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Abstract: A control structure that makes possible the integration of a linear controller and a neural network (NN) compensator for a 
mobile manipulator is presented. The stability of the closed loop system and the boundedness of tracking errors are proved using Lyapunov 
theory. The NN compensation scheme proposed in this work can deal with unmodeled bounded nonlinearity and/or unstructured 
unmodeled dynamics in the mobile manipulator. On-line NN parameter tuning algorithms do no require off-line learning yet guarantee 
small tracking errors and bounded control signals are utilized. 
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1. Introduction 
 
Mobile manipulators have been introduced as a way of 
expanding the effective workspace of robot manipulators. 
Robots with moving vehicle such as macro-micro 
manipulators, space manipulators, and underwater robotic 
vehicles can be used for extending the workspace in repair and 
maintenance, inspection, welding, cleaning, and machining 
operation. Mobile manipulators possess strongly coupled 
dynamics of mobile vehicles and manipulators. With the 
assumption of known dynamics, much research has been 
carried out. Wei et al. [1] addressed the dynamic modeling of 
mobile manipulator based on floating like base. Li and Song 
[2] proposed the kinematic analysis of the mobile robotic arm, 
the Cartesian spatial planning of the robotic arm and the 
design of the mobile robotic arm control system. In [3], a low 
cost mobile manipulator for autonomous localization and 
grasping is deigned. 
 
Most approaches require the precise knowledge of dynamics 
of the mobile manipulator, or, they simplify the dynamical 
model by ignoring dynamics issues, such as vehicle dynamics, 
payload dynamics, dynamics interactions between the vehicle 
and the arm, and unknown disturbances such as the dynamic 
effect caused by terrain irregularity. To handle unknown 
dynamics of mechanical systems, robust, and adaptive 
controls have been extensive investigated for robot 
manipulators and dynamic nonholonomic systems. 
Sugiyamaet al. [4] developed the picking and assembling 
system with mobile manipulator. In [5], adaptive robust 
output feedback motion/force control strategies were 
proposed for mobile manipulators under both holonomic and 
nonholonomic constraints in the presence of uncertainties and 
disturbances. Impedance control of flexible base mobile 
manipulator using singular perturbation method and sliding 
mode control law was presented in [6]. Because of the 
difficulty in dynamic modeling, adaptive neural network 
control has been studied for different classes of systems, such 
as robotic manipulators [7] and mobile robots [8]. In [9], 
adaptive neural network controls have been developed for the 
motion control of mobile manipulators subject to kinematic 
constraint. In [10], the neural network-based control of 
wheeled mobile manipulators with unknown kinematic 
models is proposed. In these schemes, the controls are 

designed at kinematic level with velocity as input or dynamic 
level with torque as input, but the actuator dynamics are 
ignored. Therefore, the actuator nonlinearity deteriorates the 
system performance. The actuator nonlinearity compensation 
techniques are published in [11] for saturation, in [12] for 
friction, and in [13] for hysteresis.        
 
In this paper, an NN-based compensation scheme is proposed 
for the joint space position control of a mobile manipulator. 
Two NN-based proposed controllers are developed to control 
the arm and the vehicle, independently. Each controller output 
comprises a linear control term and an NN compensation term. 
The NN compensation term is used for on line estimation of 
unknown nonlinear dynamics caused by parameter 
uncertainty and disturbances. No preliminary learning stage is 
required for the NN weights. The tracking stability of the 
closed loop system, the convergence of the NN learning 
process and the boundedness of NN weight estimation errors 
are all rigorously proven using Lyapunov synthesis. This 
paper is as follows. Section 2 provides the mobile manipulator. 
The neural network is derived in Section 3. The proposed 
NN-based compensation scheme is developed in Section 4. 
Simulation results of the NN-based proposed controller are 
given in Section 5. Finally, conclusions are included in 
Section 6.    
 

2. Mobile manipulator 
 
Consider a mobile manipulator mounted on nonholonomic 
mobile platform, as shown in Fig. 1. The dynamics of a 
mobile manipulator subject to kinematics can be obtained 
using Lagrangian approach in the form [1] 
 

M(q)�̈ + �(�, �̇) + �(�̇) + �(�) + τ� = �(�)��(�)λ(1) 
 
where kinematic constraints are described by  

A(q)�̇ = 0                                         (2) 
 
and q ∈ �� is the generalized coordinates, M(q) ∈ ��×� is a 
symmetric and positive definite inertia matrix, 

C(q, ) ∈ ��×�̇ C(q, �̇) ∈ ��×� s the centripetal and Coriolis 
matrix, F(�̇) ∈ �� denotes the surface friction,G(q) ∈ ��  is 
the gravitational vector, τ�  denotes the bounded unknown 
disturbances including unstructured unmodeled dynamics,  
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Figure 1: Trajectory tracking of a mobile manipulator 

 

 
Figure 2: Two – DOF manipulator mounted on a mobile 

manipulator. 
 
B(q) ∈ ��×(���) is the input transformation matrix, τ ∈
����is the input vector, A(q) ∈ ��×� is the matrix associated 
with the constraints, and λ ∈ �� is the vector of constraint 
forces. 
 
In (1), the following properties hold [14]. 
Property 1 (Skew Symmetricity) 

�̇ − 2� = − (�̇ − 2�)�  
�̇ = � + ��.                         (3) 

 
The generalized coordinates q may be separated into two sets 
q = [����]�  with �� ∈ ��  describes the generalized 
coordinates appearing in the constraint equations (2), and  
�� ∈ �� are the free generalized coordinates; p = m + n .  
Therefore, (2) can be simplifed to  
 

��(��)�̇� = 0.                                   (4) 
 
with.A(��) ∈ ��×�   Assume that the robot is fully actuated, 
then (1) can be further rewritten as 
 

�
��� ���

��� ���
� �

�̈�

��̈
� + �

��� ���

��� ���
� �

��̇

�̇�
� + �

��

��
� + �

��

��
� =

�
��� �

τ�
� − ���

�λ
0

�(5) 

where τ� ∈ ����  represents the actual torque vector of the 
constrained coordinates, those related to the constrained 
motion of the wheels, the joints, and the end effector. For 
simplicity in the theoretical derivation, hereafter we consider 
only the case where the vehicle motion is constrained. 
However, the proposed theory can be easily extended to 
include joint and/or end-effector constraints. �� ∈ ��×(� ��)) 

represents the input transfomation matrix; τ� ∈ ��  the 
actuating torque vector of the free coordinates; τ��and τ�� are 
disturbance torques bounded by ‖ τ��‖ < τ��  and ‖ τ��‖ <
τ��, with τ�� and τ�� some positive constants. 
 
It is straightforward to show that the following properties 
hold.  
 
Property 2 :  

�̇�� = ��� + ���
�  

��� = ���
� .                                       (6) 

 
Let ��(��) ∈ ��×(� ��) be a full rank matrix formed by a set 
of smooth and linearly independent vector fields in the null 
space of��(��), i.e,  
 

��(��)��
�(��) = 0.                                  (7) 

 
According to (7) , it is possible to find an auxiliary vector time 
function v (t) ∈ ����such that, for all t 
 

�̇� = �(��)�(�)                                     (8) 
 
and its derivative is  

. �̈� = �(��)�̇ + �̇(��)v .                               (9) 
 
Equation (8) is called the steering system. v (t)can be regarded 
as a velocity input vector steering the state vector qin state 
space. 
 
Let us consider the first m -equations of (5)  

����� + ����̈� + ����̇� + ����̇�
̈ + �� + �� + τ�� =

��τ� − ��
�λ.           (10) 

Multiplying both sides of (10) by��and using (7) to eliminate 
the constraint force we obtain  
������̈� + ������̈� + ������̇� + ������̇� + ���� + ���� 

+��τ�� = ����τ�.(11) 
Substituting (8) and (9) into (11) yields 

�����S �̇ + ������̇� + ������̈� + ������� + ������̇�

 +���� + ���� + ��τ�� = ����τ� .           (12) 
Let us rewrite (12) in a compact form as 

�����̇ + ��̅�� + �� + τ��� = τ���(13) 
where ���� = ������ , ��̅� = ������ + ������̇ , ��̅� =
�����;‖ ��̅�‖ ≤ τ��� with ��̅� some positive constant, and  

��̅ = ������ = �����                                 (14) 
�� = ��(����̈� + ����̇� + �� + ��).(15) 

�� consists of the gravitational and friction force, the 
disturbances on the vehicle base, and the dynamic interaction 
with the mounted manipulator arm which has been shown to 
have significant effect on the base motion, thus it needs to be 
compensated for [15]    
 

Property 3: ��̇ − 2��̅� is skew-symmetric.  
 
Proof: 

��̇ − 2��̅� = 2������̇ + ���̇��
�

� − 2������� − 2������ 

= ����̇�� − 2�����.              (16) 

Since �̇ − 2���  is skew-symmetric, therefore, ��̇ − 2��̅� is 
also skew-symmetric. 
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Let us consider the last n -equations of (5)  
����̈� + ����̈� + ����̇� + ����̇� + �� + �� + τ�� = �. 

                (17) 
Rearrange (17) as follows: 
����̈� + ����̇� + (����̈� + ����̇� + �� + �� + τ�� = �. 

                (18) 
Equation (18) represents the dynamic equation of the mounted 
manipulator arm. The terms in the brackets consist of the 
dynamic interaction term(����̈� + ����̇�), the gravitational 
and friction force vector, and the disturbance on the 
manipulator. Equation (8), (13), and (18) form the complete 
dynamic model of the mobile manipulator subject to 
kinematic constraints.    
 
The Lagrange formulism is used to derived the dynamic 
equation of the mobile manipulator. The dynamical equations 
of the mobile manipulator in Fig. 2 can be expressed in the 
matrix form where      
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�

�
�
���� ����
���� ����
− � − �

�,  

λ = − ����(�̇���� + �̇����)�̇.                (19) 

Similar dynamical models have been reported in the literature, 
for instance in [1] the mass and inertia of the driving wheels 
and manipulator are considered explicitly.  
 

3. Neural Networks 
 
NN have been used extensively in feedback control systems 
[16, 17]. Most applications are ad hoc with no demonstrations 
of stability. The stability proofs that do exist rely almost 
invariably on the universal approximation property for NN.   

The three layers NN in Fig. 3 consists of an input layer, a 
hidden layer, and an output layer. The hidden layer has L 
neurons, and the output layer has m neurons. The multi-layer 
NN is a nonlinear mapping from input space �� into output 
space��.  
 
The NN output y is a vector with m  components that are 
determined in terms of the n components of the input vector x 
by the equation 

�� = ∑ [����(∑ ����� + ���) + ���]�
���

�
��� ; i = 1,2, … , m  

                  (20) 
where σ(.) is the hyperbolic tangent function, ��� , the 

interconnection weights from input to hidden layer, ��� , 
interconnection weights from hidden to output layer.  The  

 
Figure 3: Neural networks. 

 
Threshold offsets are denoted by ���, ���. 
 

By collecting all the NN weights ,  into matrices 

��,��, the NN equation may be written in terms of vectors as  
 

y = ���(���).                                  (21) 
 
The threshold are included as the first column of the weight 
matrices �� , �� ; to accommodate this, the vector x  and 
σ(.)need to be augmented by placing a ‘1’ as their first 
element(e.g. x = [1 �� �� … ��]� ). In this equation, to 
represent (20) one has sufficient generality if σ(.)is taken as a 
diagonal function from �� to �� , that is σ(z) =
diag{σ(��)}for a vectorz = [���� … ��]� ∈ �� .  
 
Many well-known results say that any sufficiently smooth 
function ��can be approximated arbitrary closely on a compact 
set using a three-layer NN with appropriate weights, i.e. 
 

�� = ��σ(���) + �(�)(22) 
 
where ε(x) is the NN approximation error, and ‖ �(�)‖ ≤ �� 
on a compact setS  [18]. The first layer weights Vare selected 
randomly and will not be tuned. The second layer weights W 
are tunable. It is shown [19] that for such NN, termed random 
variable functional link(RVFL) NN, the approximation 
property holds. The approximating weights W are ideal target 
weights, and it is assumed that they are bounded such that 
‖ �‖ ≤ ��. 
 

4. Neural network compensation of a mobile 
manipulator 

 
In this section, NN based control laws and NN weighting laws 
will be derived for the stable joint space tracking of a mobile 

kjv
ikw
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manipulator described by (8), (13), and (18). The mobile 
manipulator dynamics is redefined as an error dynamics based 
on a set of carefully chosen Lyapunov functions. NN on-line 
estimators are constructed and new learning laws are 
proposed. New control laws for the manipulator arm and 
vehicle are derived by taking into account the dynamic 
coupling between two. A proof on the tracking stability of the 
overall closed loop system and the boundedness on NN 
weight estimation errors are provided. The proposed control 
structure is shown in Fig. 4.      
 
Consider the vehicle dynamics represented by (8) and (13). 
Tracking control of the steering system (8) has been 
extensively addressed in the literature [4]. For example, for a 
wheeled mobile robot with two independent actuated wheels, 
the kinematic parameters in (8) are defined as  

 

 
Figure 4: The proposed NN compensation of a mobile 

manipulator 
 

S (��) = �
���� − �����
���� �����

0 1
�,v = �

�
�

� and �� = �

�
�
�

�(23) 

where(x, y) represents the Cartesian coordinates of the cart,θ  
its orientation, v and w  its linear and angular velocities, 
respectively. Let the reference motion of the vehicle be 
prescribed as  

�

�̇�

�̇�

�̇�

� = �
���� 0
���� 0

0 1
� �

��

��
�                               (24) 

where �� > 0  and ��  are reference linear and angular 
velocities, respectively. Stable linear and nonlinear velocity 
feedback laws for (23) can be found in [20] to achieve the 
asymptotic tracking. For instance, the following feedback 
velocity input guarantees that the position tracking of (24) is 
asymptotically stable [14]:  

�� = �
��

��
� = �

������� + ����

�� + ������ + ���������
�        (25) 

where positive constant�� , ��and ��  are control gains, and 
the position tracking errors are defined as  

e = Γ�(��� − ��) 

�

��

��

��

� = �
���� ���� 0

− ���� ���� 0
0 0 1

� �

�� − �
�� − �
�� − �

� .     (26) 

Choosing the following Lyapunov function can prove the 
stability tracking system 

�� = ��(��
� + ��

�) + 2����(1 − �����)                (27) 
Differentiating yields 

�̇� = 2��(���̇� + ���̇�) + 2�����̇������.              (28) 
Given the desired velocity,��(�)  define now the auxiliary 
velocity tracking error as 

�� = �� − �.                                              (29) 
The velocity tracking error is  

�� = �
��

��
� = �

�� − �
�� − �� = �

������� + ���� − �
�� + ������ + ��������� − �

�            

(30) 
where��, ��, ��are positive constants. 

Substituting the derivative of the position error in (28), we 
obtain  

�̇� = 2����(���� − �� + �������) + 2����(− ���� 
+�������) + 2����(ω� − ��)����� 

(31) 

Using (30) and defining�� = (
��

����
)yield 

�̇� = − ��
���

� − ��
���

������� − (����− ��)� − (�������� 
− ��)�.                                                                   (32) 

Differentiating (29), multiplying both sides by ��� and 
substituting (13) into it yields 

�����̇� = − ��̅��� + �� + τ��� + �����̇� + ��̅��� − ��̅. (33) 
Equation (33) represents the vehicle dynamics in terms of 
tracking errors. 

Let us choose the Lyapunov function as 

�� =
�

�
��

�������.                                         (34) 

Differentiating (34) yields  

�̇� = ��
������̇� +

�

�
��

���̇����               (35) 

Substituting (33) into (35) we obtain 

�̇� = ��
�{�� + τ��� + �����̇� + ��̅��� − ��̅} 

+
1

2
��

�(��̇�� − 2��̅�)�� 

= ��
�{�� + �����̇� + ��̅��� + τ��� − ��̅}    (36) 

Now consider the arm dynamics (18). Let us define the arm 
error as  

�� = ��� − ��                                        (37)  
and the tracking error as  

r= �̇� + Λ��                                         (38) 
wherek = �� > 0. In (38), tracking errorrcan be regarded as 
an input to a linear dynamics system with state variable��. 
Therefore, whenr→ 0, it can guarantee that �� → 0 [14].  
Differentiating (38) yields 

�̇ = �̈� + Λ�̇� = �̈�� − �̈� + Λ�̇�.                    (39) 
Therefore, we have 

�̇� = �̇�� = (� − Λ��) (40) 
�̈� = �̈�� − �̇ + Λ(r− Λ��)                        (41) 

The manipulator dynamics (18) can be formulated in terms of 
the tracking error as 

����̇ = − ���� + �� + ��� − ��                           (42) 
where the nonlinear manipulator function is 

�� = ���(�̈�� + Λ�̇�) + ���(�̇�� + Λ��) + ����̈� 
+����̇� + �� + ��.                                              (43) 

The nonlinear manipulator function ��  consists of the 
manipulator dynamics (���(�̈�� + Λ�̇�) + ���(�̇�� + Λ��) +
�� + ��) and the dynamics of interaction with the vehicle 
base (����̈� + ����̇�).  

To design the manipulator torque input, we choose the 
Lyapunov function as 

�� =
�

�
������.                                     (44) 

Notice that ���  is a symmetric positive definite matrix. 
Differentiating (44) yields 

�̇� = ������̇ +
1

2
���̇���      

= ��(− ���� − �� + �� + ���) +
1

2
���̇��� 
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= ��(− �� + �� + ���) +
1

2
����̇�� − 2����� 

= ��(− �� + �� + ���).                   (45) 
Let us consider the overall dynamics (5) that combines both 
the arm and vehicle dynamics. Consider the Lyapunov 
function as  

�� = �� +
�

�
�
���

�
� � �

���

�
�.                       (46) 

In the proposed Lyapunovfunction��, ��is used to account for 
the nonholonomic steering system (8), and the second term 
accounts for the vehicle base and manipulator arm dynamics, 
as well as the dynamic couplings between two.  
 
From (46) we have 

 

�� = �� +
1

2
�
���

�
� �

��� ���

���
� ���

� �
���

�
� 

= �� +
1

2
(���)����(���) +

1

2
�����

� (S ��) 

+
1

2
(���)����� +

1

2
������ 

= �� +
1

2
��

�(������)�� + �����
� (S ��) +

1

2
������ 

= �� +
1

2
��

������� + �����
� (S ��) +

1

2
������ 

= �� + �� + �� + �����
� (S ��).                                          (47) 

 
Differentiating (47) yields 

�̇� = �̇� + �̇� + �̇� +
�

��
{�����(���)}.         (48) 

Substituting (32), (36), and (45) into (48) yields  

�̇� ≤ ��
�(− τ�� + �� + �����̇� + ��̅��� + τ��� 

             +��(− �� + �� + ���) +
�

��
{�����(���)}(49) 

where the four terms in (32) are negative.   

From the definition of 1f in (15) and (40), (41) we have 

�� = ��(����̈� + ����̇� + �� + ��) 
    = ��{���(�̈�� − �̇ + Λ(r− Λ��) 

+�����̇�� − (� − Λ��)� + �����} 

                         = − ��{����̇ + (��� − ���Λ)(r− Λ��)} + ��̅ 
(50) 

where ��̅ = ��(����̈�� + ����̇�� + �� + ��). 
From the definition of�� in (9) and (43) we have 

�� = ������� + ��̇� + ����� + {���(�̈�� + Λ�̇�) 

+���(�̇�� + Λ��) + �� + �� 
= − ��{����̇ + (��� − ���Λ)(r− Λ��)} + ��̅ 

(51) 
where ��̅ = ���(�̈�� + Λ�̇�) + ���(�̇�� + Λ��) + �� + ��. 

Substituting (50) and (51) into (49) and after some 
collections of them we have 

�̇� ≤ ��
�(− τ�� + �����̇� + ��̅���) − ���� + ��

��� + ���� 
  +����̅� + �����. 

     (52) 
First of all, we carry out the following derivation  

��
��� + ���� +

�

��
{�����(���)} 

= ��
���̅ + ����̅ − (���)�{����̇ + (��� − ���Λ − Λ��)} 

+��(�����̇� − �����̇� + ����̇�� − ����̇�� + ������

− ������ + �̇������� + ���̇�����

+ ������̇�� + �������� 

= ��
���̅ + ����̅ − (���)�{(��� − ���Λ)(r− Λ��)}

+ ��������̇� + ����̇�� + ������

+ ������) 

= ��
���̅ + ����̅ − (���)�{− ���Λ�� − ���Λ(r− Λ��)}

+ ��(�����̇� + ����̇�� + ������) 
(53) 

where Properties 2 and 3 have been used in the previous 
derivations. 

  Substituting (53) into (52) we obtain 

�̇� ≤ ��
�(− τ�� + �����̇� + ��̅���) − ���� + ��

���̅ + ����̅

+ (���)�{���Λ�� + ���Λ(r− Λ��)}

+ ��������̇� + ����̇�� + ����̇��

+ ������) + ��
���̅� + ����� 

= ��
��− ��̅ + �����̇� + ��̅��� + ��̅ + ��{���Λ�� +

���Λ(r− Λ��)}]+ ���− �� + ��̅ + �����̇� + ����̇�� +

������) + ��
�τ��� + �����. 

        (54) 
Therefore  

�̇� ≤ ��
�(− τ�� + Ψ�) + ��(− �� + Ψ �) + ��

���̅� + ����� 
               (55) 

with unknown nonlinear terms 
Ψ� = �����̇� + ��̅��� + �� + ��{���Λ�� + ���Λ(� − Λ��)} 

(56) 

Ψ � = ��̅ + �����̇� + ����̇�� + ������.         (57) 
The nonlinear terms Ψ� and Ψ � are to be identified on-line 

using NN estimators. In light of the universal approximation 
ability of the NN,Ψ� and Ψ �  may be identified using NN with 
sufficiently high number of hidden-layer neurons such that  

Ψ� = ��
��(��

��) + ��(�) 
Ψ � = ��

��(��
��) + ��(�)             (58) 

where x is input pattern to the NN defined as  
x ≡ [���

� ��
��̇�

���
���

������
� �̇��

� �̇��
� ]�.           (59) 

��  and ��  are ideal and unknown weights, respectively, 
which are assumed to be constant and bounded by  

‖ ��‖ � ≤ ���, ‖ ��‖ � ≤ ���(60) 
with ���  and ���  some known positive constants. The 
approximation error ��  and ��  are bounded by ‖ ��‖ ≤ ��� 
and ‖ ��‖ ≤ ���, with ε�� and ��� two positive constants. 

The NN estimates ofΨ� andΨ �  are given by  

Ψ�� = W��
��(��

��) 
Ψ�� = W��

��(��
��).  (61) 

Thus, the main objective is to design proper control laws and 
stable NN learning laws such that the unknown robot 
dynamics can be largely compensated for the NN estimators, 
and the stability of the robot error dynamics and the 
boundedness on the NN estimation weights can be 
guaranteed. 

We will use an NN to approximate Ψ� andΨ �for computing 
the control law. The control input then becomes  

��̅ = ���� + ���
��(��

��) 
��̅ = ��� + ���

��(��
��)(62) 

where ��and �� are positive constants. 
Substituting (62) and (58) into (55) yields 

�̇� ≤ ��
� �− ����� + ���

�σ(��
��)� + ��

��(��
��) + ���

+ ��{− ���� + ���
��(��

��) + ��
��(��

��)

+ ��} + ��
���̅� + ����� 

= − ��
����� − ����� + ��

�����(��
��) + ������(��

��)
+ ��

��� + ���� + ��
���̅� + ����� 

(63) 
where ��� = �� − ���, ��� = �� − ���,.  
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Let us define  

ε = �
��

��
�, �� = �

��̅�

���
� and W = �

�� 0
0 ��

�. 

Based on the bounds of every element of the vectors and 
matrices defined above, we may show that the following 
properties hold: 

‖ �‖ ≤ ‖ ε�‖ + ‖ ��‖ ≤ ε�� + ��� ≡ ε� 
‖ �� ‖ ≤ ‖ ��̅�‖ + ‖ ���‖ ≤ τ�� + ��� ≡ τ� 

‖ �‖ � ≤ ‖ ��‖ � + ‖ ��‖ � ≤ W�� + ��� ≡ W�. 
 (64) 

It remains to show how to the NN tuning algorithms for NNs, 
so that tracking performance are guaranteed.  
 
Theorem 1: Given the system (13) and (18), select the control 
law as (62). Let the NN parameter tuning be provided by  

��̇� = �(��
��)��

� − ��‖ �‖ ���                     (65) 

��̇� = �(��
��)�� − ��‖ �‖ ���    (66) 

where E = (��
�, ��)  and ��  are positive definite design 

parameter. By properly choosing the control gain and design 
parameter, tracking errors of error dynamics described by (8), 
(33), (42) and the NN estimation weights ���  and ���  are 
evolves practical bounds by the right hand sides of (73) and 
(74) 
 
Proof)  Select the Lyapunov function candidate as  

V = �� +
�

�
������

����� +
�

�
��(���

���).          (67) 

 
Differentiating yields 

�̇ = �̇� + �� ����
���̇�� + ��(���

���̇�).                  (68) 

Let �� = min  (��, ��). From (63) and (64) it follows that 

�̇� ≤ − ����� + ��
����

�σ(��
��) + ��(���

��(��
��) + ‖ �‖ (��

+ ��) 
≤ − ��‖ �‖ � + ��

����
�σ(��

��) + ��(���
��(��

��) + ‖ �‖ (��

+ ��) 
.            (69) 

Using (69), we obtain    

�̇ ≤ − ��‖ �‖ � + ��
����

�σ(��
��) + ��(���

��(��
��) +

‖ �‖ (�� + ��) + �� ����
���̇�� + ��(���

���̇�).   (70) 

Applying the tuning laws (65) and (66), one has 

�̇ ≤ − ��‖ �‖ � + ‖ �‖ (�� + ��) + �� ����
� ���̇� +

��
��(��

��)�� + ��(���
� ���̇� + ���(��

��)�). 

= − ��‖ �‖ � + ‖ �‖ (�� + ��) + ��‖ �‖ ������
����� 

+��‖ �‖ ��(���
����). 

 = − ��‖ �‖ � + ‖ �‖ (�� + ��) + ��‖ �‖ ��{�� ��� } 
   (71) 

where ��̇� = − ��̇� and ��̇� = − ��̇�.  
Using the matrix theory [14], we have 

�̇ ≤ − ��‖ �‖ � + ‖ �‖ (�� + ��) + ��‖ �‖ ��{�� �� − �� �} 

≤ − ��‖ �‖ � + ‖ �‖ (�� + ��) + ��‖ �‖ ��� ���� − ��� �� 

≤ − ‖ �‖ {��‖ �‖ − (�� + ��) − ����� ��� + ���� �
�

} 

≤ − ‖ �‖ {��‖ �‖ − (�� + ��) − ��(��� � −
��

2
)� −

����
�

4
} 

             (72) 
which has guaranteed to be negative as long as  

‖ �‖ ≥
�

�
����

� ������

��
                           (73) 

or  

��� � ≥
�

�

�
����

� ������

��
+

�

�
��.            (74) 

  
Note that stability radius may be decreased any amount by 
increasing the gain��. It is noted that conventional controller 
does not posses this property when system nonlinearity is 
present in mobile manipulators. Moreover, it is difficult to 
guarantee the stability of such highly nonlinear system using 
only a conventional controller. Using the NN nonlinearity 
compensation, stability of the system is proven, and the 
tracking errors ‖ �‖ = (��, �) can be kept arbitrary small by 
increasing the gain��. The NN weight errors are fundamentally 
bounded in terms of��.  The initial weights V are selected 
randomly, while the initial weights W are to set zero. Then the 
control loop in Fig. 4 holds the system stable until the NN 
begins to learn.  
 

5. Simulation and Experimental Results 
 
In this section, we illustrates the effectiveness of a proposed 
NN compenation for a mobile manipulator. For computer 
simulations, we took the vehicle and arm parameters as 
�� = 10[��] , �� = 1[��] , �� = 1[��] , �� = �� = �� =

1[��.��] , �� = 5[��.��] , �� = �� = 0.051[�] , 2l =

0.35[m ], and r= 0.05[m ], d = 0.001[m ]. The controller 
gains were chosen so that the closed loop system exhibits a 
critical damping behavior �� = 10 , �� = 5 , �� = 5 , �� =
����{40, 40},�� = ����{10,10},�� = 1,Λ = diag{5,5}. The 
reference points are constructed by using the kinematic model 
(24) and the following velocities, as follows: 

�� = 1.0[
�

���
] 

�� = − 1 + 6sin (0.0139�)[
���

���
].        (75) 

The reference trajectory to the arm are ���(�) = sin (0.698�) 
and ���(�) = cos (0.698�). The departure posture vector is 
(− 5, − 5,0°) and the goal is trajectory following. Fig. 5 shows 
the reference trajectory response of a mobile manipulator.  In 
Fig. 6, the friction nonlinearity is included in the mobile 
manipulator, the response with a feedback controller exhibits 
a steady state error. The friction nonlinearity [12] is as 

follows: �������� = �������̇�� + ��������̇�����(�̇�) with 

constant �� = 0.2 , �� = 0.02  and �� = 0.01 . �� is angular 
position of the driving wheel. For arm friction, ���� =

�����(�̇�) + ������|�̇�|���(�̇�) with constant �� =
0.2 ,�� = 0.02  and �� = 0.01. �� is angular position of the 
arm. Some preprocessing of signals yields amore 

advantageous choice for )(tx  than (59) that already contains 

some of the nonlinearities inherent to mobile manipulator 
dynamics. The NN input vector x  for vehicle can be taken as 

�������� ≡ [���
� ��

��̇�
���

����̇��̇��
� �̈��

�   ���(θ̇
�)�]� where the 

signum function is needed in the friction terms. The NN input 
vector x for arm is 

���� ≡ [��
��̇�

���
��̇�

���
��̇�

��̇��
� �̈��

�   ���(�̇�)�]�. The number of 

nodes in successive layers of the NNs is 18-18-2, respectively. 
In Fig. 7(a)-(b), we see that the NN control scheme 
compensates the friction effects. The velocity eror, friction 
nonlinearity, and NN output are shown in Fig. 7(c)-(e).  
 
The dynamic NN controller is implemented on a mobile robot. 
Fig 8(a) shows the experimental set up for a mobile 
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manipulator. The wheels have a radius r= 0.05[m ] and are 
mounted on an axle of length2R = 0.35[m ]. The wheels are 
drived by motors having rated torque 20[mN .m ]  at 
3000[rpm ] and 24[V]rated voltage. Each motor is equipped 

with an incremental encoder counting 600[
�����

����
] and a gear.  

As shown in Fig. 8(b), the control algorithm is implemented at 
a 100[Hz] sampling rate via PC microcontroller. Wheel 
PWM duty cycle commands are sent to the robot and the 
encoders measure Δ��  and Δ��  for odometric computation. 
If Δ�� and Δ��be the wheel angular displacements measured  
during sampling time �� by the encoders, the robot linear and 
angular displacements are constructed as  

Δs = (
�

�
)(Δ�� + Δ��),Δθ = (

�

��
)(Δ�� − Δ��). The posture 

estimated at time �� = ��� is  

��� = �

���

���

���

� = ����� + �
�����̅ 0

�����̅ 0
0 1

� �
Δs
Δ�

�  (76) 

 

 
(a) 

 

 
(b) 

Figure 5: Response without friction nonlinearity of a mobile 
manipulator (a) vehicle trajectory and (b) arm position. 

 
 

 
 
 

 
 
 
 
 
 

 
 

 

 
(a) 

 
(b) 

Figure 6: Response with friction nonlinearity of a mobile 
manipulator (a) vehicle trajectory and (b) arm position. 

 

 
(a) 

 

 
(b) 
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(c) 

 

 

 
 

 
 

 
(d) 

 
 

 
(e) 

Figure 7: Response with NN compensation of a mobile 
manipulator: (a) vehicle trajectory, (b) arm position, (c) 

velocity error, friction and NN output(d) for vehicle and (e) 
for arm. 

 

Paper ID: SR23204085405 DOI: 10.21275/SR23204085405 1453 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 3, March 2023 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

 
(a) 

 

 
(b) 

Figure 8: (a) Experimental setup for a mobile manipulator 
and (b) control architecture. 
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(b) 

Figure 9: Experimental tracking response of a mobile 
manipulator with/without an NN compensation: (a) for the 

vehicle, (b) for the arm . 
 

where ��̅ = ����� + Δ�/2. The NN input vector ���  can be 
taken as x = [��

��̇�
�  ���(Δ�)��]�. The reference trajectory 

is generated by the following velocities;  

�� = 1.1[
�

���
] sec]/[1.1 mvr   

�� = − 5.7 + 28sin (
�

�
)[

���

���
].        (77) 

The reference trajectory to the arm are ���(�) = sin (0.698�) 
and ���(�) = cos (0.698�) .Fig. 9 shows the tracking 
response with friction nonlinearity. The performance 
degraded by the friction effects. However, the proposed NN 
controller shows an improvement in trajectory response 
compared with the feedback controller. The tracking response 
of mobile manipulator with/without for the vehicle and the 
arm are shown in Fig 9(a) and(b). 
 

6. Conclusions 
 
The NN conpensation with a linear controller for tracking of a 
mobile manipulators has been developed. In fact, perfect 
knowledge of the mobile manipulator parameters is 
unattainable, e.g., the friction nonlinearity is very difficult to 
model by conventional techniques. To confront this, an NN 
compensation with guaranteed performance has been derived. 
There is not need of a prior information of the parameters of 
the mobile manipulator, because the NN learns them on the fly. 
Also, The proposed control scheme is shown to be 
asymptotically stable through theoretical proof and simulation 
and experiment with a mobile manipulator.   
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