
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 2, February 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Objects and Classes

Sakshi Khare

K. J Somaiya Polytechnic, Department of Diploma in Computer Engg.

Abstract: In this lesson, we will understand what is a class and object. With that, we will also see some examples to create classes and

objects. In C++, a class is a template for an object, whereas an object is an instance of a class.

Keywords: Objects and classes, member functions, data members

1. Introduction

C++ is an object - oriented language that is used to model

real - world entities into programs. All object - oriented

programming languages achieve this task using classes and

objects. Classes act as a blueprint to create objects with

similar properties. The concept of classes and objects in C++

is the fundamental idea around which the object - oriented

approach revolves around. It enhances the program’s

efficiency by reducing code redundancy and debugging

time.

Now, you will understand the concept of the class and object

in C++ with the help of a real - life example. Suppose you

have a small library. In a library, all books have some

common properties like book_name, author_name, and

genre. Now imagine you want to create a catalog of all the

books in your collection. Instead of creating separate classes

for every book you own, you can create a Book class that

serves as a template for all the books in your library.

What are Classes in C++?

A class is a template or a blueprint that binds the properties

and functions of an entity. You can put all the entities or

objects having similar attributes under a single roof, known

as a class. Classes further implement the core concepts like

encapsulation, data hiding, and abstraction. In C++, a class

acts as a data type that can have multiple objects or instances

of the class type.

Consider an example of a railway station having several

trains. A train has some characteristics like train_no,

destination, train_type, arrival_time, and departure_time.

And its associated operations are arrival and departure. You

can define a class can for a train as follows:

class train

{

 // characteristics

 int train_no;

 char destination;

 char train_type;

 int arrival_time;

 int departure_time;

 // functions

 int arrival (delayed_time)

 {

 arrival_time += delayed_time;

 return arr_time;

 }

 int departure (delayed_time)

 {

 departure_time += delayed_time;

 return departure_time;

 }

}

The above class declaration contains properties of the class,

train_no, destination, train_type, arrival_time, and

departure_time as the data members. You can define the

operations, arrival, and departure as the member functions of

the class.

Syntax to Declare a Class in C++:

class class_name

{

 // class definition

 access_specifier: // public, protected, or private

 data_member1; // data members

 data_member2;

 func1 () {} // member functions

 func2 () {}

};

What are Objects in C++?

Objects in C++ are analogous to real - world entities. There

are objects everywhere around you, like trees, birds, chairs,

tables, dogs, cars, and the list can go on. There are some

properties and functions associated with these objects.

Similarly, C++ also includes the concept of objects. When

you define a class, it contains all the information about the

objects of the class type. Once it defines the class, it can

create similar objects sharing that information, with the class

name being the type specifier.

Consider the example of a railway station discussed in the

previous section. After defining the class train, you can

create similar objects for this class. For example, train_A

and train_B. You can create the objects for the class defined

above in the following way:

train train_A, train_B;

The syntax to create objects in C++:

class_nameobject_name;

The object object_name once created, can be used to access

the data members and member functions of the class

class_name using the dot operator in the following way:

obj. data_member = 10; // accessing data member

obj. func (); // accessing member function

Paper ID: SR23129201642 DOI: 10.21275/SR23129201642 25

https://www.simplilearn.com/tutorials/java-tutorial/oops-interview-questions
https://www.simplilearn.com/tutorials/java-tutorial/oops-interview-questions

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 2, February 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Significance of Class and Object in C++

The concept of class and object in C++ makes it possible to

incorporate real - life analogy to programming. It gives the

data the highest priority using classes. The following

features prove the significance of class and object in C++:

 Data hiding: A class prevents the access of the data from

the outside world using access specifiers. It can set

permissions to restrict the access of the data.

 Code Reusability: You can reduce code redundancy by

using reusable code with the help of inheritance. Other

classes can inherit similar functionalities and properties,

which makes the code clean.

 Data binding: The data elements and their associated

functionalities are bound under one hood, providing

more security to the data.

 Flexibility: You can use a class in many forms using the

concept of polymorphism. This makes a program flexible

and increases its extensibility.

Member Functions in Classes

The member functions are like the conventional functions. It

defines these methods inside a class and has direct access to

all the data members of its class. When you define a member

function, it only creates and shares one instance of that

function by all the instances of that class. The following

syntax can be used to declare a member function inside a

class:

class class_name

{

access_specifier:

 return_typemember_function_name (data_typearg);

};

It specifies the access specifier before declaring a member

function. It also specifies the return type and data type in the

same way in which it declares a usual function.

Method Definition Outside and Inside of a Class

The following two ways can define a method or member

functions of a class:

1) Inside class definition

2) Outside class definition

The function body remains the same in both approaches to

define a member function. The difference lies only in the

function's header. Now, have a deeper understanding of

these approaches.

Inside Class Definition

This approach of defining a member function is generally

preferred for small functions. It defines a member function

inside a class in the same familiar way as it defines a

conventional function. It specifies the return type of the

function, followed by the function name, and it provides

arguments in the function header. Then it provides the

function body to define the complete function. The member

functions that are defined inside a class are automatically

inline. The following example illustrates defining a member

function inside a class.

#include <iostream>

using namespace std;

// define a class

class my_class

{

public:

 // inside class definition of the function

 void sum (int num1, int num2) // function header

 {

 cout<< "The sum of the numbers is: "; // function body

 cout<< (num1 + num2) << "\n\n";

 }

};

int main ()

{

 // create an object of the class

 my_classobj;

 // call the member function

 obj. sum (5, 10);

 return 0;

}

In the above example, you define the function sum () inside

the class my_class. The function is automatically an inline

function. Whenever you call this function by an object of its

class, it inserts the code of the function’s body there, which

reduces the execution time of the program. Here, the

statement obj. sum (5, 10) is replaced by the body of the

function sum ().

References

Wikipedia, google, w3schools etc.

Links

[1] https: //www.simplilearn. com/tutorials/cpp -

tutorial/class - and - object - in - cpp

[2] www.google. com,

[3] www.w#schools. com

[4] Books: OOPS using C++

Paper ID: SR23129201642 DOI: 10.21275/SR23129201642 26

https://www.simplilearn.com/tutorials/cpp-tutorial/class-and-object-in-cpp
https://www.simplilearn.com/tutorials/cpp-tutorial/class-and-object-in-cpp
http://www.google.com/
http://www.w/#schools.com

