International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2022): 7.942

Edible Plants of Renuka Tehsil, Sirmaur District, Himachal Pradesh (India)

Parul Sharma¹, S. K. Sood²

¹Department of Biosciences, Himachal Pradesh University, Summer Hill, Shimla-5, India Corresponding Author Email: *parsh85[at]gmail.com*

²Professor, Department of Biosciences, Himachal Pradesh University, Summer Hill, Shimla-5, India

Abstract: Ethnobotany is the study of how people of a particular culture and region make use of indigenous plants. This field encompasses the traditional knowledge and customs related to plants, including their uses for food, medicine, shelter, clothing, and rituals. One important aspect of ethnobotany is the edibility of plants, which refers to their suitability for human consumption. The edibility of plants is closely tied to cultural practices and traditions. Many societies have specific rituals or ceremonies associated with the gathering and consumption of certain edible plants. Ethnobotany's exploration of edibility offers a rich tapestry of cultural heritage, ecological wisdom, and potential solutions to contemporary challenges. Overall, a total of 93 species belonging to 85 genera under 52 families been identified for edibility from Renuka tehsil of district Sirmaur. For edibility 41 species belonging to 40 genera under 28 families have been reported and mostly consumed as fruits (41 species under 32 genera and 22 families). 41 species under 40 genera and 28 families are consumed as vegetables and pot herbs. 22 genera under 18 families with 22 species are used in pickles and chutney preparation. 8 species under 5 families and 8 genera are used for flavouring and culinary preparations. Relatively, the most frequently used families for edible plants except vegetables and pot herbs are represented by Rosaceae (9 species) followed by Fabaceae, Rutaceae and Solanaceae (3 species each) etc.

Keywords: Ethnobotany, Biodiversity, Renuka tehsil, Edibility

1. Introduction

The term ethnobotany, first coined by Harshberger (1895) and has been classified by Jain (1995), father of Indian ethnobotany, into two categories: (1) Abstract and (2) Concrete. The former aspect includes taboos, avoidance, sacred plants, worship and folklore, while the latter deals mainly with the material use and acts of domestication, conservation, improvement or destruction of plants. More importantly, this study of the plants in relation to people includes both wild and domesticated plants (Heiser, 1995).

The Himalayas are a rich repository of medicinal and aromatic plants, diverse cultures and traditions, and its vegetation is rich in Mediterranean, West Asian, Tibetan, Japanese and Burmese elements. For sustenance, the various inhabitants of Himalayan region use about 300 wild spp as subsidiary food (Kapoor, 1978; Arora, 1981); 37spp for fibre; 35 tree spp as multipurpose socio-economically important spp and a large number as medicinal plants (Rao, 1996).

Ethnobotanical research faces challenges such as the erosion of traditional knowledge due to globalization, habitat destruction impacting plant diversity, ethical considerations when working with indigenous communities, and the need for collaboration between traditional knowledge holders and scientific researchers. Ethnobotany plays a crucial role in understanding the intricate relationship between humans and plants. By documenting traditional plant knowledge and practices, it contributes to biodiversity conservation, sustainable resource management, and the discovery of valuable medicinal compounds. This interdisciplinary field continues to provide insights into how different cultures utilize plant resources for various purposes. Ethnobotany is the scientific study of the relationships between plants and people. It encompasses the traditional knowledge, practices, and beliefs concerning the use of plants for food, medicine, materials, and other purposes by various human cultures. This interdisciplinary field combines elements of botany, anthropology, ecology, and pharmacology to understand how different societies interact with their natural environment and utilize plant resources.

Himachal Pradesh is renowned for its rich biodiversity and is home to a vast array of medicinal and aromatic plants. Himachal Pradesh serves as a reservoir of valuable flora that has been traditionally used for edible, medicinal, aromatic, and therapeutic purposes. The current study was undertaken in Renuka Tehsil of district Sirmaur which is located in the Shivalik range of the Himalya is known for its scenic beauty and pleasant climate. Sirmaur district is Located on the southern most portion of the Himachal Pradesh, Sirmour district borders with Haryana State in the south and in the east with the Uttrakhand. The district lies between 30° 22'30" to 31° 01'20" north latitude and 77° 01'12" to 77° 49'40" east longitude.

2. Literature Survey

Janaki Ammal, an Indian botanist, made significant contributions to ethnobotanical research, particularly in the study of food plants among tribal communities in South India (Janakiammal, 1955). Her work focused on exploring the potential uses of Dioscoreas. Her research delved into the intricate relationship between tribal communities and their surrounding plant biodiversity. Ethnobotanical surveys of Himachal Pradesh were carried out by Gupta (1981) and of Sirmaur district by Chauhan and Chauhan (1986). An account of edible plants used by Gujjars and Gaddis from Mandi district was given by Singh (1966) There are total

Volume 12 Issue 12, December 2023 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY DOI: https://dx.doi.org/10.21275/SR231219133117 675 edible wild plant species in Himachal Pradesh (Kala, 2007; Reddy et al., 2007).

3. Methods/ Approach

For the collection of information on edible plants, comprehensive ethnobotanical surveys were conducted during the period of 2017-2019 in Renuka tehsils of district Sirmaur. Structured questionnaire were used to document data about the traditional uses of plants from local healers and conversant people. The resultant information of medicinal plants related to animal healthcare was recorded following Phondani *et al.*, 2010. Standard herbarium methodology of Jain and Rao (1977) was followed and the voucher specimens were authenticated at Forest Research Institute, Dehradun.

4. Results and Discussion

The detailed information of edible plants of the study area has been enlisted in Table 1-IV.

Table I: Edible Plants of Renuka Tehsil of District Sirmaur

Labie	Le Daloie i faites of Refit	ind remain or Dis	iner birmau
S. No	Botanical Names	Family	Parts Used
1	Aegle marmelos	Rutaceae	Fruit
2	Asparagus racemosus	Asparagaceae	Root
3	Bauhinia vahlii	Fabaceae	Seeds
4	Berberisaristata	Berberidaceae	Fruit
5	Berberis lyceum	Berberidaceae	Fruit
6	Bombax ceiba	Bombacaceae	Leaves
7	Cannabis sativa	Cannabaceae	Seed
8	Capsicum annuum	Solanaceae	Fruit
9	Carica papaya	Caricaceae	Fruit
10	Carissa spinarum	Apocynaceae	Fruit
11	Celtis australis	Cannabaceae	Fruit
12	Citrus limon	Rutaceae	Fruit
13	Colocasiaesculenta	Araceae	Tuber
14	Cotinus coggygria	Anacardiaceae	Seeds
15	Debregeasia saeneb	Urticaceae	Fruit
16	Dioscoreabulbifera	Dioscoreaceae	Tuber
17	Duchesneaindica	Rosaceae	Fruit
18	Ficusbengalensis	Moraceae	Fruit
19	Ficusreligiosa	Moraceae	Fruit
20	Flacourtiaindica	Flacourtiaceae	Fruit
21	Indigoferatinctoria	Fabaceae	Flowers
22	Juglans regia	Juglandaceae.	Fruit
23	Murraya koenigii	Rutaceae	Fruit
24	Musa × paradisiaca	Musaceae	Fruit
25	Myrica esculenta	Casuarinaceae	Fruit
26	Nelumbonucifera	Nelumbonaceae	Seeds
27	Opuntiastricta	Cactaceae	Fruit
28	Papaver somniferum	Papaveraceae	Seeds
29	Phoenix sylvestris	Arecaceae	Fruit
30	Physalisangulata	Solanaceae	Fruit
31	Pinuswallichiana	Pinaceae	Seed
32	Prunuscerasoides	Rosaceae	Fruit
33	Prunus persica	Rosaceae	Fruit
34	Psidium guajava	Myrtaceae	Fruit
35	Punicagranatum	Lythraceae	Fruit
36	Pyracantha crenulata	Rosaceae	Fruit
37	Pyrus communis	Rosaceae	Fruit
38	Pyrus pashia	Rosaceae	Fruit
39	Quercussuber	Fagaceae	Seeds
40	Rhododendron arboreum	Ericaceae	Flowers
41	Rosa hrunonii	Rosaceae	Petals

42	Rubusellipticus	Rosaceae	Fruit
43	Rubusniveus	Rosaceae	Fruit
44	Rumex hastatus	Polygonaceae	Leaves
45	Sesamum indicum	Pedaliaceae	Seed
46	Shorearobusta	Dipterocarpaceae	Fruit
47	Solanumnigrum	Solanaceae	Fruit
48	Swertia chirayita	Gentianaceae	Fruit
49	Syzygium cumini	Myrtaceae	Fruit
50	Vicia sativa	Fabaceae	Fruit
51	Woodfordiafruiticosa	Lythraceae	Flowers
52	Ziziphusjujuba	Rhamnaceae	Fruit

 Table II: Important Vegetable and Pot Herbs of Renuka

 Tehsil of District Sirmaur

Tensii of District Sirinau					
S. No.	Botanical Names	Family	Parts used		
1.	Agave americana	Agavaceae	Inflorescence		
2.	Allium sativum	Amaryllidaceae	Leaves		
3.	Aloe vera	Liliaceae	Leaves		
4.	Amaranthus viridis	Amaranthaceae	Leaves		
5.	Bambusanutans	Poaceae	Shoot		
6.	Bauhinia variegata	Fabaceae	Flowers		
7.	Bidenspilosa	Asteraceae	Leaves		
8.	Bombax ceiba	Bombacaceae	Flowers		
9.	Carica papaya	Caricaceae	Fruit		
10.	Chenopodium album	Chenopodiaceae	Leaves		
11.	Colocasiaesculenta	Araceae	Tuber		
12.	Coriandrum sativum	Apiaceae	Leaves		
13.	Cucumissativus	Cucurbitaceae	Fruit		
14.	Dioscoreabulbifera	Dioscoreaceae	Tubers		
15.	Diplazium esculentum	Dryopteridaceae	Young frond		
16.	Eruca sativa	Brassicaceae	Leaves		
17.	Euphorbia roylena	Euphorbiaceae	Tender shoot		
18.	Fagopyrum esculentum	Polygonaceae	Aerial parts		
19.	Ficuspalmata	Moraceae	Unripe fruit		
20.	Indigoferatinctoria	Fabaceae	Flowers		
21.	Justiciaadhatoda	Acanthaceae	Flowers		
22.	Lepidium virginicum	Brassicaceae	Plant		
23.	Leucas lanata	Lamiaceae	Aerial parts		
24.	Lycopersiconesculentum	Solanaceae	Fruit		
25.	Maluspumila	Rosaceae	Raw fruit		
26.	Mentha arvensis	Lamiaceae	Leaves		
27.	Morchella esculenta	Morchellaceae	Mushrooms		
28.	Morus alba	Moraceae	Leaves		
29.	Musa imes paradisiaca	Musaceae	Fruit		
30.	Nasturtium officinale	Brassicaceae	Leaves		
31.	Pisumsativum	Fabaceae	Seeds		
32.	Plantago major	Plantaginaceae	Aerial parts		
33.	Pteridiumaquilinum	Dennstaedtiaceae	Aerial parts		
34.	Raphanussativus	Brassicaceae	Leaves, fruits		
35.	Senna tora	Fabaceae	Leaves, pods		
36.	Smilax aspera	Smilacaceae	Fruits		
37.	Solanumnigrum	Solanaceae	Leaves		
38.	Solanumtuberosum	Solanaceae	Tubers		
39.	Sonchus asper	Asteraceae	Tender shoots		
40.	Trigonella foenum-graecum	Fabaceae	Leaves		
41.	Urtica dioca	Urticaceae	Leaves		

 Table III: Plant Used for Pickles and Chutney by the Local

 Populace of Study Area

S. No.	Botanical Names	Family	Part used
1.	Allium sativum	Amaryllidaceae	Leaves, bulbs
2.	Bambusanutans	Poaceae	Young shoot
3.	Bauhinia variegata	Fabaceae	Dried flowers
4.	Cannabis sativa	Cannabaceae	Seeds
5.	Capsicum annuum	Solanaceae	Fruits
6.	Carissa spinarum	Apocynaceae	Fruits

Volume 12 Issue 12, December 2023 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
SJIF (2022): 7.942

7.	Citrus limon	Rutaceae	Fruits
8.	Coriandrum sativum	Apiaceae	Leaves
9.	Curcuma longa	Zingiberaceae	rhizome
10.	Diplazium esculentum	Dryopteridaceae	Young frond
11.	Lycopersiconesculentum	Solanaceae	Fruit
12.	Maluspumila	Rosaceae	Fruit
13.	Mentha arvensis	Lamiaceae	Leaves
14.	Morchella esculenta	Morchellaceae	Mushrooms
15.	Oxalis corniculata	Oxalidaceae	Leaves
16.	Phyllanthusemblica	Euphorbiaceae	Fruits
17.	Punicagranatum	Lythraceae	Seeds
18.	Rhododendron arboreum	Ericaceae	Flowers
19.	Senna tora	Fabaceae	Leaves, pods
20.	Zingiber officinale	Zingiberaceae	Rhizome
21.	Zea mays	Poaceae	Grain
22.	Ziziphusjujuba	Rhamnaceae	Fruits

Table IV: Plants used for Flavouring and Culinary

 Preparation of Study Areas

Plant Species	Family	Part/sUsed	
Coriandrum sativum	Apiaceae	Leaves	
Curcuma longa	Zingiberaceae	Rhizome	
Mentha arvensis	Lamiaceae	Leaves	
Murraya koenigii	Rutaceae	Leaves	
Ocimum tenuiflorum	Lamiaceae	Leaves	
Papaver somniferum	Papaveraceae	Whole Plant	
Zanthoxylum armatum	Rutaceae	Leaves	
Zingiber officinale	Zingiberaceae	Rhizome	

Figure 1: Relative Disposition of Plant Parts Used for Edible Purposes in Study Area

Figure 2: Relative Disposition of Plant Parts Used as Vegetable and Pot Herb in Study Area

DOI: https://dx.doi.org/10.21275/SR231219133117

International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2022): 7.942

Figure 3: Relative Disposition of Plant Parts Used in Pickles and Chutney

Figure 4: Relative Disposition of Plant Parts Used for Flavouring and Culinary Purpose

In current study, a total of 93 species belonging to 85 genera under 52 families been identified for edibility from the regions (Table I-IV; Fig. 1-4). For edibility except plant species used as vegetables and pot herbs, 41 species belonging to 40 genera under 28 families have been reported (Table I) and mostly the plant species under this category are consumed as fruits (41 species under 32 genera and 22 families). In other category of edibles (Vegetables and Pot herbs - Table II) 41 species under 40 genera and 28 families are consumed as vegetables and pot herbs. 22 genera under 18 families with 22 species are used in pickles and chutney preparation (Table III) while 8 species under 5 families and 8 genera are used for flavouring and culinary preparations. Relatively, the most frequently used families for edible plants except vegetables and pot herbs are represented by Rosaceae (9 species) followed by Fabaceae, Rutaceae and Solanaceae (3 species each), Berberidaceae, Cannabaceae, Lythraceae, Moraceae and Myrtaceae (2 species each) and rest of the families are represented by 1 species. Similarly, top six predominant families for plants used as vegetables and pot herbs are Fabaceae (5 species), followed by Brassicaceae (4 species), Solanaceae (3 species) and Asteraceae, Morceae, Solanaceae (2 species each). On comparing upon the present data with earlier Indian works, it is indicated that usage of edible species like Celtis australis,

Rosa brunonii, Senna tora as fruit/flowers/pods; Euphorbia royleana, Indigoferatinctoria and Pteridiumaquilinum as vegetable and pot herb; Eriobotrya japonica, Oxalis corniculata, Punicagranatum and as pickles and chutney Zanthoxylum armatum in culinary and flavouring preparations are unique to the study area and have not been hitherto reported. Undeniably, the documented information extends the base of our food security system and also at the same time enhances our chance of survival in the events of any crisis like famine and war.

5. Conclusion

The traditional knowledge of edible plants held by the local populace in the study area is indeed valuable and worth preserving. This knowledge passed down from generation to generation, provides insights into the diverse range of plants that can be used for food, medicine, and other purposes. However, it is evident that this traditional knowledge is at risk of being lost due to the rapid changes brought about by modern lifestyles. Preserving traditional knowledge of edible plants is crucial for several reasons. Firstly, it contributes to the conservation of biodiversity as indigenous communities often possess extensive knowledge about local flora and fauna. Documenting this knowledge can aid in identifying and protecting plant species that may be at risk due to environmental changes or overexploitation.

In conclusion, documenting the traditional knowledge of edible plants held by local communities is essential for preserving biodiversity, cultural heritage, and advancing scientific understanding. By addressing the challenges through respectful collaboration and employing appropriate methods, this valuable knowledge can be safeguarded for the benefit of present and future generations.

References

- Arora, R.K. 1981. Native food plants of the northeastern tribals, 91-106. <u>In</u>:Jain, S.K. (ed.) *Glimpses of Indian Ethnobotany*. Oxford &IBH, New Delhi.
- [2] Chauhan V, Chauhan NS (1986): Ethnobotany of trans-giri area of Sirmour district of Himachal PradeshBull Medethno-bot Res 9: 19–22

Volume 12 Issue 12, December 2023 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

Paper ID: SR231219133117

- [3] Gupta R (1981): Plants in folk medicine of the Himalayas. In SK Jain (ed.) Glimpses of Indian Ethnobotany. New Delhi: Oxford and IBH publishers, pp. 83–90.
- [4] Harshberger, J.W. 1895. Some new ideas: The plants cultivated by aboriginal people and how used in primitive commerce. *The Evening Telegraph (daily), Philadelphia* 63 (134): 2
- [5] Heiser, C.B. 1995. Edgar Anderson botanist and curator of useful plants. *Ann. Miss. Bot. Gard.* .82 (1): 54-60.
- [6] Jain, S.K. 1995. Ethnobotanical diversity in Zingibers of India. *Ethnobotany7*: 83-88.
- [7] JanakiAmmal, E. K.1955. An introduction to the subsistence economy of India, 16 22. Background paper No.10. Winner Gref Foundation Intl. Symp. onMan"s.
- [8] Jain, S. K. & Rao, R. R. (eds) 1977. A Handbook of Field and Harbarium Methods. Today"s&Tomorrow"s Printers & Publ., New Delhi.
- [9] Kala, C. P. (2007). Prioritization of cultivated and wild edible by local people in the Uttaranchal Hills of Indian Himalaya. Indian J. Trad. Knowl., 6(1):239-244.
- [10] Kapoor, P. 1978. Exploration of plant resources of Himachal Pradesh as food source, 153-163. <u>In</u>: Proceeding of National Seminar on Resources Development and Environment in the Himalayan Region. D.S.T. Govt. of India.
- [11] Phondani, P. C., Maiknuri, R. K., Rawat, L. S., Farooquee, N. A., Kala, C. P., Vishwakarma, S. C. R., Rao, K. S. and Saxena, K. G. (2010). Ethnobotanical uses of plants among the Bhotiyal tribal communities of Niti valley in Central Himalaya, India. Ethnobot. Res. & Applications, 8: 233 - 244.
- [12] Rao, R.R. 1996. Indigenous people and forests: perspectives of an ethnobotanical study from Nagaland, North-East India: 367-371. <u>In</u>: Jain, S.K. (<u>ed</u>.) *Ethnobiology in Human Welfare*. Deep Publ., New Delhi.
- [13] Reddy, K. N., C. Pattanaik, C. S. Reddy and V. S. Raju (2007). Traditional knowledge on wild food plants in Andhra Pradesh. Indian J. Trad. Knowl., 6(1):223-229.
- [14] Singh, U. 1996. Dictionary of Economic Plants in India. I.C.A.R.. New Delhi (India).

DOI: https://dx.doi.org/10.21275/SR231219133117