
Hamiltonian Cycles and Travelling Salesfolk
Alberto Gomez Gomez 1

1Unaffiliated; Email: agg29@ou.ac.uk

Keywords: NP-completeness, Hamiltonian cycle problem, travelling salesman problem, maximum matching, perfect matching.

MSC Codes: Primary – 05C45; Secondary – 05C85, 05C05, 68R10, 68Q17

Abstract
A method is given in this paper that makes it easier to solve both the Hamiltonian cycle problem and the travelling
salesman problem in any number of space dimensions and in both their directed and undirected varieties.

1. Introduction
In Mathematics and Computer Science, there is a set of problems for which no efficient algorithm has yet
been found (that is, no algorithm is known that solves any of them in polynomial time). These problems
are often called non-deterministic polynomial-time complete problems (or simply, NP-complete
problems). Among these, one of the most notorious is the travelling salesman problem (TSP), which
tries to find the ‘best’ path visiting each vertex in a graph just once and returning to where it started. Here,
the word ‘best’ means ‘shortest’, ‘cheapest’, ‘fastest’, ‘most scenic’, ‘most desirable’, or whatever fits the
context. In this paper, we shall often use the word ‘lightest’ in this sense. A series of algorithms (including
heuristic ones, the branch-and-bound, nearest neighbour, and Christofides’) are already available that give
a solution, but this solution is not guaranteed to be an ‘optimal’ one. So the problem remains unsolved.

Another NP-complete problem is that of deciding whether a graph is Hamiltonian. That is, deciding
whether it contains at least one Hamiltonian cycle (that is, a cycle visiting each vertex in the graph
exactly once and ending where it started). These two problems are somehow related, meaning that finding
the solution to one of them is likely to quickly lead to the solution of the other (as this is, in fact, a
defining characteristic of all NP-complete problems).

For starters, let us imagine a set of towns linked by roads of known lengths. Can we find the shortest
Hamiltonian cycle though them? One way of finding the answer is by using the exhaustion algorithm,
which compares all the possibilities and picks the shortest one. However, when the number of towns is
large, the difficulty of checking each possibility increases exponentially and eventually reaches a point
where the problem is intractable even for the most powerful computers available (as of this writing).
Because of this combinatorial explosion, the only known algorithm that guarantees a solution (namely, the
exhaustion algorithm) is rendered useless when it comes to handling large graphs. In the present paper, we
shall see whether we can improve upon the present state of affairs, but not before we have first dealt with
the second of the above-mentioned problems. Namely, that of deciding whether a graph is Hamiltonian.

2. The Hamiltonian Cycle Problem
So far, we know that certain graphs are always Hamiltonian. These include the complete graphs, denoted
by 𝐾𝑛, where 𝑛 is the number of vertices in the graph. In these graphs, each vertex is linked to each other
by exactly one edge, so it is perfectly possible to travel from any vertex to any other through just one
edge (namely, the one between them). The number of (undirected) edges in a complete graph is

𝑚sym = 1
2𝑛(𝑛 − 1), (1)

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1089 

https://orcid.org/0000-0003-1814-3758


and the number of (undirected) Hamiltonian cycles that can be found in this graph is

ℎsym = 1
2 (𝑛 − 1)! (2)

As we can see, the latter number becomes very big very soon as 𝑛 grows.
A version of this problem considers the possibility that the Hamiltonian cycles in the graph have

different weights depending on which direction they are traversed. This happens in asymmetric graphs
(that is, those where at least one edge weighs differently depending on which direction it is traversed). In
such graphs, each edge may be thought of as being made up of two oppositely directed and not necessarily
equally weighted arcs. In these graphs, the number of arcs is effectively twice that in Equation 1 and the
number of distinct Hamiltonian cycles is twice that in Equation 2. That is,

𝑚asym = 𝑛(𝑛 − 1), (3)

and
ℎasym = (𝑛 − 1)! (4)

At first, one might think that solving NP problems involving asymmetric graphs is harder than solving
NP problems involving symmetric graphs, but this is not at all the case. In order to see why, we may first
consider another type of graphs that are known to be Hamiltonian too. Namely, the cycle graphs. That is,
those consisting of a single cycle of vertices and edges. These graphs are denoted by 𝐶𝑛 (where 𝑛 is as
before) and have as many edges as they have vertices (that is, 𝑚 = 𝑛). Clearly, no graph having fewer
than 𝑛 edges can ever be Hamiltonian. So 𝐶𝑛 is the smallest simple graph where a Hamiltonian cycle can
be found, and 𝐾𝑛 is the largest simple graph where the largest number of Hamiltonian cycles can be
found (and this number is given by either Equation 2 or Equation 4, depending on whether the graph is
symmetric or asymmetric).1

Example 1. As an example, let us consider a graph with four vertices 𝐴, 𝐵, 𝐶 , 𝐷 , representing four
towns. Let us imagine that only four roads can be built between these towns, and that these roads can
only be travelled in one direction. There are many ways to arrange these one-way roads, but not all of
these arrangements are Hamiltonian. If we are to have one such arrangement, then the roads must allow

1A simple graph is one with no loops (joining a vertex to itself) or multiple edges (joining the same pair of vertices).

travellers to visit each town exactly once and return to the starting point. Let us consider one such route.
Namely, 𝐴𝐵𝐶𝐷𝐴. Its corresponding graph is as in Figure 1.

𝐴𝐵

𝐶 𝐷

Figure 1: A cycle digraph with four vertices.

Figure 1 represents a directed cycle graph (also called a cycle digraph). By definition, this digraph
contains just one Hamiltonian cycle (namely, 𝐴𝐵𝐶𝐷𝐴), which can only be travelled in one direction
(because it is only made up of one-way roads).

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1090 



Now, the adjacency matrix of this digraph is as follows.2

A =


𝐴 𝐵 𝐶 𝐷

𝐴 0 1 0 0
𝐵 0 0 1 0
𝐶 0 0 0 1
𝐷 1 0 0 0


One of the first things to strike the eye when looking at this matrix is that it is asymmetric everywhere

(with respect to the main diagonal). The second is that the only Hamiltonian cycle there is arranged in
such a way that its positive entries always occur on different rows and columns, and never symmetrically
about the main diagonal. In fact, should two of these positive entries be symmetric about the main
diagonal, they would form a cycle of length 2 (also called a 2-cycle, or transposition), which cannot be
part of a Hamiltonian cycle (unless, of course, the graph has only two vertices).

The two conditions pointed out in Example 1 are necessary, but not enough to define a (directed)
Hamiltonian cycle. The reason is that, in larger graphs, lesser cycles of length more than 2 are often
found which must be winnowed out of the true Hamiltonian cycles in these graphs and can be more
difficult to spot (by simple inspection of the matrix) than simple transpositions are, because they come in
many shapes and sizes, as the following example shows for a not too large graph.

Example 2. Let there be a graph with six vertices (or towns) 𝐴, 𝐵, 𝐶, 𝐷 , 𝐸 , 𝐹 and six arcs (or one-way
roads) between them arranged in such a way that the corresponding adjacency matrix is as follows.

A =



𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

𝐴 0 1 0 0 0 0
𝐵 0 0 1 0 0 0
𝐶 1 0 0 0 0 0
𝐷 0 0 0 0 1 0
𝐸 0 0 0 0 0 1
𝐹 0 0 0 1 0 0


Here, the two conditions mentioned in Example 1 are both satisfied (because the number 1 occurs

exactly once in each row and column, and never symmetrically about the main diagonal). However, this
graph is non-Hamiltonian, because it has two lesser cycles of length 3 (namely, 𝐴𝐵𝐶𝐴 and 𝐷𝐸𝐹𝐷),
rather than just one cycle through all vertices.

2The adjacency matrix of a digraph with 𝑛 vertices is the 𝑛 × 𝑛 matrix in which the entry in row 𝑖 and column 𝑗 is the number of arcs from
vertex 𝑖 to vertex 𝑗.

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1091 



As we have seen in Example 2, large simple graphs may contain lesser cycles whose lengths can go
from 2 to 𝑛 − 2 (where 𝑛 is the number of vertices in the graph), and the only lesser cycles that are easy
to spot (by simple inspection of the adjacency matrix) are transpositions (because they are symmetric
about the main diagonal).

Fortunately, there is one way of telling whether the above digraphs are Hamiltonian or not, and it is as
simple as telling whether they are strongly connected or not. (A digraph is strongly connected if there is
a path from any vertex to any other.) The reason is that graphs (such as that in Example 2) which have
lesser cycles and exactly one positive entry in each row and column are always disconnected, because
each vertex has only one in-degree and only one out-degree, and these are both employed in making
up the lesser cycles, so they cannot be used for linking these lesser cycles together. So, an obviously
necessary (but not sufficient) condition for a digraph to be Hamiltonian is that it is strongly connected.

We can know whether a digraph is strongly connected by first finding the matrix

B = A + A2 + ... + A𝑛−1 =

𝑛−1∑︁
𝑖=1

A𝑖, (5)

where 𝑛 is the number of vertices in the graph and A is the adjacency matrix, and then seeing whether all
the non-diagonal entries of 𝐵 are positive. If this is the case, the digraph fulfils one of the conditions to
be Hamiltonian. Otherwise, the digraph is non-Hamiltonian.

In the case of Example 1, the matrix B is as follows.

B = A + A2 + A3 =


𝐴 𝐵 𝐶 𝐷

𝐴 0 1 1 1
𝐵 1 0 1 1
𝐶 1 1 0 1
𝐷 1 1 1 0

 .
This matrix is of the required form (because each of its non-diagonal entries is positive). Hence,

the adjacency matrix A in Example 1 belongs to a digraph that might be Hamiltonian. In fact, it is
Hamiltonian, because it is a cycle digraph.
In the case of Example 2, the matrix B is as follows.

B = A + A2 + A3 + A4 + A5 =



𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

𝐴 1 2 2 0 0 0
𝐵 2 1 2 0 0 0
𝐶 2 2 1 0 0 0
𝐷 0 0 0 1 2 2
𝐸 0 0 0 2 1 2
𝐹 0 0 0 2 2 1


.

This matrix is not of the required form (because some of its non-diagonal entries are noughts). Hence,
the adjacency matrix A in Example 2 belongs to a non-Hamiltonian digraph. Now we are in a position to
tell whether a digraph is Hamiltonian.
Theorem 1. A digraph is Hamiltonian if and only if both of the following conditions hold.
1. Its adjacency matrix has a set of ones covering each row and column exactly once.
2. The subdigraph corresponding to this set of ones is strongly connected.

Corollary 1.1. The entries corresponding to a Hamiltonian cycle in the adjacency matrix of a Hamiltonian
graph occur exactly once in each row and column.

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1092 



Proof of Theorem 1. Let us assume that there is a Hamiltonian cycle made of lesser cycles. Then, some
of the vertices in these lesser cycles would either have more than one in-degree or more than one out-
degree. Otherwise, they could not be joined together to form a greater, Hamiltonian cycle. However, by
definition, the vertices in a (directed) cycle have exactly one in-degree and exactly one out-degree. But
this is a contradiction. Hence, a Hamiltonian cycle cannot be made up of lesser cycles.

Also, if a digraph had a Hamiltonian cycle and either some of the rows or columns in the adjacency
matrix of this digraph were entirely made of noughts or entries not in the cycle, then the corresponding
vertices could not be joined, which is a contradiction, because a Hamiltonian cycle must go through
all the vertices in the digraph. Hence, a Hamiltonian cycle visits each row and column of the graph’s
adjacency matrix exactly once.

Theorem 1 is easy to verify for small graphs (by inspection of the adjacency matrix). For bigger ones,
it is convenient to label each entry in the adjacency matrix with subscripts indicating its position (that is,
its row and column), as in the following example.

Example 3. Let the following be the adjacency matrix A of an asymmetric graph with 12 vertices
(𝐴, 𝐵, ..., 𝐿) and 12 arcs.

A =



𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼 𝐽 𝐾 𝐿

𝐴 01,1 11,2 01,3 01,4 01,5 01,6 01,7 01,8 01,9 01,10 01,11 01,12
𝐵 02,1 02,2 02,3 02,4 02,5 02,6 02,7 02,8 02,9 02,10 12,11 02,12
𝐶 13,1 03,2 03,3 03,4 03,5 03,6 03,7 03,8 03,9 03,10 03,11 03,12
𝐷 14,1 04,2 04,3 04,4 04,5 14,6 04,7 04,8 04,9 14,10 14,11 04,12
𝐸 05,1 05,2 05,3 15,4 05,5 05,6 05,7 05,8 05,9 05,10 05,11 05,12
𝐹 06,1 06,2 06,3 06,4 06,5 06,6 06,7 06,8 06,9 06,10 16,11 06,12
𝐺 07,1 07,2 07,3 07,4 07,5 07,6 07,7 07,8 07,9 07,10 07,11 07,12
𝐻 08,1 08,2 08,3 08,4 08,5 08,6 08,7 08,8 08,9 08,10 08,11 08,12
𝐼 09,1 09,2 09,3 09,4 09,5 09,6 09,7 09,8 09,9 09,10 09,11 09,12
𝐽 010,1 010,2 010,3 110,4 010,5 010,6 110,7 010,8 010,9 010,10 010,11 010,12
𝐾 011,1 011,2 011,3 011,4 011,5 011,6 011,7 011,8 011,9 011,10 011,11 011,12
𝐿 012,1 012,2 012,3 012,4 012,5 112,6 012,7 012,8 012,9 012,10 012,11 012,12


This adjacency matrix has 12 (randomly assigned) positive entries. We can see at once that this matrix

corresponds to a non-Hamiltonian graph, because it violates the conditions of Theorem 1. For example,
entries 𝐶𝐴 and 𝐷𝐴 are both positive, but lie in the same column, so they cannot belong to the same
Hamiltonian cycle, and since there are only 12 positive entries, there can be no Hamiltonian cycle in this
digraph. Also, entries 𝐷𝐽 and 𝐽𝐷 are symmetric about the main diagonal, since their subscripts (10, 4
and 4, 10) are reversed, so they form a lesser 2-cycle. Again, this violates Condition 2 of Theorem 1.
Also, several rows and columns in this matrix are entirely made of noughts, which, again, is not allowed
by Condition 1 of Theorem 1.

Example 4. As a further example, the following adjacency matrix has been enlarged from the previous
one by randomly adding a number of positive entries (by means of a pair of 12-sided dice) until all rows

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1093 



and columns had at least one positive entry. (The last entry to be added was that in row 11 and column 1.)

A =



𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼 𝐽 𝐾 𝐿

𝐴 01,1 11,2 01,3 01,4 11,5 01,6 01,7 01,8 01,9 01,10 01,11 01,12
𝐵 02,1 02,2 12,3 02,4 02,5 02,6 12,7 02,8 02,9 02,10 12,11 02,12
𝐶 13,1 03,2 03,3 03,4 03,5 03,6 03,7 03,8 13,9 13,10 03,11 03,12
𝐷 14,1 04,2 04,3 04,4 04,5 14,6 04,7 04,8 14,9 14,10 14,11 04,12
𝐸 05,1 15,2 05,3 15,4 05,5 15,6 05,7 15,8 15,9 05,10 05,11 05,12
𝐹 16,1 06,2 16,3 16,4 06,5 06,6 06,7 16,8 06,9 06,10 16,11 16,12
𝐺 07,1 07,2 07,3 07,4 17,5 17,6 07,7 07,8 07,9 07,10 07,11 17,12
𝐻 18,1 08,2 18,3 08,4 18,5 08,6 18,7 08,8 18,9 08,10 08,11 08,12
𝐼 09,1 09,2 19,3 09,4 09,5 19,6 09,7 09,8 09,9 19,10 09,11 19,12
𝐽 010,1 010,2 010,3 110,4 010,5 110,6 010,7 010,8 110,9 010,10 010,11 110,12
𝐾 111,1 011,2 011,3 011,4 011,5 011,6 011,7 011,8 011,9 011,10 011,11 011,12
𝐿 012,1 012,2 112,3 112,4 012,5 112,6 012,7 012,8 012,9 112,10 012,11 012,12


In order to see whether this new graph is Hamiltonian, we start by listing all positive entries in its

adjacency matrix, or rather, their subscripts, which are represented here as if they were two-dimensional
coordinates (𝑖, 𝑗 ) indicating the entry’s row and column. Thus,

(1, 2), (1, 5), (2, 3), (2, 7), (2, 11), (3, 1), (3, 9), (3, 10), (4, 1), (4, 6), (4, 9), (4, 10), (4, 11), (5, 2),
(5,4), (5, 6), (5, 8), (5, 9), (6, 1), (6, 3), (6, 4), (6, 8), (6, 11), (6, 12), (7, 5), (7, 6), (7, 12), (8, 1),
(8, 3), (8, 5), (8, 7), (8, 9), (9, 3), (9, 6), (9, 10), (9, 12), (10, 4), (10, 6), (10, 9), (10, 12), (11, 1),
(12, 3), (12,4), (12, 6), (12, 10).
In all, there are 45 positive entries in the above adjacency matrix, so the graph has 45 arcs, and some

of these are transpositions. Namely,
(3, 9), (9, 3); (4, 6), (6, 4); (4, 10), (10, 4); (5, 8), (8, 5); (6, 12), (12, 6); (9, 10), (10, 9);
(10, 12), (12, 10).
It is important to note that none of these transpositions can form part of the same Hamiltonian cycle

(by Condition 2 of Theorem 1).

We shall now arrange the above entries in a table where the numbers on the left-hand side of the
vertical line are just row subscripts, and the numbers on the right-hand side of this line are the column
subscripts of the positive entries in the given adjacency matrix. Thus,

1 2 5
2 3 7 11
3 1 9 10
4 1 6 9 10 11
5 2 4 6 8 9
6 1 3 4 8 11 12
7 5 6 12
8 1 3 5 7 9
9 3 6 10 12

10 4 6 9 12
11 1
12 3 4 6 10

At once, we see that the only entry in row 11 is that incident to column 1 of the matrix. So, if there is
a Hamiltonian cycle in this graph, it must necessarily include this entry, which we have labelled (11, 1).
This automatically excludes all other entries in column 1 of the matrix (by Condition 1 of Theorem 1).
That is, all those of the form (𝑖, 1). So we can now cross all the 1s on the right-hand side off the table. At

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1094 



this point, we may try to find a complete sequence of numbers from 1 to 12 in the table’s columns either
heuristically (that is, by trial and error) or by using the maximum matching algorithm (Edmonds,
1965). This algorithm ensures that a maximum matching (that is, one with the greatest possible number
of edges) is achieved, and if this maximum matching is also a perfect matching (that is, one covering all
the vertices in the graph), then (and only then) Condition 1 of Theorem 1 will hold. One such perfect
matching (found heuristically by the author) is as follows.

(1, 2), (2, 7), (7, 5), (5, 8), (8, 9), (9, 6), (6, 3), (3, 10), (10, 12), (12, 4), (4, 11), (11, 1).

This could also have been found by the maximum matching algorithm, whose starting point (in this
case) is the bipartite graph in Figure 2a, whose black and white points represent, respectively, the rows
and columns of the adjacency matrix for the original graph in the present example.3

Applying the maximum matching algorithm to the bipartite graph in Example 4, a perfect matching
(coincidentally equal to the one above) is found that includes none of the above-listed transpositions.
This matching is shown in Figure 2b and includes the arcs 𝑟1𝑐2, 𝑟2𝑐7, 𝑟7𝑐5, 𝑟5𝑐8, 𝑟8𝑐9, 𝑟9𝑐6, 𝑟6𝑐3, 𝑟3𝑐10,
𝑟10𝑐12, 𝑟12𝑐4, 𝑟4𝑐11, 𝑟11𝑐1. A cycle can be read off these arcs (namely, 1, 2, 7, 5, 8, 9, 6, 3, 10, 12, 4, 11, 1,
or, using letters, 𝐴𝐵𝐺𝐸𝐻𝐼𝐹𝐶𝐽𝐿𝐷𝐾𝐴) which may (or may not) be Hamiltonian.

𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

𝑟7

𝑟8

𝑟9

𝑟10

𝑟11

𝑟12

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8

𝑐9

𝑐10

𝑐11

𝑐12

(a) Bipartite graph connecting the rows 𝑟𝑖
and columns 𝑐 𝑗 of each positive entry in the
adjacency matrix for the original graph in
Example 4.

𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

𝑟7

𝑟8

𝑟9

𝑟10

𝑟11

𝑟12

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8

𝑐9

𝑐10

𝑐11

𝑐12

(b) A perfect matching (shown as thick lines)
for the bipartite graph in Figure 2a.

Figure 2
So a perfect matching exists (namely, that in Figure 2b), and therefore, Condition 1 of Theorem 1

holds. Now, we need to check whether Condition 2 of Theorem 1 holds too. In order to see whether it

3A bipartite graph is one that can be split into two sets whose vertices are connected only to vertices in the other set.

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1095 



does, we write down the adjacency matrix corresponding to this matching. Namely,

A =



𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼 𝐽 𝐾 𝐿

𝐴 0 1 0 0 0 0 0 0 0 0 0 0
𝐵 0 0 0 0 0 0 1 0 0 0 0 0
𝐶 0 0 0 0 0 0 0 0 0 1 0 0
𝐷 0 0 0 0 0 0 0 0 0 0 1 0
𝐸 0 0 0 0 0 0 0 1 0 0 0 0
𝐹 0 0 1 0 0 0 0 0 0 0 0 0
𝐺 0 0 0 0 1 0 0 0 0 0 0 0
𝐻 0 0 0 0 0 0 0 0 1 0 0 0
𝐼 0 0 0 0 0 1 0 0 0 0 0 0
𝐽 0 0 0 0 0 0 0 0 0 0 0 1
𝐾 1 0 0 0 0 0 0 0 0 0 0 0
𝐿 0 0 0 1 0 0 0 0 0 0 0 0



.

Then (applying Equation 5), we find that the matrix B is as follows.

B =

11∑︁
𝑖=1

A𝑖 =



𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼 𝐽 𝐾 𝐿

𝐴 0 1 1 1 1 1 1 1 1 1 1 1
𝐵 1 0 1 1 1 1 1 1 1 1 1 1
𝐶 1 1 0 1 1 1 1 1 1 1 1 1
𝐷 1 1 1 0 1 1 1 1 1 1 1 1
𝐸 1 1 1 1 0 1 1 1 1 1 1 1
𝐹 1 1 1 1 1 0 1 1 1 1 1 1
𝐺 1 1 1 1 1 1 0 1 1 1 1 1
𝐻 1 1 1 1 1 1 1 0 1 1 1 1
𝐼 1 1 1 1 1 1 1 1 0 1 1 1
𝐽 1 1 1 1 1 1 1 1 1 0 1 1
𝐾 1 1 1 1 1 1 1 1 1 1 0 1
𝐿 1 1 1 1 1 1 1 1 1 1 1 0



.

Clearly, all non-diagonal entries in B are positive. Hence, the digraph is strongly connected, and so,
Condition 2 of Theorem 1 holds. So both conditions hold, and thus we know that the perfect matching in
Figure 2b corresponds to a Hamiltonian cycle. Hence, the digraph in this example is Hamiltonian. (See
Figure 3.)

Note that the perfect matching in Figure 2b may not be the only one, and so there may be more
Hamiltonian cycles to be found in Figure 3, but the presence of just this one is enough to prove that the
digraph in Figure 3 is Hamiltonian.

Note also that not until the 𝑟11𝑐1 arc was added (and recall that this was the last arc to be randomly
added to the digraph in Example 3 to form the digraph in the present example) did the digraph in the
present example have any chance of being Hamiltonian.

Finally, note also that had the perfect matching in Figure 2b not been strongly connected, then
other perfect matchings should have been checked for connectivity until the eventual exhaustion of all
possibilities, or, alternatively, until Ore’s Theorem is satisfied, whichever solves the problem first.

Example 4 ended up pointing out a difficulty that may arise when looking for Hamiltonian cycles
in a graph. Namely, the possibility that the perfect matching we come up with (if any) is not strongly
connected. In this case, we will have to seek a different perfect matching to check for strong connectivity,
and here we enter an enumeration problem that is considered to be #P-complete. Namely, that of listing all
perfect matchings in a bipartite graph. To this we shall devote the next section, but not before concluding
the present one with an algorithm (suitable to be implemented as a computer program) that can solve (in

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1096 



𝐼 𝐽

𝐾

𝐿

𝐴

𝐵

𝐶𝐷

𝐸

𝐹

𝐺

𝐻

Figure 3: A digraph with (at least) one Hamiltonian cycle (shown as thick lines).

polynomial time) larger problems than those in the above examples, but not so large as to reach the worst
case scenario, because long before this point is reached, the graph will be known to be Hamiltonian by
Ore’s Theorem. (See Algorithm 1.)

3. Perfect matching enumeration in bipartite graphs

It is easy to tell whether a bipartite graph has a perfect matching (by the maximum matching algorithm).
However, once one is found, how can we know whether the graph has more, and if so, which ones?
To answer these questions, we may use a perfect matching enumeration algorithm, such as Murty’s
(1968), Fukuda and Matsui’s (1994) or Uno’s (2001), which are based on the fact that there is a perfect
matching for every distinct alternating cycle in a bipartite graph (Uno, 1997:2), where an alternating
cycle is one that starts at a vertex in a given bipartite graph and returns to this same vertex after traversing
the arcs between this and some other vertices in an alternating fashion (that is, an arc in the matching,
then an arc not in the matching, and so on).

Now, the number of distinct perfect matchings in complete bipartite graphs (denoted by 𝐾𝑛,𝑛) with
2𝑛 vertices is 𝑛!. So, the cited algorithms require super-polynomial time to enumerate all of these.
Fortunately, the problems we are dealing with in this paper are never this big, because the main diagonal
is always empty (since the graphs considered do not include loops). Hence, the graphs we are dealing with
here are, at most, regular bipartite graphs of degree 𝑛 − 1, and the number of distinct perfect matchings
in such graphs is exactly given by

𝑝 = 2(𝑛 − 1)! − (𝑛 − 1), (6)

with (𝑛 − 1)! of these perfect matchings being Hamiltonian (by Equation 4).
But the worst case scenario we may ever encounter is yet smaller than this, because if we keep

randomly adding arcs to a bipartite graph (as we did in Example 4), the worst case scenario we may
ever end up with is one in which all the vertices in the first set have degree 𝑛 − 1, but one, which would
have degree 1. That is, after casting the dice a number of times, one vertex may never be lucky enough

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1097 

http://research.nii.ac.jp/~uno/papers/isaac97web.pdf#page=2


Algorithm 1 An algorithm for solving the Hamiltonian cycle problem

Start with either a directed or undirected graph with 𝑚 edges and 𝑛 vertices.
Step 1 Check whether this graph satisfies Ore’s Theorem.

If so, Stop. The graph is Hamiltonian.
If not, go to Step 2.

Step 2 Build the adjacency matrix A of the given graph.
Step 3 Is any row or column in the graph entirely made of noughts?

If so, Stop. The graph is non-Hamiltonian.
If not, go to Step 4.

Step 4 Label each positive entry in A with subscripts (𝑖, 𝑗) indicating its row and column.
Step 5 Build a table of labels with those indicating the rows on the left-hand side, and those indicating

the columns they are incident to on the right-hand side of a vertical line.
Step 6 Find a maximum matching either in the table of labels or its corresponding bipartite graph

(either by the maximum matching algorithm or otherwise).
Step 7 Is this maximum matching a perfect matching?

If so, go to Step 8.
If not, Stop. The graph is non-Hamiltonian.

Step 8 Find all the perfect matchings in the bipartite graph mentioned in Step 6 (by a perfect matching
enumeration algorithm) and write down the adjacency matrix of each of these matchings.

Step 9 Is any of these adjacency matrices strongly connected?
If so, Stop. The graph is Hamiltonian.
If not, Stop. The graph is non-Hamiltonian.

to be matched except at the very last possible step, when all other vertices have already been assigned
the greatest possible number of arcs. The graph cannot be Hamiltonian until this particular vertex is
assigned an arc, but then, when it is, a number of perfect matchings will suddenly arise in the graph—all
including this particular arc—and this number is exactly given by

𝑝 =
2(𝑛 − 1)! − (𝑛 − 1)

𝑛 − 1
= 2(𝑛 − 2)! − 1, (7)

with (𝑛 − 2)! of these perfect matchings being Hamiltonian.
The chances of such an event ever happening are very small. So, in most cases, the problem of

enumerating all the perfect matchings in a bipartite graph can be solved in polynomial time (because the
graphs we are dealing with are highly trimmed, and their adjacency matrices, sparse), and this can be
done either by any of the cited methods or by building a special tree like the one in the following example.
Example 5. How many perfect matchings can be found in a bipartite graph such as that in Figure 2a? In
order to answer this question, we take the perfect matching in Figure 2b and construct a tree whose root
can be any vertex (of small degree) in the graph, say 𝑟1, and whose first branches are the arc incident to
this vertex and in the matching (on the right-hand side) and the arc (or arcs) incident from this vertex
and not in the matching (on the left-hand side), and whose other vertices follow suit in a anticlockwise
direction. It is to be noted that whenever we climb up or down this tree, we encounter an alternating
sequence of arcs in, and not in the matching. We do this systematically, repeating vertices if needed,
until the leaves on the left-hand side can all be linked (from below) to the leaves on the right-hand side,
except, of course, those that have degree 1 in the original graph. (See Figure 4.)

Then, climbing up the branches on the right-hand side, and down the branches on the left-hand side
of the tree in Figure 4, we write down any sequence that starts at a particular vertex and ends at the next
occurrence of the same vertex (if any). The list of distinct sequences thus identified is the required list of

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1098 



𝑟1

𝑐5

𝑟7

𝑐6

𝑟9

𝑐3

𝑟6

𝑐1

𝑟11

𝑐4

𝑟12

𝑐8

𝑟5

𝑐11

𝑟4

𝑐12

𝑟10

𝑐10

𝑟3

𝑐1

𝑟11

𝑐9

𝑟8

𝑐12

𝑟10

𝑐4

𝑟12

𝑐6

𝑟9

𝑐9

𝑟8

𝑐12

𝑟10

𝑐4

𝑟12

𝑐3

𝑟6

𝑐6

𝑟9

𝑐10

𝑟3

𝑐6

𝑟9

𝑐3

𝑟6

𝑐10

𝑟3

𝑐12

𝑟10

𝑐9

𝑟8

𝑐1

𝑟11

𝑐3

𝑟6

𝑐5

𝑟7

𝑐7

𝑟2

𝑐2

𝑟5

𝑐8

𝑟6

𝑐3

𝑟2

𝑐7

𝑟8

𝑟8

𝑐9

𝑟3 𝑟4 𝑟5 𝑟10

𝑟9

𝑐6

𝑟4 𝑟5 𝑟7 𝑟10 𝑟12

𝑟12

𝑐4

𝑟5 𝑟6 𝑟10

Figure 4: A directed alternating tree for the graph in Figure 2b.
alternating cycles in the graph, each of which generates a different perfect matching other than that in
Figure 2b. Table 1 lists all such cycles (starting with the vertices of lesser row index).

When checked for strong connectivity, some of the perfect matchings in Table 1 are found to be
Hamiltonian, and others, non-Hamiltonian. Thus, we know that the graph in Figure 2a has a total of 16
Hamiltonian cycles. Namely, the 15 ones in Table 1 plus the one in Figure 2b.

It is important to note that the time complexity of a depth-first search for all repeated items in a rooted
path graph (like that in Figure 4) is, at most, polynomial, which is exactly what we need to write an
efficient algorithm for listing all perfect matchings in sparse bipartite graphs. (See Algorithm 2.)

4. The travelling salesman problem

The travelling salesman problem seeks to find the best path through all the vertices either in a symmetric
or an asymmetric complete graph and then return to where it started. Finding the solution to this problem
is easy now that we know how to tell whether a graph is Hamiltonian (by means of Algorithm 1). One
way to proceed is as follows.

4.1. The all-at-once approach

This procedure applies the Hungarian algorithm (Kuhn, 1955) to the weight (or cost) matrix of the given
problem. We will first illustrate this procedure with an example, and then write up a general algorithm
for it.

Example 6. Let there be a complete, asymmetric graph with 12 vertices (𝐴, 𝐵, ..., 𝐿), whose table A of
(randomly generated) arc weights is as follows. (A random number generator was used to construct this
table, limiting its output to no more than two digits.)

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1099 



Table 1: List of alternating cycles generated by the perfect matching in Figure 2b.

alternating cycle
strongly

connected
Hamiltonian

cycle

1 𝑟1𝑐5𝑟7𝑐6𝑟9𝑐3𝑟6𝑐8𝑟5𝑐2𝑟1 yes 𝐴𝐸𝐵𝐺𝐹𝐻𝐼𝐶𝐽𝐿𝐷𝐾𝐴

2 𝑟1𝑐5𝑟7𝑐6𝑟9𝑐10𝑟3𝑐9𝑟8𝑐3𝑟6𝑐8𝑟5𝑐2𝑟1 yes 𝐴𝐸𝐵𝐺𝐹𝐻𝐶𝐼𝐽𝐿𝐷𝐾𝐴

3 𝑟1𝑐5𝑟7𝑐6𝑟9𝑐10𝑟3𝑐9𝑟8𝑐7𝑟2𝑐3𝑟6𝑐8𝑟5𝑐2𝑟1 no
4 𝑟1𝑐5𝑟7𝑐6𝑟9𝑐12𝑟10𝑐4𝑟12𝑐3𝑟6𝑐8𝑟5𝑐2𝑟1 yes 𝐴𝐸𝐵𝐺𝐹𝐻𝐶𝐽𝐼𝐿𝐷𝐾𝐴

5 𝑟1𝑐5𝑟7𝑐6𝑟9𝑐12𝑟10𝑐9𝑟8𝑐3𝑟6𝑐8𝑟5𝑐2𝑟1 yes 𝐴𝐸𝐵𝐺𝐹𝐻𝐶𝐽𝐼𝐿𝐷𝐾𝐴

6 𝑟1𝑐5𝑟7𝑐6𝑟9𝑐12𝑟10𝑐9𝑟8𝑐7𝑟2𝑐3𝑟6𝑐8𝑟5𝑐2𝑟1 no
7 𝑟1𝑐5𝑟7𝑐12𝑟10𝑐4𝑟12𝑐3𝑟6𝑐8𝑟5𝑐2𝑟1 no
8 𝑟1𝑐5𝑟7𝑐12𝑟10𝑐4𝑟12𝑐6𝑟9𝑐3𝑟6𝑐8𝑟5𝑐2𝑟1 yes 𝐴𝐸𝐵𝐺𝐿𝐹𝐻𝐼𝐶𝐽𝐷𝐾𝐴

9 𝑟1𝑐5𝑟7𝑐12𝑟10𝑐4𝑟12𝑐10𝑟3𝑐9𝑟8𝑐3𝑟6𝑐8𝑟5𝑐2𝑟1 no
10 𝑟1𝑐5𝑟7𝑐12𝑟10𝑐6𝑟9𝑐3𝑟6𝑐8𝑟5𝑐2𝑟1 no
11 𝑟1𝑐5𝑟7𝑐12𝑟10𝑐6𝑟9𝑐10𝑟3𝑐9𝑟8𝑐3𝑟6𝑐8𝑟5𝑐2𝑟1 no
12 𝑟1𝑐5𝑟7𝑐12𝑟10𝑐9𝑟8𝑐3𝑟6𝑐8𝑟5𝑐2𝑟1 no
13 𝑟1𝑐5𝑟7𝑐12𝑟10𝑐9𝑟8𝑐7𝑟2𝑐3𝑟6𝑐8𝑟5𝑐2𝑟1 yes 𝐴𝐸𝐵𝐶𝐽𝐼𝐹𝐻𝐺𝐿𝐷𝐾𝐴

14 𝑟4𝑐6𝑟9𝑐3𝑟6𝑐11𝑟4 yes 𝐴𝐵𝐺𝐸𝐻𝐼𝐶𝐽𝐿𝐷𝐹𝐾𝐴

15 𝑟4𝑐9𝑟8𝑐3𝑟6𝑐11𝑟4 yes 𝐴𝐵𝐺𝐸𝐻𝐶𝐽𝐿𝐷𝐼𝐹𝐾𝐴

16 𝑟5𝑐4𝑟12𝑐3𝑟6𝑐8𝑟5 no
17 𝑟5𝑐6𝑟9𝑐3𝑟6𝑐8𝑟5 yes 𝐴𝐵𝐺𝐸𝐹𝐻𝐼𝐶𝐽𝐿𝐷𝐾𝐴

18 𝑟5𝑐9𝑟8𝑐3𝑟6𝑐8𝑟5 yes 𝐴𝐵𝐺𝐸𝐼𝐹𝐻𝐶𝐽𝐿𝐷𝐾𝐴

19 𝑟6𝑐4𝑟12𝑐3𝑟6 no
20 𝑟6𝑐4𝑟12𝑐6𝑟9𝑐3𝑟6 yes 𝐴𝐵𝐺𝐸𝐻𝐼𝐶𝐽𝐿𝐹𝐷𝐾𝐴

21 𝑟6𝑐12𝑟10𝑐4𝑟12𝑐3𝑟6 yes 𝐴𝐵𝐺𝐸𝐻𝐼𝐹𝐿𝐶𝐽𝐷𝐾𝐴

22 𝑟6𝑐12𝑟10𝑐6𝑟9𝑐3𝑟6 no
23 𝑟6𝑐12𝑟10𝑐9𝑟8𝑐3𝑟6 yes 𝐴𝐵𝐺𝐸𝐻𝐶𝐽𝐼𝐹𝐿𝐷𝐾𝐴

24 𝑟7𝑐12𝑟10𝑐9𝑟8𝑐5𝑟7 no
25 𝑟9𝑐6𝑟10𝑐12𝑟9 yes 𝐴𝐵𝐺𝐸𝐻𝐼𝐹𝐶𝐽𝐿𝐷𝐾𝐴

26 𝑟9𝑐12𝑟10𝑐4𝑟12𝑐6𝑟9 yes 𝐴𝐵𝐺𝐸𝐻𝐼𝐿𝐹𝐶𝐽𝐷𝐾𝐴

27 𝑟9𝑐12𝑟10𝑐6𝑟9 no

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12

𝑟1 86 34 71 39 97 38 67 41 20 94 36
𝑟2 1 61 89 91 33 50 22 51 39 23 44
𝑟3 90 40 40 90 27 52 55 77 21 94 6
𝑟4 60 84 19 19 45 71 36 12 37 27 13
𝑟5 67 59 36 12 82 9 86 75 94 30 44
𝑟6 66 93 49 16 87 5 52 56 25 87 10
𝑟7 77 29 66 87 74 85 35 22 49 46 28
𝑟8 48 81 6 22 8 3 79 25 47 85 81
𝑟9 56 92 42 79 56 19 70 83 16 49 43
𝑟10 60 64 11 41 77 27 68 29 61 32 37
𝑟11 80 15 67 18 11 22 45 34 80 7 41
𝑟12 50 90 64 32 78 11 13 95 45 44 9

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1100 



Algorithm 2 An algorithm for listing all perfect matchings in sparse bipartite graphs

Start with a perfect matching found (either by the maximum matching algorithm or otherwise) in
either a directed or undirected bipartite graph with 𝑛 vertices.

Step 1 For each component of the graph (should there be many), construct a tree whose root can be
any vertex in the graph (preferably one of low degree), and whose branches are, on one side,
the arc incident to this vertex and in the matching, and on the other (or others), the arc (or arcs)
incident from this vertex and not in the matching. All other vertices must follow suit in a strictly
alternating path fashion, being repeated, if necessary, until the leaves on one side of the tree
link up (from below) with those on the other side (or sides), with the exception (of course) of
those vertices (if any) that are also leaves in the original graph.

Step 2 Perform a depth-first search for repeating vertices, starting at any vertex and climbing up the
branches on one side, and (if needed) down the branches on the other side (or sides) of the root.

Step 3 Can a vertex be found twice in a depth-first search of the above-mentioned alternating tree?
If so, go to Step 4.
If not, go to Step 5.

Step 4 Write down the sequence of vertices between and including this repeating vertex. This sequence
is an alternating cycle, which (as a rule) must be written starting and ending with the smallest
row index (so as to easily spot and avoid repetitions). Then, go back to Step 3.

Step 5 Make a list of all the different alternating cycles in the graph. Is this list empty?
If so, Stop. The given perfect matching is the only one in the graph.
If not, go to Step 6.

Step 6 For each alternating cycle in the latter list, add the arcs in the given perfect matching that are
not in this cycle to form a new perfect matching.

Step 7 Make a list of all the different perfect matchings thus found, adding the given perfect matching
(that served to generate all others), and Stop. This is the required list.

In order to find the lightest Hamiltonian cycle in this matrix, we systematically apply the Hungarian
algorithm to it. Thus, the first step is to label each row with, and reduce it by the lowest cost in the row.
This gives the following cost matrix.

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12

𝑟1 66 14 51 19 77 18 47 21 0 74 16 20
𝑟2 0 60 88 90 32 49 21 50 38 22 43 1
𝑟3 84 34 34 84 21 46 49 71 15 88 0 6
𝑟4 48 72 7 7 33 59 24 0 25 15 1 12
𝑟5 58 50 27 3 73 0 77 66 85 21 35 9
𝑟6 61 88 44 11 82 0 47 51 20 82 5 5
𝑟7 55 7 44 65 52 63 13 0 27 24 6 22
𝑟8 45 78 3 19 5 0 76 22 44 82 78 3
𝑟9 40 76 26 63 40 3 54 67 0 33 27 16
𝑟10 49 53 0 30 66 16 57 18 50 21 26 11
𝑟11 73 8 60 11 4 15 38 27 73 0 34 7
𝑟12 41 81 55 23 69 2 4 86 36 35 0 9

Then, we label each column with, and reduce it by the lowest cost in the column. Thus,

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1101 



𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12

𝑟1 59 14 48 15 77 18 34 21 0 74 16 20
𝑟2 0 60 85 86 32 49 8 50 38 22 43 1
𝑟3 84 27 31 80 21 46 36 71 15 88 0 6
𝑟4 48 65 7 3 33 59 11 0 25 15 1 12
𝑟5 58 43 27 0 73 0 64 66 85 21 35 9
𝑟6 61 81 44 8 78 0 34 51 20 82 5 5
𝑟7 55 0 44 62 48 63 0 0 27 24 6 22
𝑟8 45 71 3 16 1 0 76 22 44 82 78 3
𝑟9 40 69 26 60 36 3 54 54 0 33 27 16
𝑟10 49 46 0 27 62 16 57 5 50 21 26 11
𝑟11 73 1 60 8 0 15 38 14 73 0 34 7
𝑟12 41 74 55 20 65 2 4 73 36 35 0 9

0 7 0 3 4 0 0 13 0 0 0 0

This is the first revised cost matrix of the method. Its corresponding partial graph (which includes
only the arcs whose current cost is nought) is shown in Figure 5a, and a maximum matching (found either
by inspection or by the maximum matching algorithm) for the graph in Figure 5a is shown in Figure 5b.

𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

𝑟7

𝑟8

𝑟9

𝑟10

𝑟11

𝑟12

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8

𝑐9

𝑐10

𝑐11

𝑐12

(a) First partial graph (of the first revised cost
matrix of the original graph).

𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

𝑟7

𝑟8

𝑟9

𝑟10

𝑟11

𝑟12

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8

𝑐9

𝑐10

𝑐11

𝑐12

(b) A maximum matching for the graph in
Figure 5a.

Figure 5
Following the instructions of the maximum matching algorithm, the only alternating path to be found
in Figure 5b is 𝑟9𝑐10𝑟1. No breakthrough is achieved in Figure 5b, so we highlight rows 9 and 1 and
column 10. Thus,

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1102 



𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12

𝑟1 59 14 48 15 77 18 34 21 0 74 16 20
𝑟2 0 60 85 86 32 49 8 50 38 22 43 1
𝑟3 84 27 31 80 21 46 36 71 15 88 0 6
𝑟4 48 65 7 3 33 59 11 0 25 15 1 12
𝑟5 58 43 27 0 73 0 64 66 85 21 35 9
𝑟6 61 81 44 8 78 0 34 51 20 82 5 5
𝑟7 55 0 44 62 48 63 0 0 27 24 6 22
𝑟8 45 71 3 16 1 0 76 22 44 82 78 3
𝑟9 40 69 26 60 36 3 54 54 0 33 27 16
𝑟10 49 46 0 27 62 16 57 5 50 21 26 11
𝑟11 73 1 60 8 0 15 38 14 73 0 34 7
𝑟12 41 74 55 20 65 2 4 73 36 35 0 9

0 7 0 3 4 0 0 13 0 0 0 0

Following the instructions of the Hungarian algorithm, we have 𝛿 = 3, so we reduce each value in the
shaded rows by 𝛿 = 3 and increase each value in the shaded column by the same amount 𝛿 = 3, adjusting
the labels accordingly. Thus,

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12

𝑟1 56 11 45 12 74 15 31 18 0 71 13 23
𝑟2 0 60 85 86 32 49 8 50 41 22 43 1
𝑟3 84 27 31 80 21 46 36 71 18 88 0 6
𝑟4 48 65 7 3 33 59 11 0 28 15 1 12
𝑟5 58 43 27 0 73 0 64 66 88 21 35 9
𝑟6 61 81 44 8 78 0 34 51 23 82 5 5
𝑟7 55 0 44 62 48 63 0 0 30 24 6 22
𝑟8 45 71 3 16 1 0 76 22 47 82 78 3
𝑟9 37 66 23 57 33 0 51 51 0 30 24 19
𝑟10 49 46 0 27 62 16 57 5 50 21 26 11
𝑟11 73 1 60 8 0 15 38 14 73 3 34 7
𝑟12 41 74 55 20 65 2 4 73 36 38 0 9

0 7 0 3 4 0 0 13 0 −3 0 0

This is the second revised cost matrix. Its corresponding partial graph is shown in Figure 6a, and a
maximum matching for the graph in Figure 6a is shown in Figure 6b.

Figure 6b achieves no breakthrough, and the only alternating path there is 𝑟8𝑐6𝑟9𝑐10𝑟1. So we revise
the current cost matrix by first highlighting rows 1, 8, and 9 and columns 6 and 10. Thus,

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1103 



𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

𝑟7

𝑟8

𝑟9

𝑟10

𝑟11

𝑟12

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8

𝑐9

𝑐10

𝑐11

𝑐12

(a) Second partial graph.

𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

𝑟7

𝑟8

𝑟9

𝑟10

𝑟11

𝑟12

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8

𝑐9

𝑐10

𝑐11

𝑐12

(b) A maximum matching for the graph in
Figure 6a.

Figure 6

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12

𝑟1 56 11 45 12 74 15 31 18 0 71 13 23
𝑟2 0 60 85 86 32 49 8 50 41 22 43 1
𝑟3 84 27 31 80 21 46 36 71 18 88 0 6
𝑟4 48 65 7 3 33 59 11 0 28 15 1 12
𝑟5 58 43 27 0 73 0 64 66 88 21 35 9
𝑟6 61 81 44 8 78 0 34 51 23 82 5 5
𝑟7 55 0 44 62 48 63 0 0 30 24 6 22
𝑟8 45 71 3 16 1 0 76 22 47 82 78 3
𝑟9 37 66 23 57 33 0 51 51 0 30 24 19
𝑟10 49 46 0 27 62 16 57 5 50 21 26 11
𝑟11 73 1 60 8 0 15 38 14 73 3 34 7
𝑟12 41 74 55 20 65 2 4 73 36 38 0 9

0 7 0 3 4 0 0 13 0 −3 0 0

Here, 𝛿 = 1, so we reduce each shadowed row by 𝛿 = 1 and increase each shadowed column by 𝛿 = 1,
adjusting the labels accordingly. Thus,

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1104 



𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12

𝑟1 55 10 44 11 74 14 30 17 0 70 12 24
𝑟2 0 60 85 86 33 49 8 50 42 22 43 1
𝑟3 84 27 31 80 22 46 36 71 19 88 0 6
𝑟4 48 65 7 3 34 59 11 0 29 15 1 12
𝑟5 58 43 27 0 74 0 64 66 89 21 35 9
𝑟6 61 81 44 8 78 0 34 51 24 82 5 5
𝑟7 55 0 44 62 48 64 0 0 31 24 6 22
𝑟8 44 70 2 15 0 0 75 21 47 81 77 4
𝑟9 36 65 22 56 32 0 50 50 0 29 23 20
𝑟10 49 46 0 27 62 17 57 5 50 21 26 11
𝑟11 73 1 60 8 0 16 38 14 73 4 34 7
𝑟12 41 74 55 20 65 3 4 73 36 39 0 9

0 7 0 3 4 −1 0 13 0 −4 0 0

This is the third revised cost matrix. Its partial graph is shown in Figure 7a, and a maximum matching
for the graph in Figure 7a is shown in Figure 7b.

𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

𝑟7

𝑟8

𝑟9

𝑟10

𝑟11

𝑟12

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8

𝑐9

𝑐10

𝑐11

𝑐12

(a) Third partial graph.

𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

𝑟7

𝑟8

𝑟9

𝑟10

𝑟11

𝑟12

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8

𝑐9

𝑐10

𝑐11

𝑐12

(b) A maximum matching for the graph in
Figure 7a.

Figure 7
No breakthrough is achieved in Figure 7b. Two alternating paths there are 𝑟8𝑐5𝑟11 and 𝑟8𝑐6𝑟9𝑐10𝑟1.
Using both of them, we go on to highlight the corresponding rows and columns in the fourth revised cost
matrix of the original graph. Namely, rows 1, 8, 9, and 11, and columns 5, 6, and 10. Thus,

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1105 



𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12

𝑟1 55 10 44 11 74 14 30 17 0 70 12 24
𝑟2 0 60 85 86 33 49 8 50 42 22 43 1
𝑟3 84 27 31 80 22 46 36 71 19 88 0 6
𝑟4 48 65 7 3 34 59 11 0 29 15 1 12
𝑟5 58 43 27 0 74 0 64 66 89 21 35 9
𝑟6 61 81 44 8 78 0 34 51 24 82 5 5
𝑟7 55 0 44 62 48 64 0 0 31 24 6 22
𝑟8 44 70 2 15 0 0 75 21 47 81 77 4
𝑟9 36 65 22 56 32 0 50 50 0 29 23 20
𝑟10 49 46 0 27 62 17 57 5 50 21 26 11
𝑟11 73 1 60 8 0 16 38 14 73 4 34 7
𝑟12 41 74 55 20 65 3 4 73 36 39 0 9

0 7 0 3 4 −1 0 13 0 −4 0 0

Here, 𝛿 = 1. So, reducing each shaded row by 𝛿 = 1, increasing each shaded column by 𝛿 = 1, and
adjusting the labels accordingly, we have

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12

𝑟1 54 9 43 11 74 13 29 16 0 69 11 25
𝑟2 0 60 85 87 34 49 8 50 43 22 43 1
𝑟3 84 27 31 81 23 46 36 71 20 88 0 6
𝑟4 48 65 7 4 35 59 11 0 30 15 1 12
𝑟5 58 43 27 0 75 0 64 66 90 21 35 9
𝑟6 61 81 44 8 79 0 34 51 25 82 5 5
𝑟7 55 0 44 62 49 65 0 0 32 24 6 22
𝑟8 43 69 1 14 0 0 74 20 47 80 76 5
𝑟9 35 64 21 55 32 0 49 49 0 28 22 21
𝑟10 49 46 0 27 63 18 57 5 50 21 26 11
𝑟11 72 0 59 7 0 16 37 13 72 4 33 8
𝑟12 41 74 55 20 66 4 4 73 36 40 0 9

0 7 0 3 3 −2 0 13 0 −5 0 0
This is the fourth revised cost matrix. Its corresponding partial graph is shown in Figure 8a, and a
maximum matching for the graph in Figure 8a is shown in Figure 8b.

At this point, we see that only one perfect matching can be found in Figure 8b (namely, 𝑟1𝑐10, 𝑟10𝑐3,
𝑟3𝑐12, 𝑟12𝑐11 , 𝑟11𝑐2, 𝑟2𝑐1; 𝑟4𝑐9, 𝑟9𝑐6, 𝑟6𝑐7, 𝑟7𝑐8, 𝑟8𝑐5, 𝑟5𝑐4). It fulfils Condition 1, but not Condition 2
of Theorem 1 (as it is made of lesser cycles). So we reject this perfect matching (whose total weight, 153,
is a lower bound for the problem in hand) and ask the Hungarian algorithm to find the next perfect
matching. We do this by adding the lowest non-zero cost in the current matrix (namely, 1), which occurs
in arcs 𝑟8𝑐3 and 𝑟4𝑐12. No alternative perfect matching can be found in the resulting bipartite graph. So
we add the next lowest non-zero cost in the current matrix (namely, 4), which occurs in arcs 𝑟4𝑐5, 𝑟11𝑐10,
𝑟12𝑐6, and 𝑟12𝑐7. Still no alternative perfect matching can be found in the resulting bipartite graph. So we
add the next lowest non-zero cost in the current matrix (namely, 5), which occurs in arcs 𝑟6𝑐12 and 𝑟10𝑐8.
(All of these steps are shown in the tables below.)

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1106 



𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

𝑟7

𝑟8

𝑟9

𝑟10

𝑟11

𝑟12

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8

𝑐9

𝑐10

𝑐11

𝑐12

(a) Fourth partial graph.

𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

𝑟7

𝑟8

𝑟9

𝑟10

𝑟11

𝑟12

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8

𝑐9

𝑐10

𝑐11

𝑐12

(b) A perfect matching for the graph in
Figure 8a.

Figure 8

1 10
2 1
3 12
4 9
5 4 7
6 7
7 2 8 9
8 5 6
9 6 10

10 3
11 2 5
12 11

1 10
2 1
3 12
4 9 12
5 4 7
6 7
7 2 8 9
8 5 6 3
9 6 10

10 3
11 2 5
12 11

1 10
2 1
3 12
4 9 12 5
5 4 7
6 7
7 2 8 9
8 5 6 3
9 6 10

10 3
11 2 5 10
12 11 6 7

1 10
2 1
3 12
4 9 12 5
5 4 7
6 7 12
7 2 8 9
8 5 6 3
9 6 10

10 3 8
11 2 5 10
12 11 6 7

This time, two alternative perfect matchings can be found in the resulting graph (either by inspection
or by a perfect matching enumeration algorithm), and only one of these fulfils all the conditions of
Theorem 1. Namely, 𝑟1𝑐10, 𝑟10𝑐8, 𝑟8𝑐3, 𝑟3𝑐12, 𝑟12𝑐11, 𝑟11𝑐5, 𝑟5𝑐4, 𝑟4𝑐9, 𝑟9𝑐6, 𝑟6𝑐7, 𝑟7𝑐2, 𝑟2𝑐1, which can
be written more concisely as 1, 10, 8, 3, 12, 11, 5, 4, 9, 6, 7, 2, 1, or, using letters, as 𝐴𝐽𝐻𝐶𝐿𝐾𝐸𝐷𝐼𝐹𝐺𝐵𝐴.
(See Figure 9b.)

For ease of reference, the last revised cost matrix is repeated below with all noughts shaded in light
grey, and all added arcs shaded in darker grey.

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1107 



𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

𝑟7

𝑟8

𝑟9

𝑟10

𝑟11

𝑟12

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8

𝑐9

𝑐10

𝑐11

𝑐12

(a) Expanded fourth partial graph (with added
arcs shown as dashed lines).

𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

𝑟7

𝑟8

𝑟9

𝑟10

𝑟11

𝑟12

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8

𝑐9

𝑐10

𝑐11

𝑐12

(b) A perfect matching for the graph in
Figure 9a.

Figure 9

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12

𝑟1 54 9 43 11 74 13 29 16 0 69 11 25
𝑟2 0 60 85 87 34 49 8 50 43 22 43 1
𝑟3 84 27 31 81 23 46 36 71 20 88 0 6
𝑟4 48 65 7 4 35 59 11 0 30 15 1 12
𝑟5 58 43 27 0 75 0 64 66 90 21 35 9
𝑟6 61 81 44 8 79 0 34 51 25 82 5 5
𝑟7 55 0 44 62 49 65 0 0 32 24 6 22
𝑟8 43 69 1 14 0 0 74 20 47 80 76 5
𝑟9 35 64 21 55 32 0 49 49 0 28 22 21
𝑟10 49 46 0 27 63 18 57 5 50 21 26 11
𝑟11 72 0 59 7 0 16 37 13 72 4 33 8
𝑟12 41 74 55 20 66 4 4 73 36 40 0 9

0 7 0 3 3 −2 0 13 0 −5 0 0

The total cost of this Hamiltonian cycle can be read off the original cost matrix as

𝑤min = 20 + 29 + 6 + 6 + 9 + 11 + 12 + 12 + 19 + 5 + 29 + 1 = 159. (8)

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1108 



Alternatively, this can also be read off the labels of the last revised cost matrix plus the non-zero costs
(namely, 1 and 5) of the extra arcs used in the new matching (namely, 𝑟8𝑐3 and 𝑟10𝑐8). Thus,

𝑤min = 25 + 1 + 6 + 12 + 9 + 5 + 22 + 5 + 21 + 11 + 8 + 9 (row labels)
+ 0 + 7 + 0 + 3 + 3 − 2 + 0 + 13 + 0 − 5 + 0 + 0 (column labels)
+ 1 + 5 (added weights)

= 159. (9)

The present work allows us to be absolutely certain that no lighter Hamiltonian cycle can be found in
the original graph other than that in Figure 9b, and no better solution exists other than that in Equations 8
and 9.

An algorithm for the travelling salesman problem is now formally stated. (See Algorithm 3.)
Algorithm 3 An algorithm for the travelling salesman problem

Start with a complete (either symmetric or asymmetric) graph.
Step 1 Apply the Hungarian algorithm until a perfect matching is found.
Step 2 Is this perfect matching strongly connected?

If so, Stop. This is the solution (or one of the solutions) to the problem in hand.
If not, go to Step 3.

Step 3 Can other perfect matchings be found (by means of a perfect matching enumeration algorithm
or otherwise) in the current partial graph?

If so, go to Step 4 .
If not, go to Step 5.

Step 4 Is any of these perfect matchings strongly connected?
If so, find the lightest of these and Stop. This is the solution to the problem in hand.
If not, go to Step 5.

Step 5 Add the next lightest, non-zero arc (or arcs) in the last cost matrix to the last partial graph.
Step 6 Can any new perfect matchings be found (by means of a perfect matching enumeration algorithm

or otherwise) in the expanded partial graph?
If so, go to Step 4.
If not, go to Step 5.

This algorithm can be adapted to find the ‘heaviest’ (or ‘costliest’) Hamiltonian cycle in a graph. The
only thing to do is to change the sign of all (non-zero) weights in the matrix of the graph, so that all
positive entries now become negative, and then, increase all entries by an arbitrary amount, so that all
negative entries become positive again. What we have done here is to reverse the weights in the matrix,
so that the light ones become heavy, and the heavy ones, light. Then, we simply apply Algorithm 3 to
find the lightest Hamiltonian cycle in the reversed matrix, which is exactly the same as the heaviest
Hamiltonian cycle in the original graph.
4.2. The arc-adding approach
There is another way of tackling the travelling salesman problem. This time, it is an approximation, for
we cannot be sure that the solution it comes up with is the best one, though it often is. The advantage
of this new method is that it is often faster than the approach in the previous subsection, even though
certainty is sacrificed in the trade-off.

It starts by deleting all arcs in the original graph but the 𝑛 lightest ones, and then it checks whether
this trimmed graph is Hamiltonian or not (by means of Algorithm 1). If it turns out to be Hamiltonian,

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1109 



then this cycle is the solution to the problem in hand. If it turns out not to be Hamiltonian, then we
start adding arcs in strict order of increasing weight, checking (for each newly added arc) whether the
conditions of Theorem 1 are satisfied. When they are satisfied—and they will eventually be, then several
promising candidates may arise all at once, of which we are to take only the ones to repeat, omit, and
reverse no single number from 1 to 𝑛 (for 𝑛 > 2) in any (𝑖, 𝑗) pair of subscript components. Then, we
will choose the lightest of all those that pass the strong connectivity test. This may be the solution (or
one of the solutions) to the problem in hand.

5. Conclusion

The travelling salesman problem is not restricted to just distances between points in a plane, or in
space, or on a line. In fact, the number of space dimensions involved is irrelevant, as is the concept of
distance itself, which is replaced with that of weight (or cost). To see why, imagine a set of points in
three-dimensional space and think not of the distances between them, but of the cost of covering these
distances. This cost may be different depending on the direction in which we travel. For example, more
effort is required to travel from a town in a valley to a town on a mountain than the other way round,
since we are going uphill in the first case, and downhill in the second. The distance is the same, but not
so the cost. This means that asymmetric graphs are far more common in real life than symmetric ones,
and both are equally easy to solve—the latter being just a special case of the former.

In this paper, we have seen how to do so. The methods employed involve no new algorithms, just a
combination of existing ones. First, we found two conditions that are necessary and sufficient to define a
Hamiltonian cycle, and used this information to find a way of checking whether a graph is Hamiltonian.
Then, we found a way of finding the lightest Hamiltonian cycle in sparse Hamiltonian graphs, such as
that obtained from deleting all arcs from the complete graph of a travelling salesman problem except the
lightest among those that are strictly necessary for the graph to be Hamiltonian.

It is to be noted that the algorithms cited in this paper (namely, the maximum matching algorithm, the
Hungarian algorithm, and, when applied to sparse bipartite graphs, the perfect matching enumeration
algorithm) can all be applied in polynomial time, meaning that the algorithms we came up with (namely,
Algorithms 1 to 3), which are based on these, can also be applied in polynomial time (when applied to
sparse graphs).

The algorithms in this paper are both based on a theorem, which, for lack of a better name, we might
call ‘The Hycle Theorem’, which is short for ‘Hamiltonian Cycle Theorem’. This theorem requires the
adjacency matrix of any Hamiltonian cycle in a graph to have exactly one positive entry in each row and
column and to be strongly connected. Together, these requirements are necessary and sufficient to define
a Hamiltonian cycle. In fact, the Hycle Theorem can be rephrased as saying that there is a Hamiltonian
cycle for every strongly connected, perfect matching that can be found in a graph.

References
Edmonds, Jack (1965), ‘Paths, trees, and flowers’, Canadian Journal of mathematics 17, 449–467.
Fukuda, Komei and Tomomi Matsui (1994), ‘Finding all the perfect matchings in bipartite graphs’, Applied Mathematics Letters
7(1), 15–18.
Kuhn, Harold William (1955), ‘The Hungarian method for the assignment problem’, Naval research logistics quarterly 2(1-2), 83–97.
Murty, Katta G (1968), ‘An algorithm for ranking all the assignments in order of increasing cost’, Operations research 16(3), 682–687.
Uno, Takeaki (1997), Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs, in ‘International
Symposium on Algorithms and Computation’, Springer, pp. 92–101.
Uno, Takeaki (2001), A fast algorithm for enumerating bipartite perfect matchings, in ‘International Symposium on Algorithms
and Computation’, Springer, pp. 367–379.

International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.94 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Paper ID: SR23317113156 DOI: 10.21275/SR23317113156 1110 

https://www.cambridge.org/core/services/aop-cambridge-core/content/view/08B492B72322C4130AE800C0610E0E21/S0008414X00039419a.pdf/paths_trees_and_flowers.pdf
https://core.ac.uk/reader/82544280
http://web.eecs.umich.edu/~pettie/matching/Kuhn-hungarian-assignment.pdf
https://pubsonline.informs.org/doi/epdf/10.1287/opre.16.3.682
http://research.nii.ac.jp/~uno/papers/isaac97web.pdf
http://research.nii.ac.jp/~uno/papers/isaac01.pdf

	Introduction
	The Hamiltonian cycle problem
	Perfect matching enumeration in bipartite graphs
	The travelling salesman problem
	The all-at-once approach
	The arc-adding approach

	Conclusion
	Untitled



