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Abstract: The model studied in this article is an optimal control model for the spread of flu with respect to the class that are resistant to 

standard anti-flu drugs. The non-endemic equilibrium point and reproduction number are obtained based on the studied system. In the 

model given control, 𝒖𝟏, efforts to prevent contact between peoples who are still healthy; the control, 𝒖𝟐, effectively reduced the number 

of peoples in the Is the class, and the control, 𝒖𝟑, effectively decreased the number of peoples in the Ir the class. The system of co-the 

state equations obtained corresponds to the system of the state, equations. Control, 𝒖𝟏, can prevent peoples from being infected with flu. 

The control, 𝒖𝟐, effectively reduced the number of peoples in the Is the class, and the control, 𝒖𝟑, effectively decreased the number of 

peoples in the Ir the class. 
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1. Introduction 
 

Flu is a disease that attacked humans centuries ago, but the 

cause was newly discovered in the early 20th century; the 

group the virus is now known as Flu type A, B, and C 

viruses [1]. Several mathematical researchers have studied 

mathematical models for combating the spread of the flu. 

Chong (2014) has reviewed and developed a semi-saturated 

dynamics system of the spread of avian flu in human and 

avian populations [2]. Study of a mathematical model that 

explains the spread of flu A virus infection in the human 

respiratory tract [3]. Modeling to determine the change of 

show parameters, with a simulation of the transmission flow 

of flu A H1N1 in China [4]. Sungchasit (2022) analyzes 

global stability in the Respiratory syncytial virus 

transmission model [5]. Hill (2019) examines the spread of 

seasonal flu with a modeling approach to determine human 

immunity to the disease [6]. Modeling a flu epidemic to 

analyze the worldline solidness of the balance point with 

discrete time [7]. The factors of human mobility on the 

increased transmission of flu [8]. 

 

Mathematical modeling to analyze the flow of flu A virus 

spread by taking into account medicate resistance factors 

[9]. Baba (2021) examined a flu strain model that pays 

attention to non-resistance and resistance, where non-

resistant strains can mutate into resistant strains. [10]. 

Fahlena (2022) analyzed the dynamics of the coinfection of 

two pathogens in respiratory diseases and flu [11]. Pinky 

(2022) studied epidemic models of respite virus and found 

that co-circulation of SARS-CoV-2 and RSV caused the 

strongest significant influence on the spread of SARS-CoV-

2 [12].  

 

Modeling studies and analysis on the spread of flu by 

vaccinating healthy peoples can prevent and reduce the 

spread of the disease [13, 14, 15]. Kim (2017) analyzed 

mathematical models and optimal control strategies to 

reduce the 2009 flu A/H1N1 in the Republic of Korea [16]. 

Optimal control and modeling of swine flu pandemic 

transmission dynamics were analyzed using a deterministic 

model [17]. Optimal control and dynamic analysis of the 

COVID-19 transmission system [18]. 

 

The system in this paper is a development of the Sungcasit 

model [5] by paying attention to exposed the classes. The 

equilibrium point and reproduction number are analyzed 

based on the formulated model, which is a deterministic 

model. Furthermore, optimal control is given in prevention 

and treatment efforts to reduce the number of peoples 

infected with the flu. 

 

2. Literature Survey 
 

The studied model is divided into six the class; the 

susceptible the class, namely peoples who are still healthy 

peoples, denoted S. Healthy peoples vaccinated against flu 

enter the vaccination the class, denoted V[9]. Healthy 

peoples come in contact with flu-infected peoples and 

become infected and are still passive or latent into the 

exposed the class denoted by E [7]. Peoples who are actively 

infected but are still sensitive to standard anti-flu drugs can 

transmit the disease to peoples who are still healthy and 

enter the Is class. Peoples who are actively infected and are 

resistant to common anti-flu drugs can transmit the disease 

to peoples who are still healthy and enter the Ir class. 

Peoples who are vaccinated and immune, peoples infected 

with flu treated and recovered, enter the recovered the class 

denoted by R [9]. 

 

The model assumption being studied, peoples who enter the 

population only enter the susceptible the class. Peoples who 

are vaccinated are only the classified peoples who are still 

healthy. Each the class experiences natural death, and 

infected peoples resistant to standard anti-flu drugs may die. 

Vaccinated peoples may enter the recovered the class, but 

peoples who are not immune and have contact with flu-

infected peoples may become infected. Peoples in the Is and 

Ir classes are treated to be cured of flu disease. After a few 

days, the recovered the class peoples may again be sensitive 

to flu disease. The flow of transfers between the classes of 
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the model studied is described in the schematic diagram in 

Figure 1. 

The model studied in the paper is like the following 

equation: 
𝑑𝑆

𝑑𝑡
= 𝜂𝑁 + 𝜏𝑅 −

(𝛽1𝐼𝑠 + 𝛽2𝐼𝑟)𝑆

𝑁
−   + 𝜇 𝑆 

𝑑𝑉

𝑑𝑡
= 𝑆 −  1 − 𝜑  

(𝛽1𝐼𝑠 + 𝛽2𝐼𝑟)𝑉

𝑁
 − (𝑟 + 𝜇)𝑉 

𝑑𝐸

𝑑𝑡
=

(𝛽1𝐼𝑠 + 𝛽2𝐼𝑟)𝑆

𝑁
+  1 − 𝜑  

(𝛽1𝐼𝑠 + 𝛽2𝐼𝑟)𝑉

𝑁
 

−   +  +  𝐸 

(1) 
𝑑𝐼𝑠
𝑑𝑡

= 𝛼𝐸 − (𝛿 + 𝑟1 + 𝜇)𝐼𝑠  

𝑑𝐼𝑟
𝑑𝑡

= 𝐸 + 𝐼𝑠 − (𝑑 + 𝑟2 + 𝜇)𝐼𝑟  

𝑑𝑅

𝑑𝑡
= 𝑟𝑉 + 𝑟1𝐼𝑠 + 𝑟2𝐼𝑟 − (𝜏 + 𝜇)𝑅, 

with  𝑁 𝑡 = 𝑆 𝑡 + 𝑉 𝑡 + 𝐸 𝑡 + 𝐼𝑠 𝑡 + 𝐼𝑟 𝑡 + 𝑅(𝑡) 

 

Changes in the number of population units of time are 

obtained, 

 
𝑑𝑁

𝑑𝑡
=  𝜂 − 𝜇 𝑁 − 𝑑.    (2) 

 

3. Method 
 

The methods used in this study include: literature review, 

analysis and simulation. The following lemmas and 

theorems are presented. 

 

Lemma 1 

The solution of equation (1) is bounded for all 𝑡𝜖[0, 𝑡𝑓] 

 

Proof: 

Based on equation system (1)  
𝑑𝑁

𝑑𝑡
= 𝜂𝑁 − 𝜇𝑁,obtained  

0 ≤ 𝑙𝑖𝑚𝑡→∞ sup𝑁(𝑡) ≤
𝜂𝑁

𝜇
 

so all solutions of equation system (1) are bounded for all 

t𝜖[0, 𝑡𝑓]. Parameters in the system > 0 and 𝑆 0 >

0,𝑉 0 ≥ 0,𝐸 0 > 0, 𝐼𝑠 0 ≥ 0, 𝐼𝑟(0) ≥ 0,𝑅(0) ≥ 0. 

 
Figure 1: The dynamics of the spread of the flu 

 

Table 1: Notations, descriptions, parameter values, and references were used. 
Notations Description Values (day-1) Reference 

 Recruitment rate 0.0381 [9] 

 Resusceptible rate from the class R   

1 The contact rate between the peoples of Is with S or V the class 0.00102 [9] 

2 The contact rate between the peoples of Ir with S or V the class 0.00026 [9] 

 Vaccination rates from S to V the class 0.000273 [9] 

 The natural death rate of each the class 0,000042 estimated 

 Vaccine strength rate to prevent V the class  from becoming infected 0,00526 [17] 

r The rate at which the vaccinated people's immunity enters the R the class 0,005 [17] 

 Displacement rate from E the class to Is 0,08 estimated 

 Displacement rate from E the class to Ir 0,03 estimated 

 Displacement rate from Isthe class to Ir 0,06 [17] 

r1 The recovery rate from Isto R the class 0.1998  [9] 

r2 Cure rate from Ir to R the class 0.0714  estimated 

d The death rate due to illness in the Ir the class 0.021 [9] 

 

Based equation system (1) the non-endemic equilibrium 

point of the flu disease system is obtained with conditions 

𝐸 𝑡 = 𝐼𝑠 𝑡 = 𝐼𝑟 𝑡 = 𝐿 𝑡 = 0 and 
𝑑𝑆

𝑑𝑡
=

𝑑𝑉

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼𝑠

𝑑𝑡
=

𝑑𝐼𝑟

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0, obtained as follows, 

  𝐸𝑛𝑒 =  𝑆1 ,𝑉1 , 0,0,0,𝑅1 ,    

      (3) 

with  𝑆∗ =
𝜂𝑁 (𝑟+𝜇 )(𝜏+𝜇 )

𝜇  𝑟+𝜇  𝜏+𝜇 +(𝑟+𝜏+𝜇)𝜃 
, 

𝑉∗ =
𝜃𝜂𝑁 (𝜏+𝜇)

𝜇  𝑟+𝜇  𝜏+𝜇 +(𝑟+𝜏+𝜇 )𝜃 
,  𝑅∗ =

𝜂𝑟𝜃𝑁

𝜇  𝑟+𝜇  𝜏+𝜇 +(𝑟+𝜏+𝜇 )𝜃 
. 

 

Reproduction Number 

A tool that can determine whether a disease is increasing or 

decreasing is the reproduction number, which is the 

expectation if one peoples enters a susceptible subpopulation 

denoted by R0, to seek reproduction number with the next 
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generation matrix approach. The first step determines R0, 

which determines the F1 matrix, namely the Jacobian matrix 

in the S the class that is in connection with infected peoples 

at the E1 equilibrium point, 

 

𝐹1 =

 
 
 
 
 0

𝛽1𝑆
∗

𝑁
+  1 − 𝜑  

𝛽1𝑉
∗

𝑁
 

𝛽2𝑆
∗

𝑁
+  1 − 𝜑  

𝛽2𝑉
∗

𝑁
 0

0 0 0 0
0 0 0 0
0 0 0 0 

 
 
 
 

. 

 

The next step is to determine the V1 matrix, which is the 

matrix of Jacobian the the classes who returned and were not 

in contact with infected peoples, 

  

𝑉1 =  

 +  +  0 0 0
−𝛼 𝛿 + 𝑟1 + 𝜇 0 0
−𝛾 −𝛿 𝑑 + 𝑟2 + 𝜇 0
0 −𝑟1 −𝑟2 𝜏 + 𝜇

 . 

 

Characteristics of polynomials of det 𝜆𝐼3 − 𝐹𝐺−1 = 0 is 

reproduction number from the system of equations (1), that 

is, the spectral radius ρ(𝐹𝑉−1), the basic production number, 

which is given by, 

 

R0 =
(𝑘1+ 1−𝜑 𝑘2)(𝛼𝛽1𝑘5+𝛼𝛽2𝛿+𝛽2𝛾𝑘4)

𝑘3𝑘4𝑘5
 , 

    (4) 

with 𝑘1 =
𝜂(𝑟+𝜇)(𝜏+𝜇)

𝜇  𝑟+𝜇  𝜏+𝜇 +(𝑟+𝜏+𝜇 )𝜃 
, 

𝑘2 =
𝜃𝜂 (𝜏+𝜇)

𝜇  𝑟+𝜇  𝜏+𝜇 +(𝑟+𝜏+𝜇)𝜃 
,  𝑘3 = 𝛼 + 𝛾 + 𝜇, 𝑘4 = 𝛿 +

𝑟1 + 𝜇, 𝑘5 = 𝑑 + 𝑟2 + 𝜇. 

 

Theorem 1 

The non-endemic equilibrium point of equation system (1) is 

locally asymptotically stable if R0< 1. 

 

Proof 

Based on the system of equations (1), the Jacobian matrix of 𝐸𝑛𝑒  as follows: 

 𝐽 𝐸𝑛𝑒  =

 
 
 
 
 
 
−(𝜃 + 𝜇) 0 0 −𝛽1𝑞1 −𝛽2𝑞1 𝜏

0 −(𝑟 + 𝜇) 0 −𝛽1𝑞2 −𝛽2𝑞2 0
0 0 −𝑞3 𝛽1𝑞1 + 𝛽1𝑞2 𝛽2𝑞1 + 𝛽2𝑞2 0
0 0 𝛼 −𝑞3 0 0
0 0 𝛾 𝛿 −𝑞4 0
0 𝑟 0 𝑟1 𝑟2 −(𝜏 + 𝜇) 

 
 
 
 
 

 

with 𝑞1 =
𝜂𝑁 (𝑟+𝜇 )(𝜏+𝜇 )

𝜇  𝑟+𝜇  𝜏+𝜇 +(𝑟+𝜏+𝜇)𝜃 
, 𝑞2 =

(1−𝜑)𝜃𝜂 (𝜏+𝜇)

𝜇  𝑟+𝜇  𝜏+𝜇 +(𝑟+𝜏+𝜇)𝜃 
, 𝑞3 = 𝛼 + 𝛾 + 𝜇, 𝑞4 = 𝛿 + 𝑟1 + 𝜇, 𝑞5 = 𝑑 + 𝑟2 + 𝜇. The 

characteristic equation of the Jacobian matrix, is obtained,  

𝑓 𝜉 = (𝜉1 + 𝜃 + 𝜇) 𝜉2 + 𝜏 + 𝜇  𝜉3 + 𝑟 + 𝜇 𝑔 𝜉 , with 𝑔 𝜉 = 𝜉3 + 𝑐1𝜉
2 + 𝑐2𝜉 + 𝑐3, 

 

Based on the characteristic equation for 𝜉𝑗 , j = 1, 2, 3 will be 

negative if  𝑐𝑖> 0, i = 1, 2, 3, R0< 1. Numerical calculations 

are obtained, with the parameter values used in Table 1, c1 = 

0.003528, c2 = 0,000741, c3 = 0,00000168, and fulfill 

𝑐1𝑐2 > 𝑐3. This is Routh-Hurwitz’s criteria so that the 

endemic point is locally asymptotically stable of equation 

system (1).      

 

Optimal Countermeasures Control of Flu Spread Model 

Flu prevention is given through counseling and treatment. 

Control 𝑢1, namely providing counseling in an effort to 

prevent contact between peoples who are infected with the 

flu and those who are still healthy. The control, 𝑢2, is an 

effort to increase the effectiveness of treatment for people 

who recover with standard cold medicines, namely by giving 

multivitamins. The control, 𝑢3, is an effort to increase the 

effectiveness of treatment for flu-infected peoples who are 

already resistant to standard anti-flu drugs, namely by giving 

multivitamins and flu drug combinations. 

 

Based on the system of equations (1) and given control, 

𝑢1,𝑢2, dan 𝑢3, equation (5) is obtained: 
𝑑𝑆

𝑑𝑡
= 𝜂𝑁 + 𝜏𝑅 −

(1 − 𝑢1)(𝛽1𝐼𝑠 + 𝛽2𝐼𝑟)𝑆

𝑁
−   + 𝜇 𝑆 

𝑑𝑉

𝑑𝑡
= 𝑆 −  1 − 𝜑 (1 − 𝑢1)  

(𝛽1𝐼𝑠+𝛽2𝐼𝑟)𝑉

𝑁
 − (𝑟 + 𝜇)𝑉

      
𝑑𝐸

𝑑𝑡
=

(1−𝑢1)(𝛽1𝐼𝑠+𝛽2𝐼𝑟)𝑆

𝑁
+  1 − 𝜑 (1 − 𝑢1)  

(𝛽1𝐼𝑠+𝛽2𝐼𝑟)𝑉

𝑁
 −

  +  +  𝐸   (5) 
𝑑𝐼𝑠
𝑑𝑡

= 𝛼𝐸 − (𝛿 + 𝑟1(1 + 𝑢2) + 𝜇)𝐼𝑠 

𝑑𝐼𝑟

𝑑𝑡
= 𝐸 + 𝐼𝑠 − (𝑑 + 𝑟2(1 + 𝑢3) + 𝜇)𝐼𝑟   

      
𝑑𝑅

𝑑𝑡
= 𝑟𝑉 + 𝑟1(1 + 𝑢2)𝐼𝑠 + 𝑟2(1 + 𝑢3)𝐼𝑟 − (𝜏 + 𝜇)𝑅.  

 

The optimal prevention (1 − 𝑢1) and treatment (1 + 𝑢2) 

dan  1 + 𝑢3  control of the spread of flu, constructed 

functional performance index J. It helps effort to heal those 

who are sick by providing controls, 𝑢1,𝑢2 and 𝑢3, that is: 

𝐽 = 𝑚𝑖𝑛𝑢1 ,𝑢2 ,𝑢3  (𝑄1𝐸 𝑡 + 𝑄2𝐼𝑠 𝑡 + 𝑄3𝐼𝑟 𝑡 +
𝑡𝑓

0

𝐶1𝑢12𝑡+𝐶2𝑢22𝑡+𝐶3𝑢32(𝑡))𝑑𝑡,  (6) 

where Q1, Q2, and Q3 arepositive weight corresponding to 

each administration, the number of infected E, Is and Ir 

subpopulations and cost of controls 𝑢1,𝑢2 dan 𝑢3 are 

reduced costs with the help of the functional performance 

index. We find an optimal control, 𝑢1
∗,𝑢2

∗  dan 𝑢3
∗  such that 

𝐽 𝑢1
∗,𝑢2

∗ ,𝑢3
∗ = 𝑚𝑖𝑛 𝐽 𝑢1,𝑢2,𝑢3 ,  𝑢1 ,𝑢2,𝑢3 𝑼 ,  

where control set U =   𝑢1,𝑢2,𝑢3 | 𝑢𝑗  𝑡 ∈  0,1 , 𝑗 =

1,2,3and 𝑢𝑗Lebesgue measurable on (0,1). The problem 

control set solved using Pontryagin’s maximum principle 

[16, 17, 18], defined functional Hamiltonian for optimal 

control, taking 𝑌 = (𝑆,𝑉,𝐸, 𝐼𝑠 , 𝐼𝑟 ,𝑅), 𝑈 =  𝑢1 ,𝑢2,𝑢3 , and  

𝜉 = (𝜉1, 𝜉2 , 𝜉3, 𝜉4 , 𝜉5 , 𝜉6), then we have  

𝐻 𝑌,𝑈, 𝜉 = 𝑄1𝐸 𝑡 + 𝑄2𝐼𝑠 𝑡 + 𝑄3𝐼𝑟 𝑡 + 𝐶1𝑢1
2 𝑡 

+ 𝐶2𝑢2
2 𝑡  

+𝐶3𝑢3
2 𝑡 +𝜉1 𝜂𝑁 + 𝜏𝑅 − (1 − 𝑢1)(𝛽1𝐼𝑠 + 𝛽2𝐼𝑟)𝑆/𝑁

−   + 𝜇 𝑆  
+𝜉2 𝑆 −  1 − 𝜑 (1 − 𝑢1)(𝛽1𝐼𝑠 + 𝛽2𝐼𝑟)𝑉/𝑁 − (𝑟 + 𝜇)𝑉  
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+𝜉3  (1 − 𝑢1)(𝛽1𝐼𝑠 + 𝛽2𝐼𝑟)
𝑆

𝑁
+  1 − 𝜑  1 − 𝑢1 (𝛽1𝐼𝑠

+ 𝛽2𝐼𝑟)
𝑉

𝑁
−   +  +  𝐸  

+𝜉4 𝛼𝐸 − (𝛿 + 𝑟1(1 + 𝑢2) + 𝜇)𝐼𝑠 
+ 𝜉5 𝐸 + 𝐼𝑠 − (𝑑 + 𝑟2(1 + 𝑢3) + 𝜇)𝐼𝑟  

+𝜉6 𝑟𝑉 + 𝑟1(1 + 𝑢2)𝐼𝑠 + 𝑟2(1 + 𝑢3)𝐼𝑟 − (𝜏 + 𝜇)𝑅  
     (7) 

Applying the Hamiltonian equation (7), we get Theorem 2. 

 

Theorem 2 

Let the optimal controls 𝑢1
∗ ,𝑢2

∗ ,𝑢3
∗and solutions 

𝑆∗,𝑉∗,𝐸∗, 𝐼𝑠
∗, 𝐼𝑟

∗,𝑅∗ of the corresponding equation system 

(5), there are co-the state variables 

𝜉1 , 𝜉2, 𝜉3 , 𝜉4 , 𝜉5 , 𝜉6satisfying the following equations system: 

 𝜉1
′ =

(𝜉1−𝜉3)(1−𝑢1)(𝛽1𝐼𝑠+𝛽2𝐼𝑟)

𝑁
+  𝜉1 − 𝜉2 𝜃 + 𝜉1𝜇 

 𝜉2
′ =

(𝜉2−𝜉3 )(1−𝑢1)(1−𝜑)(𝛽1𝐼𝑠+𝛽2𝐼𝑟)

𝑁
+  𝜉2 − 𝜉6 𝑟 + 𝜉2𝜇 

 𝜉3
′ = −𝑄1 +  𝜉3 − 𝜉4 𝛼 +  𝜉3 − 𝜉5 𝛾 + 𝜉3𝜇 

 𝜉4
′ = −𝑄2 +

 𝜉1−𝜉3  1−𝑢1 𝛽1𝑆+ 𝜉1−𝜉3  1−𝑢1 (1−𝜑)𝛽1𝑉

𝑁
+

 𝜉4 − 𝜉5 𝛿 +   𝜉4 − 𝜉6  1 + 𝑢2 𝑟1 + 𝜉4𝜇  (8) 

 𝜉5
′ = −𝑄3 +

 𝜉1−𝜉3  1−𝑢1 𝛽2𝑆+ 𝜉1−𝜉3  1−𝑢1 (1−𝜑)𝛽2𝑉

𝑁
+

 𝜉5 − 𝜉6  1 + 𝑢3 𝑟2 + 𝜉5(𝑑 + 𝜇) 

 𝜉6
′ =  𝜉6 − 𝜉1 𝜏 + 𝜉6𝜇. 

with the transversality conditions 𝜉𝑗  𝑡𝑓 = 0, j = 1, 2, 3, 4, 

5, 6,of U andconditions need to be optimal, can be written 

𝑢1
∗ =

 𝜉3−𝜉1  𝛽1𝐼𝑠+𝜉2𝐼𝑟 𝑆+ 𝜉3−𝜉1 (1−𝜑) 𝛽1𝐼𝑠+𝜉2𝐼𝑟 𝑉

2𝐶1𝑁
 , 𝑢2

∗ =

 𝜉4−𝜉6 𝑟1𝐼𝑠

2𝐶2
, 𝑢3

∗ =
 𝜉5−𝜉6 𝑟2𝐼𝑟

2𝐶3
 .    

 (9) 

 

Proof 

The system of co-the state differential equations, obtained 

using the Hamiltonian H equations [16, 17, 18] with the 

transfersality condition,  

𝜉1
′ = −

𝜕𝐻

𝜕𝑆
=

(𝜉1 − 𝜉3)(1 − 𝑢1)(𝛽1𝐼𝑠 + 𝛽2𝐼𝑟)

𝑁
+  𝜉1 − 𝜉2 𝜃

+ 𝜉1𝜇 

𝜉2
′ = −

𝜕𝐻

𝜕𝑉
=

(𝜉2 − 𝜉3)(1 − 𝑢1)(1 − 𝜑)(𝛽1𝐼𝑠 + 𝛽2𝐼𝑟)

𝑁
+  𝜉2 − 𝜉6 𝑟 + 𝜉2𝜇 

𝜉3
′ = −

𝜕𝐻

𝜕𝐸
= −𝑄1 +  𝜉3 − 𝜉4 𝛼 +  𝜉3 − 𝜉5 𝛾 + 𝜉3𝜇 

𝜉4
′ = −

𝜕𝐻

𝜕𝐼𝑠
= −𝑄2

+
 𝜉1 − 𝜉3  1 − 𝑢1 𝛽1𝑆 +  𝜉1 − 𝜉3  1 − 𝑢1  1 − 𝜑 𝛽1𝑉

𝑁
+  𝜉4 − 𝜉5 𝛿 +  𝜉4 − 𝜉6  1 + 𝑢2 𝑟1 + 𝜉4𝜇 

𝜉5
′ = −

𝜕𝐻

𝜕𝐼𝑟
= −𝑄3

+
 𝜉1 − 𝜉3  1 − 𝑢1 𝛽2𝑆 +  𝜉1 − 𝜉3  1 − 𝑢1 (1 − 𝜑)𝛽2𝑉

𝑁
+  𝜉5 − 𝜉6  1 + 𝑢3 𝑟2+𝜉5(𝑑 + 𝜇) 

𝜉6
′ = −

𝜕𝐻

𝜕𝑅
=  𝜉6 − 𝜉1 𝜏 + 𝜉6𝜇 

The optimal control equation system is obtained by applying 

the necessary conditions for optimal control to the 

Hamiltonian equation H, we get 
𝜕𝐻

𝜕𝑢1
= 0, obtained 

𝑢1
∗ =

 𝜉3−𝜉1  𝛽1𝐼𝑠+𝜉2𝐼𝑟 𝑆+ 𝜉3−𝜉1 (1−𝜑) 𝛽1𝐼𝑠+𝜉2𝐼𝑟 𝑉

2𝐶1𝑁
, 

𝜕𝐻

𝜕𝑢2
= 0, obtained 

𝑢2
∗ =

 𝜉4−𝜉6 𝑟1𝐼𝑠

2𝐶2
, and 

𝜕𝐻

𝜕𝑢3
= 0, obtained 

𝑢3
∗ =

 𝜉5−𝜉6 𝑟2𝐼𝑟

2𝐶3
. 

 

4. Results 
 

The solution to the system of equations (5) is solved by a 

numerical method, the fourth order Runge-Kutta method, by 

providing initial values. The next step is to provide the 

initial values for the co-the state variables, which are solved 

by the fourth order Runge-Kutta method, to obtain a solution 

to the equation of the state. 

 

By using the parameter values in Table 1, with the initial 

values of the classes S(0) = 10000000,  V(0) = 500000, E(0) 

=  3000, Is(0) = 2000, Ir(0) = 1000, and R(0) = 0, with 

weights Q1 = 100, Q2 = 200, Q3 = 300, C1 = 400, C2 = 500, 

C3 = 600. Solution of equation (5) with 𝑢1
∗and  no control. 

 

Figures 2 and 3 show that control 𝑢1
∗ , can prevent flu 

infection in peoples who are still healthy from the initial 

time until t = 60 days. 

 
Figure 2: The dynamics spread of S with control, 𝑢1

∗ , and no controls 
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Figure 3: The dynamics spread of V with control  𝑢1

∗,  and no controls 

 
Figure 4: The dynamics spread of E with control, 𝑢1

∗,  and no controls 

 

Based on Figure 4, control, 𝑢1
∗, can reduce the class E peoples from baseline to t = 60 days. 

 
Figure 5: The dynamics spread of Is with controls 𝑢2

∗ , 𝑢1
∗and𝑢2

∗ ,  and no controls 

 

Based on Figure 5, the control, 𝑢1
∗, was effective in reducing 

flu disease compared to no control from baseline to t = 60 

days. The controls, 𝑢1
∗, and 𝑢2

∗ , more effective in reducing 

the number of Is compared to the control, 𝑢2
∗ , only from 

baseline to t = 60 days. 

 

Based on Figure 6, the control, 𝑢3
∗ , was effective in reducing 

Ir compared to no control from baseline to t = 60 days. The 

controls, 𝑢1
∗ and 𝑢3

∗ , were slightly more effective in reducing 

the number of peoples Is compared to control, 𝑢1
∗, only from 

baseline to t = 60 days. 

 
Figure 6: The dynamics spread of Ir with controls 𝑢3

∗ , 𝑢1
∗&𝑢3

∗   and no controls 
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Figure 7: The dynamics spread of R with controls 𝑢1

∗, 𝑢2
∗ ,𝑢3

∗   and no controls 

 

Based on Figure 7, the controls, 𝑢1
∗, 𝑢2

∗ , and 𝑢3
∗ ,  are more effective in increasing the number of R compared to no control from 

the initial time to time t = 60  days.  

 
Figure 8: The profile of the optimal controls 𝑢1

∗, 𝑢2
∗&𝑢3

∗  

 

Based on Figure 8, control profiles 𝑢1
∗, 𝑢2

∗&𝑢3
∗, optimal 

control, 𝑢1
∗ from t = 0 until t = 10 days, from t = 10 days to t 

= 60 days decreased because peoples who are still healthy 

already understand how to prevent flu infection. Optimal 

control, 𝑢2
∗   from t = 0 until t = 36 days, from t = 36 days 

until t = 60 days, decreased the number of Is the class 

because they had been treated and recovered from flu. 

Optimal control, 𝑢3
∗  from t = 0 until t = 46 days, from t = 46 

days to t = 60 days, decreased the number of in Ir the class 

because they had been treated with combination drugs and 

recovered from flu. 

 

5. Conclusion 
 

The model under study was developed from the article by 

Sungcasit [5] by paying attention to exposed the classes so 

that a model of the transmission of flu was obtained, like the 

system of equations (1). Based on the system of equations 

(1), the non-endemic equilibrium point is obtained, and the 

stability analysis of the non-endemic and reproduction 

number is obtained. In the system of equation (1) is given 

controls, 𝑢1
∗, 𝑢2

∗  , and  𝑢3
∗  as in the system of equations (5). 

 

Based on the Hamiltonian equation (7), a system of co-the 

state equations (8) is obtained, which corresponds to a 

system of the state equations (5). In the numerical 

simulation, control, 𝑢1
∗, can prevent peoples from getting 

infected with the flu. Control, 𝑢2
∗  effectively reduced the 

number of the Is class peoples compared to no control. 

Control, 𝑢3
∗  effectively reduced the number of peoples in the 

Ir class compared to no control. Controls 𝑢1
∗ and𝑢2

∗  more 

effectively reduce the number of the Is class peoples than 

control 𝑢2
∗ . Controls 𝑢1

∗ and𝑢3
∗  are more effective in reducing 

the number of the Ir class peoples than the control, 𝑢3
∗  𝑜𝑛𝑙𝑦. 

 

6. Future Scope 
 

This research study can be developed by adding the 

parameters of recruitment into the infected compartment and 

adding the parameters of reinfection of the recovered 

subpopulation. To increase the effectiveness of vaccination 

can also add to the control of vaccination. The spread of 

influenza can also be studied in fractional form. The 

population in this study is closed. The results of this study 

can be used as a reference for research in the epidemic field. 
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