and the log of the 

likelihood function be log L(x,). Start with some initial 

guess to evaluate the parameters and evaluate the Expected 

value of log Likelihood function. Evaluate the improved 

version of the parameter that maximizes the expected value 

of log of Likelihood function. Repeat the procedure until the 

values for the parameter are stabilizes.  

 

The improved version of the parameter that maximizes the 

expected value of log of Likelihood function. Repeat the 

procedure until the values for the parameter are stabilizes.  

Maximizing the log probability of data is not tractable. There 

is no closed form solution to log L(x). Using bayes theorem, 

p(x) =
p x, z 

p  
z

x
 
  log p (x) = log p (x, z) − log p (z/x) 

  log p (x) = log p (x, z) −
log p (z/x) − log q (z) + log q (z) 

log p (x) = log  
p(x,z)

q(z)
 +

 log  
p(z|x)

q(z)
   

Multiply with q(z) on both sides 

q z . log p (x)

= q z . log  
p(x, z)

q(z)
 

−  q(z) log
p(z/x)

q(z)
  

 q z log p  x   dz

=  q z log  
p(x, z)

q(z)
 dz

−   q(z) log 
p(z/x)

q(z)
 dz 

log p (𝑥) = log  
p(x,z)

q(z)
  𝑞 𝑧 log  

p(x,z)

q(z)
 𝑑𝑧 −

qzlogp(z|x)q(z)𝑑𝑧 

log 𝑝 (𝑥) = 𝐹(𝑞, 𝜃) + 𝐾𝐿(𝑝|𝑞) where 𝐹(𝑞, 𝜃) =

 𝑞(𝑧)
𝑙𝑛 𝑝(𝑥,𝑧)

𝑞(𝑧)
𝑑𝑧 

E-step: 𝑞(𝑧) ≅ 𝑝(𝑧|𝑥) and  M-step: 𝑀𝑎𝑥𝜃𝐹(𝑞, 𝜃) 

 

Algorithm: 

 

Step 1: Consider a Statistical Model with a set of observed 

random sample x that satisfies the model, that is let x = (x1, 

x2, x3, … , xn) be the observed sample drawn from a 

population with probability density function P(x, ), where 

the value of the parameter is unknown.   

 

Step 2: Evaluate the Likelihood Function L(x,) of the 

observed sample and the log of Likelihood Function log 

L(x,).  

 

Step 3: Choose some initial value for the parameter in the 

model and evaluate the Expected value of Log Likelihood 

function.  Start with some initial guess to evaluate the 

parameters. 
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Step 4: Evaluate the improved version of the parameter that 

maximizes the expected value of Log of Likelihood function 

and evaluate the Expected value of log Likelihood function. 

 

Step 5: Repeat the steps 3 & 4 until two successive iterates 

gives same value.  

 

The algorithm is implemented for the credit card data and is 

illustrated in the following example. 

 

Example: A real data set of 13,444 customers of a national 

bank with a feature vector X= (X1, X2, … X12) of 12 

attributes under study with a categorical response variable Y 

of the status of credit-card is considered. For the 

classification, 80% (10,755) of the data is used for training 

the model and 20% (2,689) of the data set is used for testing 

the model and its accuracy. The variables / attributes under 

study are: Y: Credit card status; X1: Age; X2: Months living 

at current address; X3 :1+No of dependents; X4: No. of 

Major Derogatory reports; X5: No. of Minor Derogatory 

reports ; X6: Own-rent; X7: Income; X8: Self-employed; X9: 

Income divided by number of dependents; X10: Ratio of 

monthly credit card expenditure to yearly income; 

X11:Average monthly credit card expenditure; X12: Log of 

Spending.  

Sample Data Set  

 

Sample data set of Response (Y) & Feature vector (X) with data values 

Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

… … … … … … … … … … … … … 

1 30.75 36 2 0 0 1 3166.667 0 12666.667 0.0252295 79.893336 4.3806924 

1 36.75 14 1 0 0 0 1833.333 0 12500 0.0753976 138.228926 4.9289112 

1 27.66667 16 1 0 0 0 1650 0 23900 0.0953847 157.384808 5.0586938 

0 33.75 18 0 0 0 1 1833.333 1 31000 3.87E-04 17.5041667 3.7810954 

1 25.91667 54 0 1 1 1 1918 0 23016 0.169264 324.64833 5.7827425 

1 22.33333 2 0 0 0 0 2383.333 0 28600 0.0309584 73.7841625 4.3011441 

1 45.16667 42 1 0 0 1 4000 0 26500 0.0561251 224.500373 5.4138774 

1 38.58333 24 1 0 0 1 5000 0 30000 0.0202707 101.353331 4.6186127 

0 42.41667 2 3 0 0 0 2916.667 0 8750 3.43E-04 69.3808347 4.6803215 

1 43.25 118 4 0 1 1 3333.333 0 9000 2.67E-04 0.8888889 -0.117783 

… … … … … … … … … … … … … 

 

The results after implementation of EM algorithmusing R-program are given below:  

 

 
Figure 1: Correlation among variables 

 

The Bayesian information criterion (BIC) is a criterion for 

model selection among a finite set of models; the model with 

the lowest BIC is preferred. It is based on the likelihood 

function. 

 

 

 

 

 

Best BIC values 

 VEV, 2 EEV, 2             EEE, 1 

BIC -190844.5 -211314.44 -214052.9 

BIC diff 0.0 -20469.97 -23208.4 

Best ICL values 

 EEV, 5 VEV, 2 EEE, 1 

ICL -147982.6 -200371.8 -214052.87 

ICL diff 0.0 -52389.2 -66070.25 
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Figure 2: BIC values plot  

 

 
Figure 3: ICL values plot 

 

 
Figure 4: Classification by EM Algorithm 

 

Remarks: 

1) The EM-algorithm converge slowly and in problems 

where there is too much „incomplete information‟. 

2) It is just like the Newton-type methods does not 

guarantee convergence to the global maximum when 

there are multiple maxima. Further, in this case, the 

estimate obtained upon the initial value. 

3) In some problems, the E-step may be analytically 

intractable, although in such situations there is the 

possibility of effecting it via a Monte Carlo approach.   

4) Unlike the Fisher‟s scoring method, it does not have an 

inbuilt procedure for producing an estimate of the 

covariance matrix of the parameter estimates 
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