A Detailed Study of Kirchhoff-type Critical Elliptic Equations and p-Sub-Laplacian Operators within the Heisenberg Group \mathcal{H}_{n} Framework

SUBHAM DE
Department of Mathematics, Indian Institute of Technology, Delhi, India.
Email: mas227132@iitd.ac.in
Website: www.sites.google.com/view/subhamde

Dated: December 1, 2023

Abstract

This article presents a comprehensive study of Kirchhoff-type Critical Elliptic Equations involving p-sub-Laplacian Operators on the Heisenberg Group \mathcal{H}_{n}. It delves into the mathematical framework of Heisenberg Group, and explores their Spectral Properties. A significant focus is on the existence and multiplicity of solutions under various conditions, leveraging concepts like the Mountain Pass Theorem. This work not only contributes to the theoretical understanding of such groups but also has implications in fields like Quantum Mechanics and Geometric Group Theory.

Keywords and Phrases: Heisenberg Group, sub-Laplacian, Twisted laplacian, Essential Self-Adjointness, Spectrum, Essential Spectra, p-sub-Laplacian, Kirchhoff-type Critical Elliptic Equations, Palais-Smale Condition.

2020 MSC: Primary 35A15, 35A20, 35B38, 35B65, 35J35, 35D30, 35H10, 35J70.
Secondary 35-02, 35A01, 35A09.

Contents

1 Sub-Laplacian On The Heisenberg Group 2
1.1 Definition \& Construction 2
1.2 Twisted Laplacians 4
1.3 Essential Self-Adjointness Property 6
2 The Spectrum of the sub-Laplacian 7
3 Essential Spectra of sub-Laplacian 9
4 Kirchhoff-type Critical Elliptic Equations involving p-sub-Laplacians on \mathcal{H}_{n} 10
4.1 Some Important Concepts 10
4.2 Introduction to Critical Kirchhoff Equations 14
5 Existence and Multiplicity of Solutions 16
5.1 Some Important Assumptions 16
5.2 Palais-Smale Condition $(P S)_{c}$ 17
5.3 The Non-Degenerate Case 18
5.3.1 Proof of Theorem (5.3.1) 19
5.3.2 Proof of Theorem (5.3.2) 21
5.4 The Degenerate Case 23
5.4 .1 Proof of Theorem (5.4.1) 24
5.4.2 Proof of Theorem (5.4.2) 24

1 Sub-Laplacian On The Heisenberg Group

1.1 Definition \& Construction

Suppose, we consider the identification of \mathbb{R}^{2} with \mathbb{C} via the map,

$$
\begin{array}{r}
\mathbb{R}^{2} \longrightarrow \mathbb{C} \\
(x, y) \mapsto z=x+i y
\end{array}
$$

Then, we can interpret, $\mathcal{H}_{3}=\mathbb{C} \times \mathbb{R}$, where, \mathcal{H}_{3} is the Heisenberg Group defined on 3 parameters. As observed before, \mathcal{H}_{3} is a non-commutative and a Unimodular Lie Group on which the Haar Measure is equal to the usual Lebesgue Measure $d z d t$.

Volume 12 Issue 12, December 2023
 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A priori denoting the Lie Algebra associated to \mathcal{H}_{3} as \mathfrak{h}, consisting of all left invariant vector fields on the same, we can in fact opt for a basis of \mathfrak{h} as $\{X, Y, T\}$, where,

$$
\begin{equation*}
X=\partial_{y_{1}}-2 y_{2} \partial_{\tau}, \quad Y=\partial_{y_{2}}+2 y_{1} \partial_{\tau}, \quad T=4 \partial_{\tau} \tag{1.1}
\end{equation*}
$$

Definition 1.1.1. (Sub-Laplacian) The sub-Laplacian \mathcal{L} on \mathcal{H}_{3} is defined by,

$$
\begin{equation*}
\mathcal{L}=-\left(X^{2}+Y^{2}\right) \tag{1.2}
\end{equation*}
$$

We further introduce the following notations corresponding to the partial differential operators on \mathbb{C} as,

$$
\begin{aligned}
& \frac{\partial}{\partial z}=\frac{\partial}{\partial y_{1}}-i \frac{\partial}{\partial y_{2}} \\
& \frac{\partial}{\partial \bar{z}}=\frac{\partial}{\partial y_{1}}+i \frac{\partial}{\partial y_{2}}
\end{aligned}
$$

Thus it only suffices to study the vector fields Z and \bar{Z} on \mathcal{H}_{3} given by,

$$
\begin{align*}
& Z=X-i Y=\frac{\partial}{\partial z}-2 i \bar{z} \frac{\partial}{\partial \tau} \tag{1.3}\\
& \bar{Z}=X+i Y=\frac{\partial}{\partial \bar{z}}+2 i z \frac{\partial}{\partial \tau} \tag{1.4}
\end{align*}
$$

Important to note that, \bar{Z} is also well-known as the Hans Lewy Operator [19], which eventually defies local solvability on \mathbb{R}^{3}, and,

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2}(Z \bar{Z}+\bar{Z} Z) \tag{1.5}
\end{equation*}
$$

We can further compute,

$$
\begin{aligned}
& \mathcal{L}=-\left(\left(\frac{\partial}{\partial y_{1}}-2 y_{2} \frac{\partial}{\partial \tau}\right)^{2}+\left(\frac{\partial}{\partial y_{2}}+2 y_{1} \frac{\partial}{\partial \tau}\right)^{2}\right) \\
= & -\Delta-4\left(y_{1}^{2}+y_{2}^{2}\right) \frac{\partial^{2}}{\partial \tau^{2}}+4\left(y_{2} \frac{\partial}{\partial y_{1}}-y_{1} \frac{\partial}{\partial y_{2}}\right) \frac{\partial}{\partial \tau}
\end{aligned}
$$

provided, $\Delta=\frac{\partial^{2}}{\partial y_{1}^{2}}+\frac{\partial^{2}}{\partial y_{2}^{2}}$.
Subsequently, the symbol $\sigma(\mathcal{L})$ of \mathcal{L} can be derived as follows,

$$
\begin{equation*}
\sigma(\mathcal{L})\left(y_{1}, y_{2}, \tau ; \xi, \eta, \gamma\right)=\left(\xi-2 y_{2} \gamma\right)^{2}+\left(\eta+2 y_{1} \gamma\right)^{2} \tag{1.6}
\end{equation*}
$$

For every $\left(y_{1}, y_{2}, \tau\right),(\xi, \eta, \gamma) \in \mathcal{H}_{3}$.

Remark 1.1.1. \mathcal{L} is Nowhere Elliptic on \mathbb{R}^{3}.

A priori from the fact that, $[X, Y]=T$, a theorem by Hörmander [18, Theorem 1.1] enables us to conclude that, \mathcal{L} is indeed Hypoelliptic.

1.2 Twisted Laplacians

For $\tau \in \mathbb{R} \backslash\{0\}$, let, Z_{τ} and \bar{Z}_{τ} be partial differential operators given by,

$$
\begin{aligned}
& Z_{\tau}=\frac{\partial}{\partial z}-2 \bar{z} \tau \\
& \bar{Z}_{\tau}=\frac{\partial}{\partial \bar{z}}+2 z \tau
\end{aligned}
$$

Subsequently, the Twisted Laplacian L_{τ} is defined as,

$$
\begin{equation*}
L_{\tau}=-\frac{1}{2}\left(Z_{\tau} \bar{Z}_{\tau}+\bar{Z}_{\tau} Z_{\tau}\right) \tag{1.7}
\end{equation*}
$$

To be more explicit, we can write,

$$
\begin{gather*}
L_{\tau}=-\frac{1}{2}\left(\left(\frac{\partial}{\partial z}-2 \bar{z} \tau\right)\left(\frac{\partial}{\partial \bar{z}}+2 z \tau\right)+\left(\frac{\partial}{\partial \bar{z}}+2 z \tau\right)\left(\frac{\partial}{\partial z}-2 \bar{z} \tau\right)\right) \\
=-\Delta+4\left(y_{1}^{2}+y_{2}^{2}\right) \tau^{2}+4 i\left(y_{1} \frac{\partial}{\partial y_{2}}-y_{2} \frac{\partial}{\partial y_{1}}\right) \tau \tag{1.8}
\end{gather*}
$$

Remark 1.2.1. The fundamental connection between the sub-laplacian and the twisted laplacian is given by the following result. (ref. [20], [21], [22])

Theorem 1.2.2. Suppose, $u \in \mathcal{S}^{\prime}\left(\mathcal{H}_{3}\right) \cap C^{\infty}\left(\mathcal{H}_{3}\right)$ be such that, $\check{u}(z, \tau)$ is a tempered distribution of τ on $\mathbb{R}, \forall \quad z \in \mathbb{C}$, where, \check{u} denotes the Inverse Fourier Transform of u with respect to time t. Then, for almost every $\tau \in \mathbb{R} \backslash\{0\}$,

$$
(\mathcal{L} u)^{\tau}=L_{\tau} u^{\tau}
$$

where,

$$
(\mathcal{L} u)^{\tau}(z)=(\mathcal{L} u)^{r}(z), \quad z \in \mathbb{C}
$$

and,

$$
u^{\tau}(z)=\check{u}(z, \tau), \quad z \in \mathbb{C}
$$

We recall the definition of Fourier Transform \hat{f} of a function $f \in L^{1}(\mathbb{R})$ as,

$$
\begin{equation*}
\hat{f}(\xi):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i x \cdot \xi} f(x) d x, \quad \xi \in \mathbb{R} \tag{1.9}
\end{equation*}
$$

Since, our primary intention is to study the spectral properties of L_{τ}, we introduce the following.

Volume 12 Issue 12, December 2023
\section*{www.ijsr.net}
Licensed Under Creative Commons Attribution CC BY

Definition 1.2.1. The Fourier-Wigner Transform $V_{\tau}(f, g)$ of the functions $f, g \in \mathcal{S}(\mathbb{R})$ is defined by,

$$
V_{\tau}(f, g)(q, p)=\frac{1}{\sqrt{2 \pi}}|\tau|^{1 / 2} \int_{-\infty}^{\infty} e^{i \tau q \cdot y} f(y-2 p) \overline{g(y+2 p)} d y, \quad \forall \quad q, p \in \mathbb{R}
$$

If, $\tau=1$, then, $V_{1}(f, g)=V(f, g)$, which in fact, defines the Classical Fourier-Wigner Transform. (ref. [25], [26], [27])

It can be further established that,

$$
V_{\tau}(f, g)(q, p)=|\tau|^{1 / 2} V(f, g)(\tau q, p)
$$

For $\tau \in \mathbb{R} \backslash\{0\}$ and, $k=0,1,2, \cdots$, we define the function $e_{k, \tau}$ on \mathbb{R} by,

$$
e_{k, \tau}(x)=|\tau|^{1 / 4} e_{k}(\sqrt{|\tau|} x), \quad x \in \mathbb{R}
$$

Where, e_{k} denotes the Hermite Function defined as follows,

$$
\begin{equation*}
e_{k}(x):=\frac{1}{\left(2^{k} k!\sqrt{\pi}\right)^{1 / 2}} e^{-\frac{x^{2}}{2}} H_{k}(x), \quad x \in \mathbb{R} . \tag{1.10}
\end{equation*}
$$

Such that,

$$
\begin{equation*}
H_{k}(x):=(-1)^{k} e^{x^{2}}\left(\frac{d}{d x}\right)^{k}\left(e^{-x^{2}}\right), \quad x \in \mathbb{R} \tag{1.11}
\end{equation*}
$$

Given $j, k=0,1,2, \ldots$, we define the function $e_{j, k, \tau}$ on \mathbb{C} as follows,

$$
\begin{equation*}
e_{j, k, \tau}=V_{\tau}\left(e_{j, \tau}, e_{k, \tau}\right) \tag{1.12}
\end{equation*}
$$

Further computation yields,

$$
e_{j, k, 1}=V_{1}\left(e_{j, 1}, e_{k, 1}\right)=V\left(e_{j}, e_{k}\right)
$$

Where, $V\left(e_{j}, e_{k}\right)$ is the Classical Hermite Function on \mathbb{C}. [ref. 25]]
Remark 1.2.3. The above result can also be interpreted as an analogue of [25, Proposition 21.1].
Proposition 1.2.4. The set, $\left\{e_{j, k, \tau} \mid j, k=0,1,2, \ldots.\right\}$ is an orthonormal basis for $L^{2}(\mathbb{C})$.
Indeed we can learn about the respective spectral properties of $L_{\tau}, \tau \in \mathbb{R} \backslash\{0\}$.
Theorem 1.2.5. For $j, k=0,1,2, \ldots$, the following holds true,

$$
L_{\tau} e_{j, k, \tau}=(2 k+1)|\tau| e_{j, k, \tau}
$$

Proof. Proof is similar to the derivation cited in [25, Theorem 22.2].
A priori from the statement of [25, Theorem 22.1], it follows that, for $j=0,1,2, \ldots$ and $k=0,1,2, \ldots \ldots$;

$$
Z \bar{Z} e_{j, k}=i(2 k+2)^{1 / 2} Z e_{j, k-1}=-(2 k+2) e_{j, k}
$$

and,

$$
\bar{Z} Z e_{j, k}=i(2 k)^{1 / 2} Z e_{j, k-1}=-(2 k) e_{j, k}
$$

Thus,

$$
L_{\tau} e_{j, k}=-\frac{1}{2}(Z \bar{Z}+\bar{Z} Z)|\tau| e_{j, k, \tau}
$$

Important to observe that, the above identity also holds for $e_{j, 0, \tau}$, where, $j=0,1,2, \ldots$. due to the fact that,

$$
Z e_{j, 0}=0, \quad \forall \quad j=0,1,2, \ldots
$$

1.3 Essential Self-Adjointness Property

Our aim in this section is to study the Sub-Laplacian \mathcal{L} as an unbounded linear operator from $L^{2}\left(\mathcal{H}_{3}\right)$ to $L^{2}\left(\mathcal{H}_{3}\right)$ with dense domain denoted as, $\mathcal{S}\left(\mathcal{H}_{3}\right)$.

Proposition 1.3.1. \mathcal{L} is an injective symmetric operator from $L^{2}\left(\mathcal{H}_{3}\right)$ to $L^{2}\left(\mathcal{H}_{3}\right)$ with dense domain $\mathcal{S}\left(\mathcal{H}_{3}\right)$. Furthermore, it is strictly positive.

Proof follows from integration by parts.
Remark 1.3.2. The above proposition implies that, \mathcal{L} is closed. Suppose we denote its closure by \mathcal{L}_{0}. Hence, \mathcal{L}_{0} is closed, symmetric and positive operator from $L^{2}\left(\mathcal{H}_{3}\right)$ to $L^{2}\left(\mathcal{H}_{3}\right)$.

In fact, \mathcal{L} is Essentially Self-Adjoint (ref. [23, Section 4, pp. 1603]) in the following sense that, it has a unique self-adjoint extension, which, subsequently equals to \mathcal{L}_{0}. Further details on essential self-adjointness can be found in [24, Theorem X.23].

Remark 1.3.3. The results and derivations in this article are also valid for the Sub-Laplacian on the n-dimensional Heisenberg Group $\mathcal{H}_{n}, n>1$, having an underlying space as $\mathbb{C}^{n} \times \mathbb{R}$, although, we have only explored the case for $n=1$, which is \mathcal{H}_{3} for the sake of lucidity.

Volume 12 Issue 12, December 2023

2 The Spectrum of the sub-Laplacian

A priori given a closed linear operator \mathcal{T} from a complex Banach Space X with dense domain $\mathcal{D}(\mathcal{T})$, we provide the following definitions,

Definition 2.0.1. (Spectrum) The Resolvent Set $\rho(\mathcal{T})$ of \mathcal{T} is defined as follows,

$$
\rho(\mathcal{T}):=\{\lambda \in \mathbb{C} \mid \mathcal{T}-\lambda I: \mathcal{D}(\mathcal{T}) \longrightarrow X \text { is bijective }\}
$$

Where, I denotes the identity operator on X.
The Spectrum, denoted by $\Sigma(\mathcal{T})$ is defined to be the complement of $\rho(\mathcal{T})$ in \mathbb{C}.
Definition 2.0.2. (Point Spectrum) The point spectrum [28] of \mathcal{T}, denoted by $\Sigma_{p}(\mathcal{T})$ is defined as,

$$
\Sigma_{p}(\mathcal{T}):=\{\lambda \in \mathbb{C} \mid \mathcal{T}-\lambda I: \mathcal{D}(\mathcal{T}) \longrightarrow X \text { is not injective }\}
$$

Definition 2.0.3. (Continuous Spectrum) The Continuous Spectrum of \mathcal{T}, denoted by $\Sigma_{c}(\mathcal{T})$, is defined as,
$\Sigma_{c}(\mathcal{T}):=\left\{\lambda \in \mathbb{C} \mid \operatorname{Range}(\mathcal{T}-\lambda I)\right.$ is dense in $X,(\mathcal{T}-\lambda I)^{-1}$ exists, but is unbounded $\}$
Definition 2.0.4. (Residual Spectrum) The Residual Spectrum of \mathcal{T}, denoted by $\Sigma_{r}(\mathcal{T})$, is defined as,
$\Sigma_{r}(\mathcal{T}):=\left\{\lambda \in \mathbb{C} \mid \operatorname{Range}(\mathcal{T}-\lambda I)\right.$ is not dense in $X,(\mathcal{T}-\lambda I)^{-1}$ exists and is bounded $\}$
We can indeed deduce that, $\Sigma_{p}(\mathcal{T}), \Sigma_{c}(\mathcal{T})$ and $\Sigma_{r}(\mathcal{T})$ are mutually disjoint. Furthermore,

$$
\Sigma(\mathcal{T})=\Sigma_{p}(\mathcal{T})+\Sigma_{c}(\mathcal{T})+\Sigma_{r}(\mathcal{T})
$$

Proposition 2.0.1. A priori given a complex and separable Hilbert Space X, if \mathcal{T} is a self-adjoint operator, then,

$$
\Sigma_{r}(\mathcal{T})=\phi
$$

With the above notations and concepts, we thus delineate a more precise illustration of the Spectrum of the sub-Laplacian on the Heisenberg Group.

Theorem 2.0.2. We have,

$$
\Sigma\left(\mathcal{L}_{0}\right)=\Sigma_{c}\left(\mathcal{L}_{0}\right)=[0, \infty)
$$

International Journal of Science and Research (IJSR)

Proof. We first intend to show that, no eigenvalue of \mathcal{L}_{0} lies in the interval $[0, \infty)$. We know for a fact that, 0 is not an eigenvalue of \mathcal{L}_{0} (Proof mentioned in [22]). Suppose, λ be a positive number such that, \exists a function $u \in L^{2}\left(\mathcal{H}_{3}\right)$ satisfying,

$$
\mathcal{L}_{0} u=\lambda u
$$

Consequently,

$$
L_{\tau} u^{\tau}=\lambda u^{\tau}
$$

Although, the above relation implies that, $u^{\tau}=0, \quad \forall \tau \in \mathbb{R} \backslash\{0\}$ and,

$$
\begin{equation*}
|\tau| \neq \frac{\lambda}{(2 k+1)}, \quad k=0,1,2, \cdots \tag{2.1}
\end{equation*}
$$

This helps us conclude that, $u=0$, a contradiction. Moreover, \mathcal{L}_{0} being self-adjoint, it implies,

$$
\Sigma\left(\mathcal{L}_{0}\right)=\Sigma_{c}\left(\mathcal{L}_{0}\right)
$$

Thus, it only suffices to establish that, $\left(\mathcal{L}_{0}-\lambda I\right)$ is not surjective $\forall \quad \lambda \in[0, \infty)$.
Assuming $\left(\mathcal{L}_{0}-\lambda I\right)$ to be surjective for some $\lambda_{0} \in[0, \infty)$, we can infer that, $\lambda_{0} \in \rho\left(\mathcal{L}_{0}\right)$. Hence, \exists an open interval $I_{\lambda_{0}} \subset \rho\left(\mathcal{L}_{0}\right)$ containing λ_{0}.

Define f on \mathcal{H} as,

$$
f(x, y, t)=h(x, y) e^{-\frac{t^{2}}{2}}, \quad x, y, t \in \mathbb{R}
$$

Where, $h \in L^{2}\left(\mathbb{R}^{2}\right)$.
Therefore, for every $\lambda \in I_{\lambda_{0}}, \exists$ a function $u_{\lambda} \in L^{2}\left(\mathcal{H}_{3}\right)$, such that,

$$
\left(\mathcal{L}_{0}-\lambda I\right) u_{\lambda}=f
$$

Computing the Inverse Transform with respect to t helps us conclude,

$$
\begin{equation*}
\left(L_{\tau}-\lambda I\right) u_{\lambda}^{\tau}=h e^{-\frac{\tau^{2}}{2}}, \quad \text { for almost every } \tau \in \mathbb{R} \backslash\{0\} \tag{2.2}
\end{equation*}
$$

As a consequence, $\left(L_{\tau}-\lambda I\right)$ is surjective $\forall \tau \in S_{\lambda}$ for which the lebesgue measure,

$$
m\left(\mathbb{R} \backslash S_{\lambda}\right)=0
$$

Consider, $\tau \in \bigcap_{r \in I_{\lambda_{0}} \cap \mathbb{Q}} S_{r}, \mathbb{Q}$ being the set of all rationals. Hence, $\left(L_{\tau}-\lambda I\right)$ is surjective, and subsequently injective for every $\lambda \in I_{\lambda_{0}} \cap \mathbb{Q}$.

Thus, $L_{\tau}-\lambda I$ is bijective, $\forall \lambda \in I_{\lambda_{0}}$. (Use the fact that, the Resolvent Set of L_{τ} is open) Furthermore, we can also observe that, $\left(L_{\tau}-\lambda I\right)$ is injective iff,

$$
\lambda \neq(2 k+1)|\tau|, \quad k=0,1,2, \cdots
$$

A contradiction to the fact that, if we assume $\tau \in \bigcap_{r \in I_{\lambda_{0}}} S_{r}$ to be sufficiently small, such that, $(2 k+1)|\tau| \in I_{\lambda_{0}}$ for some $k=0,1,2, \cdots$. Hence, the proof is done.

Remark 2.0.3. As an application to Theorem 2.0.2, in the next section, we shall introoduce various Essential Spectra which'll be extremely helpful to us.

3 Essential Spectra of sub-Laplacian

Given a closed linear operator \mathcal{T} densly defined on a complex Banach Space X.
Definition 3.0.1. The Essential Spectrum of \mathcal{T}, denoted as $\Sigma_{D S}(\mathcal{T})$ [Dunford and Schwartz [29]] is defined as follows,

$$
\Sigma_{D S}(\mathcal{T}):=\{\lambda \in \mathbb{C} \mid \operatorname{Range}(\mathcal{T}-\lambda I) \text { is not closed in } X\}
$$

Let us recall the following concept from Functional Analysis.
Definition 3.0.2. (Fredholm Operator) Given any two Banach Spaces X and Y, and a bounded linear operator $\mathcal{T}: X \longrightarrow Y$, we define \mathcal{T} to be Fredholm if, the following conditions hold true:

1. $\operatorname{ker}(\mathcal{T})$ is of finite dimension.
2. Range (\mathcal{T}) is closed.
3. $\operatorname{Coker}(\mathcal{T})$ is of finite dimension.

If \mathcal{T} is Fredholm, then, Index of \mathcal{T} is defined to be equal to $\{\operatorname{dim}(\operatorname{ker}(\mathcal{T}))-\operatorname{dim}(\operatorname{Coker}(\mathcal{T}))\}$.
Denote $\Phi_{W}(\mathcal{T})$ to be the set of all $\lambda \in \mathbb{C}$, such that, $\mathcal{T}-\lambda I$ is a Fredholm Operator. Furthermore, suppose, $\Phi_{S}(\mathcal{T})$ be the set of all complex numbers λ satisfying, $\mathcal{T}-\lambda I$ is Fredholm with index 0 .

Then, the essential spectrums $\Sigma_{W}(\mathcal{T})$ [Wolf [30] [31] and, $\Sigma_{S}(\mathcal{T})$ [Schechter [32]] of \mathcal{T} having the following definitions,

$$
\Sigma_{W}(\mathcal{T})=\mathbb{C} \backslash \Phi_{W}(\mathcal{T})
$$

and,

$$
\Sigma_{S}(\mathcal{T})=\mathbb{C} \backslash \Phi_{S}(\mathcal{T})
$$

It is obvious from the respective definitions that,

$$
\begin{equation*}
\Sigma_{D S}(\mathcal{T}) \subseteq \Sigma_{W}(\mathcal{T}) \subseteq \Sigma_{S}(\mathcal{T}) \tag{3.1}
\end{equation*}
$$

In the particular case when, \mathcal{T} denotes the sub-laplacian on the Heisenberg Group \mathcal{H}_{3}, we can indeed deduce the following important result.

Theorem 3.0.1. We shall have,

$$
\begin{equation*}
\Sigma_{D S}\left(\mathcal{L}_{0}\right)=\Sigma_{W}\left(\mathcal{L}_{0}\right)=\Sigma_{S}\left(\mathcal{L}_{0}\right)=[0, \infty) \tag{3.2}
\end{equation*}
$$

Proof. It only requires us to verify that,

$$
[0, \infty) \subseteq \Sigma_{D S}\left(\mathcal{L}_{0}\right)
$$

Assume, $\lambda \in[0, \infty)$, although, $\lambda \notin \Sigma_{D S}\left(\mathcal{L}_{0}\right)$. Thus, Range $\left(\mathcal{L}_{0}-\lambda I\right)$ is closed in $L^{2}\left(\mathcal{H}_{3}\right)$. This in turn helps us conclude that, $\mathcal{L}_{0}-\lambda I$ is bijective, i.e., $\lambda \in \mathcal{L}_{0}$, a contradiction. Hence the proof is complete.

Remark 3.0.2. Similar technique can be implemented to compute the Spectrum of the unique self-adjoint extension $\Delta_{\mathcal{H}_{3,0}}$ of the Laplacian $\Delta_{\mathcal{H}_{3}}$ on the Heisenberg Group \mathcal{H}_{3} defined as,

$$
\Delta_{\mathcal{H}_{3}}=-\left(X^{2}+Y^{2}+T^{2}\right)
$$

In fact, we have [33],

$$
\Sigma\left(\Delta_{\mathcal{H}_{3}, 0}\right)=\Sigma_{c}\left(\Delta_{\mathcal{H}_{3}, 0}\right)=[0, \infty)
$$

Therefore, we can infer,

$$
\begin{equation*}
\Sigma_{D S}\left(\Delta_{\mathcal{H}_{3}, 0}\right)=\Sigma_{W}\left(\Delta_{\mathcal{H}_{3}, 0}\right)=\Sigma_{S}\left(\Delta_{\mathcal{H}_{3}, 0}\right)=[0, \infty) \tag{3.3}
\end{equation*}
$$

4 Kirchhoff-type Critical Elliptic Equations involving p-subLaplacians on \mathcal{H}_{n}

4.1 Some Important Concepts

A priori given a generalized Heisenberg Group \mathcal{H}_{n}, a lie group of topological dimension $(2 n+1)$, having $\mathbb{R}^{2 n+1}$ as a background manifold, endowd with the non-Abelian group law,

$$
\tau: \mathcal{H}_{n} \longrightarrow \mathcal{H}_{n}, \quad \tau_{\xi}\left(\xi^{\prime}\right)=\xi \circ \xi^{\prime}
$$

where,

$$
\xi \circ \xi^{\prime}=\left(x+x^{\prime}, y+y^{\prime}, t+t^{\prime}+2 \sum_{i=1}^{n}\left(y_{i} x_{i}^{\prime}-x_{i} y_{i}^{\prime}\right)\right), \quad \forall \quad \xi, \xi^{\prime} \in \mathcal{H}_{n}
$$

Subsequently, inverse of this operation can be deduced as, $\xi^{-1}=-\xi$, thus,

$$
\left(\xi \circ \xi^{\prime}\right)^{-1}=\left(\xi^{\prime}\right)^{-1} \circ(\xi)^{-1}
$$

Applying similar concepts as in (1.1) the corresponding Lie Algebra of left-invariant vector fields is generated by,

$$
\begin{equation*}
X_{j}=\partial_{x_{j}}+2 y_{j} \partial_{t}, \quad Y_{j}=\partial_{y_{j}}-2 x_{j} \partial_{t}, \quad T=4 \partial_{t} \tag{4.1}
\end{equation*}
$$

For every $j=1,2,3, \cdots, n$. As a consequence, the basis $\beta=\left\{X_{j}, Y_{j}, T\right\}_{j=1(1) n}$ satisfies the Heisenberg Canonical Communication Relations for position and momentum,

$$
\left[X_{j}, Y_{j}\right]=-\delta_{j k} T
$$

And all other commutators are zero.
Remark 4.1.1. A vector field in the span of β is called Horizontal.
Definition 4.1.1. (Korányi Norm) It can be observed that, the anisotropic dilation structure on the Heisenberg Group \mathcal{H}_{n} induces the Korányi Norm defined as follows:

$$
r(\xi):=r(z, t)=\left(|z|^{4}+t^{2}\right)^{\frac{1}{4}}, \quad \forall \xi=(z, t) \in \mathcal{H}_{n}
$$

Some properties of Korányi Norm include that, its homogeneous degree with resopect to dilations is equal to 1 .

Subsequently, the Korányi Distance is defined as :

$$
d_{H}\left(\xi, \xi^{\prime}\right)=r\left(\xi^{-1} \circ \xi^{\prime}\right), \quad \forall\left(\xi, \xi^{\prime}\right) \in \mathcal{H}_{n} \times \mathcal{H}_{n}
$$

And, the Korányi Open Ball of radius R centered at ξ_{0} is,

$$
B_{R}\left(\xi_{0}\right)=\left\{\xi \in \mathcal{H}_{n} \mid d_{H}\left(\xi, \xi_{0}\right)<R\right\}
$$

Remark 4.1.2. We can indeed infer that, the Haar Measure on \mathcal{H}_{n} is consistent with the Lebesgue Measure on $\mathbb{R}^{2 n+1}$, and is invariant under the left translations of \mathcal{H}_{n}. Moreover, it is Q-Homogeneous with respect to dilations (Q denotes the Hausdorff Dimension).

Thus, the topological dimension of \mathcal{H}_{n} (is equal to $2 n+1$) is strictly less than $Q=2 n+2$.

Definition 4.1.2. We define the Horizontal Gradient of a C^{1}-function $u: \mathcal{H}_{n} \longrightarrow \mathbb{R}$ as:

$$
\begin{equation*}
D_{H}(u)=\sum_{j=1}^{n}\left(\left(X_{j} u\right) X_{j}+\left(Y_{j} u\right) Y_{j}\right) \tag{4.2}
\end{equation*}
$$

An important observation is that, $D_{H} u$ is in fact an element of $\operatorname{span}(\beta)$. Thus, we can define the natural inner product in $\operatorname{span}(\beta)$ as :

$$
(X, Y)_{H}:=\sum_{j=1}^{n}\left(x^{j} y^{j}+\tilde{x}^{j} \tilde{y}^{j}\right)
$$

For every $X=\left\{x^{j} X_{j}+\tilde{x}^{j} Y_{j}\right\}_{j=1(1) n}, Y=\left\{y^{j} X_{j}+\tilde{y}^{j} Y_{j}\right\}_{j=1(1) n}$. This eventually helps us define the Hilbertian Norm,

$$
\begin{equation*}
\left|D_{H}(u)\right|:=\sqrt{\left(D_{H}(u), D_{H}(u)\right)_{H}} \tag{4.3}
\end{equation*}
$$

for any horizontal vector field $D_{H}(u)$.
Definition 4.1.3. Given any horizontal vector field function, $X=X(\xi), X=\left\{x^{j} X_{j}+\right.$ $\left.\tilde{x}^{j} Y_{j}\right\}_{j=1(1) n}$ of class $C^{1}\left(\mathcal{H}_{n}, \mathbb{R}^{2 n}\right)$, the Horizontal Divergence of X is defined as,

$$
\operatorname{div}_{H} X=\sum_{j=1}^{n}\left(X_{j}\left(x^{j}\right)+Y_{j}\left(y^{j}\right)\right)
$$

We can generalize the notion of sub-Laplacians in the case for \mathcal{H}_{3} to a generalized Heisenberg Group \mathcal{H}_{n}.

Definition 4.1.4. (sub-Laplacian) For every $u \in C^{2}\left(\mathcal{H}_{n}\right)$, the sub-Laplacian or, Kohn-Spencer Laplacian of u is defined as:

$$
\begin{gather*}
\Delta_{H}(u)=\sum_{j=1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right) u \\
=\sum_{j=1}^{n}\left(\frac{\partial^{2}}{\partial x_{j}^{2}}+\frac{\partial^{2}}{\partial y_{j}^{2}}+4 y_{j} \frac{\partial^{2}}{\partial x_{j} \partial t}-4 x_{j} \frac{\partial^{2}}{\partial y_{j} \partial t}\right) u+4|z|^{2} \frac{\partial^{2} u}{\partial^{2} t} \tag{4.4}
\end{gather*}
$$

Hörmander [18] established the fact that, Δ_{H} is Hypoelliptic. To be more precise,

$$
\Delta_{H}(u)=\operatorname{div}_{H} D_{H}(u), \quad \forall \quad u \in C^{2}\left(\mathcal{H}_{n}\right)
$$

We can in fact further generalize the Kohn-Spencer Laplacian to obtain the so called p-Laplacian on \mathcal{H}_{n}, having the following expression:

$$
\begin{equation*}
\Delta_{H, p}(\varphi)=\operatorname{div}_{H}\left(\left|D_{H}(\varphi)\right|_{H}^{p-2} D_{H}(\varphi)\right) \tag{4.5}
\end{equation*}
$$

for every $\varphi \in C_{c}^{\infty}\left(\mathcal{H}_{n}\right)$.For further study, interested readers can refer to [34, 35], 36], 37].
let us recall some significant properties of classic Sobolev Spaces on \mathcal{H}_{n}.
Definition 4.1.5. The standard L^{p}-norm is defined as,

$$
\|u\|_{p}^{p}=\int_{\omega}|u|^{p} d \xi, \quad \forall u \in \Omega
$$

A priori given Ω to be a bounded Lipschitz Domain in \mathcal{H}_{n} or, $\Omega=\mathcal{H}_{n}$. Then we denote $W^{1, p}(\Omega)$ as the Horizontal Sobolev Space of the functions $u \in L^{p}(\Omega)$, provided, $D_{H}(u)$ exists in the sense of distributions, and furthermore, $\left|D_{H}(u)\right| \in L^{p}(\Omega)$, endowed with the norm,

$$
\|u\|_{W^{1, p}(\Omega)}=\left(\|u\|_{p}^{p}+\left\|D_{H}(u)\right\|_{p}^{p}\right)^{\frac{1}{p}}
$$

Consider the function space,

$$
H W_{V}^{1, p}\left(\mathcal{H}_{n}\right):=\left\{u \in W^{1, p}\left(\mathcal{H}_{n}\right): \int_{\mathcal{H}_{n}} V(\xi)|u(\xi)|^{p} d \xi<\infty\right\}
$$

with the followig norm defined on it,

$$
\begin{equation*}
\|u\|=\|u\|_{H W_{V}^{1, p}\left(\mathcal{H}_{n}\right)}:=\left(\left\|D_{H}(u)\right\|_{p}^{p}+\|u\|_{p, V}^{p}\right)^{\frac{1}{p}} \tag{4.6}
\end{equation*}
$$

and,

$$
\begin{equation*}
\|u\|_{p, V}^{p}=\int_{\mathcal{H}_{n}} V(\xi)|u(\xi)|^{p} d \xi \tag{4.7}
\end{equation*}
$$

Where, V denotes the potenial function. Furthermore, under the assumption that, $V(\xi) \geq$ $V_{0}>0$, we can in fact conclude that, $H W_{V}^{1, p}\left(\mathcal{H}_{n}\right)$ is a reflexive Banach Space. For proof involving Euclidean setting, it can be found in [38, Lemma 10], whereas, in case for \mathcal{H}_{n}, we shall be needing few minor alterations. The continuous embedding of $H W_{V}^{1, p}\left(\mathcal{H}_{n}\right) \hookrightarrow W^{1, p}\left(\mathcal{H}_{n}\right) \hookrightarrow L^{t}\left(\mathcal{H}_{n}\right) \quad \forall$ $p \leq t<p^{*}$, where, $p^{*}:=\frac{Q p}{Q-p}$ is the Critical Sobolev Exponent on \mathcal{H}_{n}.

Remark 4.1.3. In fact, one can establish that, the best value of the constant V_{0}, denoted by $C_{p^{*}}$ is attained in the Folland-Stein Spaces $S^{1, p}\left(\mathcal{H}_{n}\right)$, which, also can be interpreted as the completion of $C_{c}^{\infty}\left(\mathcal{H}_{n}\right)$ in terms of the norm,

$$
\left\|D_{H}(u)\right\|_{p}=\left(\int_{\mathcal{H}_{n}}\left|D_{H}(u)\right|_{H}^{p} d \xi\right)^{\frac{1}{p}}
$$

Thus, we can obtain the following estimate of $C_{p^{*}}$ of the Folland-Stein Inequality as,

$$
C_{p^{*}}=\inf _{u \in S^{1, p}\left(\mathcal{H}_{n}\right), u \neq 0} \frac{\left\|D_{H}(u)\right\|_{p}^{p}}{\|u\|_{p^{*}}^{p}}
$$

For further details, see [39].

4.2 Introduction to Critical Kirchhoff Equations

In this section, we shall deal with a class of Kirchhoff-type Critical Elliptic Equations (Kirchhoff, 1883) as a generalization of D'Alembert's Wave Equation for free vibrations of elastic strings, involving p-sub-Laplacians, having the following representation,

$$
\begin{gather*}
M\left(\left\|D_{H}(u)\right\|_{p}^{p}+\|u\|_{p, V}^{p}\right)\left\{-\Delta_{H, p}(u)+V(\xi)|u|^{p-2} u\right\}=\lambda f(\xi, u)+|u|^{p^{*}-2} u \tag{4.8}\\
\xi \in \mathcal{H}_{n}, \quad u \in H W_{V}^{1, p}\left(\mathcal{H}_{n}\right)
\end{gather*}
$$

in both non-degenerate and degenerate cases separately.
Remark 4.2.1. In 4.8), λ is a real parameter, and, M denotes the Kirchhoff Function.
A priori, for pre-determined constants ρ, P_{0}, h, E, L having some physical interpretation, Kirchhoff thus established a model given by the equation,

$$
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{P_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2} d x\right) \frac{\partial^{2} u}{\partial x^{2}}=0
$$

In particular, the study of critical Kirchhoff-type problems were first initially studied in the seminal paper of Brézis \& Nirenberg [ref. [40]], in which their intention was to study the Laplacian equations.

Over the years, there have been many generalizations of [40] in various directions. For instance, Liao et al. 41 studied the following non-local problem with Critical Sobolev Exponent

Volume 12 Issue 12, December 2023
of the form,

$$
\begin{gather*}
-\left\{a+b \int_{\Omega}|\nabla u|^{2} d x\right\} \Delta u=\mu|u|^{2^{*}-2} u+\lambda|u|^{q-2} u, \quad x \in \Omega \tag{4.9}\\
u=0, \quad x \in \partial \Omega
\end{gather*}
$$

where, $\Omega \subseteq \mathbb{R}^{N}(N \geq 4)$ is a smooth bounded domain, $2^{*}=\frac{2 N}{N-2}$ is the Critical Sobolev Exponent. The existence an multiplicity of the solutions of 4.9) are obtained by applying the Variational Methods and the Critical Point Theorem. Liang et al. [42] effectively followed the similar approach to derive the solutions to the fractional Schrödinger-Kirchhoff equations with electro-magnetic fields and critical non-linearity in the no-degenerate Kirchhoff case by using the fractional versions of the concentration compactness principle andvariational methods. Results related to the existence of solution in case of non-degenerate Kirchhoff problems are illustrated, for example, in [43, 44], 45] and [38].

Furthermore, there are extensive amount of research which are currently going on for the degenerate case. Interested readers can look at the findings of wang et al. [46] and even Song \& Shi [47] in this regard.

The motivation behind studying the problem (4.8) primarily originates from the significant applications of the Heisenberg Group. Liang \mathcal{B} Pucci [48] considered a class of critical KirchhoffPoisson systems in the Heisenberg group under suitable assumptions. On the contrary, the existence of multiple solutions is obtained by using the symmetric Mountain Pass Theorem. A priori applying this result along with Singular Trudinger-Moser Inequality, Deng 8 Tian 49 discussed the existence of solutions for Kirchhoff-type systems involving Q-laplacian operator in the Heisenberg Group,

$$
\begin{gathered}
-K\left(\int_{\Omega} \left\lvert\, \nabla_{\left.\left.\mathcal{H}_{n} u\right|^{Q} d \xi\right) \Delta_{Q}(u)=\lambda \frac{G_{u}(\xi, u, v)}{\rho(\xi)^{\wp}} \quad \text { in } \Omega} \begin{array}{c}
-K\left(\int_{\Omega}\left|\nabla_{\mathcal{H}_{n}} v\right|^{Q} d \xi\right) \Delta_{Q}(v)=\lambda \frac{G_{v}(\xi, u, v)}{\rho(\xi)^{\wp}} \quad \text { in } \Omega \\
u=v=0 \quad \text { on } \partial \Omega
\end{array}\right.\right.
\end{gathered}
$$

Volume 12 Issue 12, December 2023
 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Where, Ω is an open, smooth and bounded subset of \mathcal{H}_{n}, K is Kirchhoff-type function \& non-linear terms : G_{u} and G_{v} have critical exponent growth.

Whereas, Pucci \mathcal{B} Temeprini 50 studied the (p, q) critical systems on the Heisenberg Group,

$$
\begin{aligned}
& -\operatorname{div}_{H}\left(A\left(\left|D_{H}(u)\right|_{H}\right)\right)+B(|u|) u=\lambda H_{u}(u, v)+\frac{\alpha}{\wp^{*}}|v|^{\beta}|u|^{\alpha-2} u \\
& -\operatorname{div}_{H}\left(A\left(\left|D_{H}(v)\right|_{H}\right)\right)+B(|v|) v=\lambda H_{v}(u, v)+\frac{\beta}{\wp^{*}}|u|^{\alpha}|v|^{\beta-2} v
\end{aligned}
$$

Subsequently, the existence of entire non-trivial solutions are obtained by applying the concentrationcompactness principle in the vectorial Heisenberg context and variational methods.

Remark 4.2.2. Further details on these results can be explored from [51].

5 Existence and Multiplicity of Solutions

A priori having the concepts discussed in detail in the previous section, we now proceed towards proving the existence and multiplicity for a special class of Kirchhoff-type critical elliptic equations as mentioned in (4.8) involving the p-sub-Laplacian operators on \mathcal{H}_{n} for both the degenerate and the non-degenerate case separately.

5.1 Some Important Assumptions

In order to establish our main results, a priori we shall assume that, $M: \mathbb{R}_{0}^{+} \longrightarrow \mathbb{R}_{0}^{+}$is a continuous and non-decreasing function, the potential function V and M. Therefore, they will satisfy the following properties :

- $V: \mathcal{H}_{n} \longrightarrow \mathbb{R}_{+}$is continuous, and $\exists V_{0}>0$ such that, $V \geq V_{0}>0$ in \mathcal{H}_{n}.

1. $\exists m_{0}>0$ such that, $\inf _{t \geq 0} M(t)=m_{0}$.
2. $\exists \tau \in\left[1, \frac{p^{*}}{p}\right)$ satisfying,

$$
\tau \mathcal{M}(t) \geq M(t) t, \quad \forall \quad t \geq 0
$$

Where,

$$
\mathcal{M}(t):=\int_{0}^{t} M(s) d s .
$$

Volume 12 Issue 12, December 2023

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
3. $\exists m_{1}>0$ such that, $M(t) \geq m_{1} t^{\tau-1}, \quad \forall t \geq 0$ and $M(0)=0$.

Furthermore, we impose the following hypotheses on the non-linearity of f :

- $f: \mathcal{H}_{n} \times \mathbb{R} \longrightarrow \mathbb{R}$ is a Carathéodory Function such that, f is odd with respect to the second variable.
- \exists a constant r satisfying, $p^{*}>r>p \tau$ such that,

$$
|f(\xi, t)| \leq a(\xi)|t|^{r-2} t, \quad \text { for a.e. } \xi \in \mathcal{H}_{n} \text { and } t \in \mathbb{R}
$$

where, $0 \leq a(\xi) \in L^{\eta}\left(\mathcal{H}_{n}\right) \cap L^{\infty}\left(\mathcal{H}_{n}\right)$, and, $\eta:=\frac{p^{*}}{p^{*}-r}, \xi \in \mathcal{H}_{n}$.

- \exists a constant θ satisfying $p \tau<\theta<p^{*}$ such that, $0<\theta F(\xi, t) \leq f(\xi, t) t, \forall \quad t \in \mathbb{R}_{+}$. We define,

$$
F(\xi, t):=\int_{0}^{t} f(\xi, s) d s
$$

5.2 Palais-Smale Condition $(P S)_{c}$

A priori we adhere to some standard notations, where, $\mathcal{N}\left(\mathcal{H}_{n}\right)$ denotes the space of all signed finite Radon Measures on \mathcal{H}_{n} equipped with the norm. In other words, we identify $\mathcal{N}\left(\mathcal{H}_{n}\right)$ with the dual of $C_{0}\left(\mathcal{H}_{n}\right)$, the completion of all continuous functions $u: \mathcal{H}_{n} \longrightarrow \mathbb{R}$, having con=mpact support, and also is connected to the supremum norm $\|\cdot\|_{\infty}$.

Important observation one can make here is that, the problem 4.8 has a variational structure. The Euler-Lagrange Functional, $\mathcal{J}_{\lambda}: H W_{V}^{1, p}\left(\mathcal{H}_{n}\right) \longrightarrow \mathbb{R}$ associated to this problem is defined as follows :

$$
\begin{equation*}
\mathcal{J}_{\lambda}(u)=\frac{1}{p} \mathcal{M}\left(\left\|D_{H}(u)\right\|_{p}^{p}+\|u\|_{p, V}^{p}\right)-\lambda \int_{\mathcal{H}_{n}} F(\xi, u) d \xi-\frac{1}{p^{*}} \int_{\mathcal{H}_{n}}|u|^{p^{*}} d \xi \tag{5.1}
\end{equation*}
$$

It implies that, under the conditions described in (5.1), \mathcal{J}_{λ} is of class $C^{1}\left(H W_{V}^{1, p}\left(\mathcal{H}_{n}\right)\right)$. Moreover, for every $u, v \in H W_{V}^{1, p}\left(\mathcal{H}_{n}\right)$, we define the Fréchet Derivative of \mathcal{J}_{λ} is given as:

$$
\begin{aligned}
\left\langle\mathcal{J}_{\lambda}^{\prime}(u), v\right\rangle=M\left(\left\|D_{H}(u)\right\|_{p}^{p}+\|u\|_{p, V}^{p}\right) & \left(\langle\mathcal{A}(u), v\rangle+\int_{\mathcal{H}_{n}} V(\xi)|u|^{p-2} u v d \xi\right) \\
& -\lambda \int_{\mathcal{H}_{n}} f(\xi, u) u v d \xi-\int_{\mathcal{H}_{n}}|u|^{p^{*}-2} u v d \xi
\end{aligned}
$$

Volume 12 Issue 12, December 2023

Where,

$$
\left\langle\mathcal{A}_{p}(u), v\right\rangle=\int_{\mathcal{H}_{n}}\left|D_{H}(u)\right|_{H}^{p-2} \cdot D_{H}(u) \cdot D_{H}(v) d \xi
$$

Remark 5.2.1. It can be verified that the weak solutions for problem (4.8) indeed coincide with the critical points of \mathcal{J}_{λ}.

With all these notations and definitions, we define,
Definition 5.2.1. A sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset X$ is termed as a Palais-Smale Sequence for the functional \mathcal{J}_{λ} at level c if,

$$
\begin{equation*}
\mathcal{J}_{\lambda}\left(u_{n}\right) \longrightarrow c, \quad \mathcal{J}_{\lambda}^{\prime}\left(u_{n}\right) \longrightarrow 0 \quad \text { in } X^{\prime} \text { as } n \rightarrow+\infty \tag{5.2}
\end{equation*}
$$

If (5.2) implies the existence of a subsequence of $\left\{u_{n}\right\}_{n}$ which converges in X, we assert that, \mathcal{J}_{λ} satisfies the Palais-Smale Condition $(P S)_{c}$. Moreover, if this strongly convergent subsequence exists only for some c values, we comment that, \mathcal{J}_{λ} satisfies a Local Palais-Smale Condition.

5.3 The Non-Degenerate Case

In this section, we shall state and prove two theorems which best illustrates our purpose of analyzing existence and multiplicity of solutions for the problem (4.8) in the Non-Degenerate case.

Theorem 5.3.1. A priori we assume that, (5.1) holds true. If M satisfies conditions (1) and (2) of (5.1), and f verifies (5.1), then $\exists \quad \lambda_{1}>0$ such that, for any $\lambda \geq \lambda_{1}$, the problem 4.8) has a non-trivial solution in $H W_{V}^{1, p}\left(\mathcal{H}_{n}\right)$.

Theorem 5.3.2. A priori we assume that, (5.1) holds true. If M satisfies conditions (1) and (2) of (5.1), and f verifies (5.1). Additionally, suppose we consider that, one of the following condition also holds :

1. \exists a positive constant $m^{*}>0$ for every $m_{0}>m^{*}$ and $\lambda>0$.
2. \exists a positive constant $\lambda_{2}>0$ for every $\lambda>\lambda_{2}$ and, $m_{0}>0$.

Then, the problem 4.8) admits of at least n pairs of non-trivial weak solutions in $H W_{V}^{1, p}\left(\mathcal{H}_{n}\right)$.
Before we indulge ourselves into the proof of these statements, it is imperative to study all the necessary results required for justification of the same.

Theorem 5.3.3. (Mountain Pass Theorem) For a given real Banach Space E and $\mathcal{J} \in C^{1}(E)$, satisfying $\mathcal{J}(0)=0$. We further assume that,

1. $\exists \rho, \alpha>0$ such that, $\mathcal{J}(u) \geq \alpha \quad \forall u \in E$, with $\|u\|_{E}=\rho$;
2. $\exists e \in E$ satisfying $\|e\|_{E}>\rho$ such that, $\mathcal{J}(e)<0$

If we denote, $\gamma:=\{\gamma \in C([0,1], E) \mid \gamma(0)=1, \gamma(1)=e\}$. Then,

$$
\begin{equation*}
c=\inf _{\gamma \in \Gamma} \max _{0 \leq t \leq 1} \mathcal{J}(\gamma(t)) \geq \alpha \tag{5.3}
\end{equation*}
$$

and there exists a $(P S)_{c}$ sequence $\left\{u_{n}\right\}_{n} \subset E$.
One can in fact verify that, \mathcal{J}_{λ} satisfies the geometric properties (1) and (2) of Mountain Pass Theorem (5.3.3).

5.3.1 Proof of Theorem (5.3.1)

First, we intend to establish the following:
Claim 5.3.4. We shall have,

$$
\begin{equation*}
0<c_{\lambda}=\inf _{\gamma \in \Gamma} \max _{0 \leq t \leq 1} \mathcal{J}_{\lambda}(\gamma(t))<\left(\frac{1}{\theta}-\frac{1}{p^{*}}\right)\left(m_{0} C_{p^{*}}\right)^{\frac{p^{*}}{p^{*}-p}} \tag{5.4}
\end{equation*}
$$

for large enough λ.
Proof. Choose $v_{0} \in H W_{V}^{1, p}\left(\mathcal{H}_{n}\right)$ such that,

$$
\left\|v_{0}\right\|=1, \text { and }, \quad \lim _{t \rightarrow \infty} \mathcal{J}_{\lambda}\left(t v_{0}\right)=-\infty
$$

Therefore, $\sup _{t \geq 0} \mathcal{J}_{\lambda}\left(t v_{0}\right)=\mathcal{J}_{\lambda}\left(t_{\lambda} v_{0}\right)$ for some $t_{\lambda}>0$. Thus, t_{λ} satisfies,

$$
\begin{gather*}
M\left(\left\|D_{H}\left(t_{\lambda} v_{0}\right)\right\|_{p}^{p}+\left\|t_{\lambda} v_{0}\right\|_{p, V}^{p}\right) \cdot\left(\left\|D_{H}\left(t_{\lambda} v_{0}\right)\right\|_{p}^{p}+\left\|t_{\lambda} v_{0}\right\|_{p, V}^{p}\right) \\
=\lambda \int_{\mathcal{H}_{n}} f\left(\xi, t_{\lambda} v_{0}\right)\left|t_{\lambda} v_{0}\right|^{2} d \xi+\int_{\mathcal{H}_{n}}\left|t_{\lambda} v_{0}\right|^{p^{*}} d \xi \tag{5.5}
\end{gather*}
$$

It suffices to prove that, $\left\{t_{\lambda}\right\}_{\lambda>0}$ is bounded. Since, $t_{\lambda} \geq 1 \forall \lambda>0$. Thus, by property (2) of (5.1) and (5.5), we deuce that,

$$
\tau \mathcal{M}(1) t_{\lambda}^{2 p \tau} \geq \tau \mathcal{M}(1)\left(\left\|t_{\lambda} v_{0}\right\|^{p}\right)^{\tau}
$$

$$
\begin{align*}
\geq M\left(\left\|D_{H}\left(t_{\lambda} v_{0}\right)\right\|_{p}^{p}+\right. & \left.\left\|t_{\lambda} v_{0}\right\|_{p, V}^{p}\right) \cdot\left(\left\|D_{H}\left(t_{\lambda} v_{0}\right)\right\|_{p}^{p}+\left\|t_{\lambda} v_{0}\right\|_{p, V}^{p}\right) \\
& =\lambda \int_{\mathcal{H}_{n}} f\left(\xi, t_{\lambda} v_{0}\right)\left|t_{\lambda} v_{0}\right|^{2} d \xi+\int_{\mathcal{H}_{n}}\left|t_{\lambda} v_{0}\right|^{p^{*}} d \xi \\
& \geq t_{\lambda}^{p^{*}} \int_{\mathcal{H}_{n}}\left|v_{0}\right|^{p^{*}} d \xi \tag{5.6}
\end{align*}
$$

It follows from (5.6) that, $\left\{t_{\lambda}\right\}_{\lambda>0}$ is bounded, since, $p \tau<p^{*}$. Next, we shall prove that, $t_{\lambda} \longrightarrow 0$ as, $\lambda \longrightarrow \infty$. By contradiction, suppose, $\exists t_{0}>0$ and a sequence $\left\{\lambda_{n}\right\}_{n}$ with $\lambda_{n} \longrightarrow \infty$ as $n \rightarrow \infty$, and consequently, $t_{\lambda_{n}} \longrightarrow t_{0}$ as $n \rightarrow \infty$.

A simple application of the Lebesgue Dominated Convergence Theorem yields,

$$
\int_{\mathcal{H}_{n}} f\left(\xi, t_{\lambda_{n}} v_{0}\right)\left|t_{\lambda_{n}} v_{0}\right|^{2} d \xi \longrightarrow \int_{\mathcal{H}_{n}} f\left(\xi, t_{\lambda} v_{0}\right)\left|t_{\lambda} v_{0}\right|^{2} d \xi
$$

as $n \rightarrow \infty$. Thus, we can conclude that,

$$
\lambda_{n} \int_{\mathcal{H}_{n}} f\left(\xi, t_{\lambda} v_{0}\right)\left|t_{\lambda} v_{0}\right|^{2} d \xi \longrightarrow \infty, \text { as, } \quad n \rightarrow \infty
$$

A contradiction to the fact that, 5.5) holds true. Thus, $t_{\lambda} \longrightarrow 0$ as, $\lambda \rightarrow \infty$. Another deduction which can indeed be made from (5.5) is,

$$
\lim _{\lambda \rightarrow \infty} \lambda \int_{\mathcal{H}_{n}} f\left(\xi, t_{\lambda} v_{0}\right)\left|t_{\lambda} v_{0}\right|^{2} d \xi=0
$$

and,

$$
\lim _{\lambda \rightarrow \infty} \int_{\mathcal{H}_{n}}\left|t_{\lambda} v_{0}\right|^{p^{*}} d \xi=0
$$

A priori, using the deduction, $t_{\lambda} \longrightarrow 0$ as, $\lambda \rightarrow \infty$ and the definition of \mathcal{J}_{λ}, we obtain,

$$
\lim _{\lambda \rightarrow \infty}\left(\sup _{t \geq 0} \mathcal{J}_{\lambda}\left(t v_{0}\right)\right)=\lim _{\lambda \rightarrow \infty} \mathcal{J}_{\lambda}\left(t v_{0}\right)=0
$$

Hence, $\exists \lambda_{1}>0$ satisfying for every $\lambda \geq \lambda_{1}$,

$$
\sup _{t \geq 0} \mathcal{J}_{\lambda}\left(t v_{0}\right)<\left(\frac{1}{\theta}-\frac{1}{p^{*}}\right)\left(m_{0} C_{p^{*}}\right)^{\frac{p^{*}}{p^{*}-p}}
$$

Choosing $e=t_{1} v_{0}$, for large enough t_{1}, it can be verified that,

$$
\begin{gathered}
\mathcal{J}_{\lambda}(e)<0 \\
\Longrightarrow 0<c_{\lambda} \leq \max _{t \in[0,1]} \mathcal{J}_{\lambda}(\gamma(t)) \quad, \text { by setting, } \gamma(t)=t t_{1} v_{0}
\end{gathered}
$$

Therefore, we conclude,

$$
0<c_{\lambda}=\sup _{t \geq 0} \mathcal{J}_{\lambda}\left(t v_{0}\right)<\left(\frac{1}{\theta}-\frac{1}{p^{*}}\right)\left(m_{0} C_{p^{*}}\right)^{\frac{p^{*}}{p^{*}-p}}
$$

for λ large enough, which completes the proof.

5.3.2 Proof of Theorem (5.3.2)

To prove the theorem, we shall in fact use the concept related to Krasnoselskii's Genus Theory [52]. Given a Banach Space X, and let, Λ denotes the class of all closed subsets $A \subset X \backslash\{0\}$ that are symmetric with respect to the origin (in other words, $u \in A$ implies, $-u \in A$).

Theorem 5.3.5. For an infinite dimensional Banach Space X and $\mathcal{J} \in C^{1}(X)$ be an even functional, such that, $\mathcal{J}(0)=0$. Further, we assume that, $X=Y \oplus Z$, Y being finite dimensional. Then, \mathcal{J} satisfies the following conditions,

1. \exists constants $\rho, \alpha>0$ satisfying, $\mathcal{J}(u) \geq \alpha$ for every $u \in \partial B_{\rho} \cap Z$.
2. $\exists \Theta>0$ such that, \mathcal{J} satisfies the $(P S)_{c}$ condition $\forall c$, with $c \in(0, \Theta)$.
3. Given any finite dimensional subspace $\tilde{X} \subset X, \exists R=R(\tilde{X})>0$ satisfying $\mathcal{J}(u) \leq 0$ on $\tilde{X} \backslash B_{R}$

In addition to the above, we further consider, $\operatorname{dim}(Y)=k$ and that, $Y=\operatorname{Span}\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$. For $n \geq k$, we inductively choose that, $v_{n+1} \notin E_{n}=\operatorname{Span}\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. Suppose, $R_{n}=R\left(E_{n}\right)$, and, $\Omega_{n}=B_{R_{n}} \cap E_{n}$. Define,

$$
G_{n}:=\left\{\psi \in C\left(\Omega_{n}, X\right)|\psi|_{\partial B_{R_{n} \cap E_{n}}}=i d \text { and, } \psi \text { is odd }\right\}
$$

and,

$$
G_{n}:=\left\{\psi\left(\overline{\Omega_{n} \backslash V}\right) \mid \psi \in G_{n}, n \geq j, V \in \Lambda, \gamma(V) \leq n-j\right\}
$$

Where, $0 \leq c_{j} \leq c_{j+1}$ and, $c_{j}<\Theta$ for $j>k$, then, we assert that, c_{j} is a critical value of \mathcal{J}.
Furthermore, if $c_{j}=c_{j+l}=c<\Theta$ for every $1 \leq l \leq m$ and for $j>k$. Thus, $\gamma\left(K_{c}\right) \geq m+1$, provided,

$$
K_{c}:=\left\{u \in X \mid \mathcal{J}(u)=c \text { and, } \mathcal{J}^{\prime}(u)=0\right\}
$$

Now that, we have introduced all the terminologies required for the proof of Theorem (5.3.2), we proceed to the proof of the statement of the same.

Proof. We shall apply Theorem 5.3.5) to \mathcal{J}_{λ}. A priori using the fact that, $H W_{V}^{1, p}\left(\mathcal{H}_{n}\right)$ is indeed a reflexive Banach Space and, $\mathcal{J}_{\lambda} \in C^{1}\left(H W_{V}^{1, p}\left(\mathcal{H}_{n}\right)\right)$.

Applying (5.1), we can infer that, the functional \mathcal{J}_{λ} satisfies, $\mathcal{J}_{\lambda}(0)=0$. We shall thus prove the theorem in three steps.

Step 1 :

We can in fact obtain that, \mathcal{J}_{λ} indeed satisfies (1) and (3) of Theorem (5.3.5).
Step 2 :
We claim that, \exists a monotone increasing sequeence $\left\{\Phi_{n}\right\}_{n}$ in \mathbb{R}_{+}, such that,

$$
c_{n}^{\lambda}=\inf _{E \in \Gamma_{n}} \max _{u \in E} \mathcal{J}_{\lambda}(u)<\Phi_{n}
$$

The above definition of c_{n}^{λ} allows us to infer,

$$
c_{n}^{\lambda}=\inf _{E \in \Gamma_{n}} \max _{u \in E} \mathcal{J}_{\lambda}(u) \leq \inf _{E \in \Gamma_{n}} \max _{u \in E}\left\{\mathcal{M}\left(\left\|D_{H}(u)\right\|_{p}^{p}+\|u\|_{p, V}^{p}\right)-\frac{1}{p^{*}} \int_{\mathcal{H}_{n}}|u|^{p^{*}} d \xi\right\}
$$

Set,

$$
\Phi_{n}=\inf _{E \in \Gamma_{n}} \max _{u \in E}\left\{\mathcal{M}\left(\left\|D_{H}(u)\right\|_{p}^{p}+\|u\|_{p, V}^{p}\right)-\frac{1}{p^{*}} \int_{\mathcal{H}_{n}}|u|^{p^{*}} d \xi\right\}
$$

Therefore, $\Phi_{n}<\infty$ and, $\Phi_{n} \leq \Phi_{n+1} \quad \forall n \in \mathbb{N}$ (Follows from the definition of Γ_{n}).

Step 3 :

We claim that, the problem (4.8) has at least k pairs of weak solutions. To this end, we distingish two cases:
Case I:
Fix $\lambda>0$. We set m_{0} very large such that,

$$
\sup _{n} \Phi_{n}<\left(\frac{1}{\theta}-\frac{1}{p^{*}}\right)\left(m_{0} C_{p^{*}}\right)^{\frac{p^{*}}{p^{*}-p}}
$$

Case II :
using similar discussions as in Theorem (5.3.5), $\exists \lambda_{2}>0$ satisfyng,

$$
c_{n}^{\lambda} \leq \Phi_{n}<\left(\frac{1}{\theta}-\frac{1}{p^{*}}\right)\left(m_{0} C_{p^{*}}\right)^{\frac{p^{*}}{p^{*}-p}} \quad \forall \lambda>\lambda_{2}
$$

Volume 12 Issue 12, December 2023

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Thus, in any case, we must obtain,

$$
0<c_{1}^{\lambda} \leq c_{2}^{\lambda} \leq \cdots \leq c_{n}^{\lambda}<\Phi_{n}<\left(\frac{1}{\theta}-\frac{1}{p^{*}}\right)\left(m_{0} C_{p^{*}}\right)^{\frac{p^{*}}{p^{*}-p}}
$$

Applying similar arguments as described in [52], we can in fact guarantee that, the levels, $c_{1}^{\lambda} \leq c_{2}^{\lambda} \leq \cdots \leq c_{n}^{\lambda}$ are indeed the critical values of \mathcal{J}_{λ}.

If $c_{j}^{\lambda}=c_{j+1}^{\lambda}$ for some $j=1,2, \cdots k-1$, therefore, by [53, Theorem 4.2, Remark 2.12], the set $K_{c_{j}^{\lambda}}$ contains infinitely many distinct points, and hence, the problem 4.8) has infinitely many weak solutions.

Finally thus we conclude that, the problem 4.8) has at least k pairs of solutions, and the proof is done.

5.4 The Degenerate Case

In this section, we shall investigate the degradation of the problem 4.8). We shall always assume that, M satisfies conditions (2) and (3) of (5.1), and f verifies the coonditions mentioned in (5.1). We state the main results which helps us comment on the existence and the multiplicity of the solutions to problem (4.8) in the Degenerate Case.

Theorem 5.4.1. A priori we assume that, (5.1) holds true. If M satisfies conditions (2) and (3) of (5.1), and f verifies (5.1), then $\exists \quad \lambda_{3}>0$ such that, for any $\lambda \geq \lambda_{3}$, the problem (4.8) has a non-trivial solution in $H W_{V}^{1, p}\left(\mathcal{H}_{n}\right)$.

Theorem 5.4.2. A priori we assume that, (5.1) holds true. If M satisfies conditions (2) and (3) of (5.1), and f verifies (5.1). Additionally, suppose we consider that, one of the following condition also holds :

1. \exists a positive constant $m_{*}>0$ for every $m_{1}>m_{*}$ and $\lambda>0$.
2. \exists a positive constant $\lambda_{4}>0$ for every $\lambda>\lambda_{4}$ and, $m_{1}>0$.

Then, the problem 4.8 admits of at least n pairs of non-trivial weak solutions in $H W_{V}^{1, p}\left(\mathcal{H}_{n}\right)$.
Before indulging ourselves into the proofs of these statements above, we must state the following lemma which apparently plays a major role in determining the existence of solution to problem (4.8).

Lemma 5.4.3. Under the assumptions on M and f mentioned above, if suppose, $\left\{u_{n}\right\}_{n} \subset$ $H W_{V}^{1, p}\left(\mathcal{H}_{n}\right)$ be a Palais-Smale Sequence of functional \mathcal{J}_{λ} (as defined in 55.2)).

Volume 12 Issue 12, December 2023

Licensed Under Creative Commons Attribution CC BY

Furthermore, if,

$$
0<c_{\lambda}<\left(\frac{1}{\theta}-\frac{1}{p^{*}}\right)\left(m_{0} C_{p^{*}}\right)^{\frac{p^{*}}{p^{*}-p}}
$$

Then, \exists a subsequence of $\left\{u_{n}\right\}_{n}$ Strongly Convergent in $H W_{V}^{1, p}\left(\mathcal{H}_{n}\right)$.
For the proof of the Lemma, interested readers can look up 51.
Remark 5.4.4. In fact, one can further infer that, the functional \mathcal{J}_{λ} satisfies all the assumptions of the Mountain Pass Theorem (Theorem (5.3.3)).

5.4.1 Proof of Theorem (5.4.1)

Proof. A priori using similar argments as in the proof of the Mountain Pass Theorem (Theorem (5.3.3), we get,

$$
0<c_{\lambda}=\inf _{\gamma \in \Gamma} \max _{0 \leq t \leq 1} \mathcal{J}_{\lambda}(\gamma(t))<\left(\frac{1}{\theta}-\frac{1}{p^{*}}\right)\left(m_{0} C_{p^{*}}^{\tau}\right)^{\frac{p^{*}}{p^{*}-p \tau}}
$$

The rest of the proof follows in a similar manner to that described in Theorem 5.3.1.

5.4.2 Proof of Theorem (5.4.2)

Proof. The proof of the theorem is similar to that of Theorem 5.3.2.

Statements and Declarations

Conflicts of Interest Statement

I as the sole author of this article certify that I have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers' bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affi liations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Data Availability Statement

I as the sole author of this aarticle confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

[1] Enrico Le Donne, A Primer on Carnot Groups : Homogeneous Groups, CC Spaces and Regularity of their Isometries.
URL: https://arxiv.org/abs/1604.08579
[2] D. Danielli, N. Garofalo, D.M. Nhieu, Sub-Riemannian Calculus on Hypersurfaces in Carnot Groups.
URL: https://arxiv.org/abs/math/0607559
[3] Veronique Fischer, Harmonic Analysis on the Heisenberg Group and Related Topics. URL: https://people.bath.ac.uk/vcmf20/SIONLG.pdf
[4] L. A. Coburn, The Measure Algebra of the Heisenberg Group*, Journal of Functional Analysis 161, 509-525 (1999).
URL: https://www.sciencedirect.com/science/article/pii/S0022123698933547
[5] Ovidiu Calin, Der-Chen Chang, Peter Greiner, Geometric Analysis on the Heisenberg Group and Its Generalizations, AMS/IP Studies in Advanced Mathematics, Publication
Year: 2007; Volume 40,
URL: https://doi.org/10.1090/amsip/040
[6] Ovidiu Calin, Der-Chen Chang, Peter Greiner, Geometric mechanics on product Heisenberg groups.
URL: https://doi.org/10.1080/00036810802713883
[7] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1974.
[8] Srdjan Vukmirović, Classification of left-invariant metrics on the Heisenberg group, Journal of Geometry and Physics 94 (2015) 72-80.

Volume 12 Issue 12, December 2023
 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

REFERENCES

[9] Elias M. Stein, Rami Shakarchi, Fourier Analysis : An Introduction, Princeton Lectures in Analysis, Princeton university Press, Princeton and Oxford, ISBN 978-0-691-11384-5.
[10] Anthony W. Knapp, Lie Groups Beyond an Introduction, Second Edition, Birkhäuser, Progress in Mathematics, Volume 140 .
[11] Jean-Pierre Serre, Lie Algebras and Lie Groups, 1964 Lectures given at Harvard University, Corrected 5th printing, Lecture Notes in Mathematics, Springer-Verlag Berlin Heidelberg .
[12] N. Bourbaki, Lie Groups and Lie Algebras, Part I : Chapters 1-3, Elements of Mathematics, Addison-Wesley Publishing Company, Advanced Book Program, Reading, Massachusetts .
[13] Enrico le Donne, Sèverine Rigot, Besicovitch Covering Property on graded groups and applications to measure differentiation, Journal für die reine und angewandte Mathematik (Crelles Journal). URL: https://doi.org/10.1515/crelle-2016-0051.
[14] Ovidiu Calin, Der-Chen Chang, Kenro Furutani, Chisato Iwasaki, Heat Kernels for Elliptic and Sub-elliptic Operators : Methods and Techniques, Applied and Numerical Harmonic Analysis, ISBN : 978-0-8176-4994-4, e-ISBN : 978-0-8176-4995-1, DOI 10.1007/978-0-8176-4995-1. Springer New York Dordrecht Heidelberg London, Birkhäuser.
[15] Aparajita Dasgupta, Shahla Molahajloo, Man-Wah Wong, The Spectrum of the SubLaplacian on the Heisenberg Group, Tohoku Math. J. 63 (2011), 269-276 .
[16] S. Thangavelu, A multiplier theorem for the sublaplacian on the Heisenberg group, Proc. Indian Acad. Sci. (Math. Sci.), Vol. 101, No. 3, December 1991, pp. 169-177. Printed in India.
[17] G. Mauceri, Zonal Multipliers on the Heisenberg Group, Pacific Journal of Mathematics, Vol. 95, No. 1, 1981.
[18] L. Hörmander, Hypoelliptic Second Order Differential Equations, Acta Math. 119 (1967), 147-171.
[19] H. Lewy, An example of a smooth linear partial differential equation without solutions, Ann. of Math. (2) 66 (1957), 155-158.
[20] Aparajita Dasgupta, Man-Wah Wong, Weyl transforms and the inverse of the sub-Laplacian on the Heisenberg group, Pseudo-differential operators : partial differential equations and time-frequency analysis, 27-36, Fields Inst. Commun. 52, American Mathematical Society, Providence, RI, 2007.

Volume 12 Issue 12, December 2023 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
[21] Aparajita Dasgupta, Man-Wah Wong, Weyl transforms and the heat equationfor the sub-Laplacian on the Heisenberg group, New developments in pseudo-differential operators, 33-42, Oper. Theory Adv. Appl. 189, Birkhäuser, Basel, 2009.
[22] Aparajita Dasgupta, Man-Wah Wong, Fourier-Wigner transforms and Liouville's theorems for the sub-Laplacian on the Heisenberg group, Linear and non-linear theory of generalized functions and its applications, 67-75, banach Center Publ. 88, Polish Acad. Sci. Inst. Math., Warszawa, 2010.
[23] J. Masamune, Essential self-adjointness of a sub-laplacian via heat equation, Comm. Partial Differential Equations 30 (2005), 1595-1609.
[24] M. Reed, B. Simon, Methods of Modern Mathematical Physics II, Fourier Analysis, selfadjointness, Academic Press, New-York, London, 1975.
[25] M. W. Wong, Weyl transforms, Universitext, Springer-Verlag, New York, 1998.
[26] G. B. Folland, Harmonic Analysis in phase space, Ann. Of Math. Stud. 122, Princeton University Press, Princeton, NJ, 1989.
[27] S. Thangavelu, Lectures on hermite and Laguerre expansions, Math. Notes 42, princeton University Press, Princeton, NJ, 1993.
[28] K. Yosida, Functional Analysis, Classics Math., Springer-Verlag, Princeton, Berlin, 1995.
[29] N. Dunford, J. Schwartz, Linear Operators: Part II, Interscience Publishers, John Wiley and Sons, New York-London, 1963.
[30] F. Wolf, On the essential spectrum of partial differential boundary problems, Comm. Pure Appl. Math. 12 (1959), 211-228.
[31] F. Wolf, On the invariance of the essential spectrum under a change of boundary conditions of partial differential boundary operators, Indag. Math. 21 (1959), 142-147.
[32] M. Schechter, Spectra of partial differential operators, Second Edition, Ser. Appl. Math. mech. 14, North-Holland Publishing Co., Amsterdam, 1986.
[33] K. Furutani, K. Sagami, N. Otsuki, The Spectrum of the Laplacian on a certain Nilpotent Lie Group, Comm. partial Differential Equations 18 (1993), 533-555.
[34] N. Garofalo, E. Lanconelli, Frequency Functions on the Heisenberg Group, the uncertainity principle and unique continuation, Ann. Inst. Fourier 40 (1990) 313-356.

Volume 12 Issue 12, December 2023 www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
[35] S. P. Ivanov, D. N. Vassilev, Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem, World Scientific publishing company, Hackensack, NJ, 2011.
[36] G. P. Leonardi, S. Masnou, On the isoperimetric problemin the Heisenberg Group \mathcal{H}_{n}, Ann. Mat. Pura Appl. 184 (2005) 533-553.
[37] A. Loiudice, Improved Sobolev Inequalities on the Heisenberg Group, Nonlinear Anal. 62 (2005) 953-962.
[38] P. Pucci, M. Xiang, B. Zhang, Multiple solutions for nonhomogeneous Schrödinger-kirchhoff type equations involving the p-laplacian in \mathbb{R}^{N}, Calc. var. partial Differential Equations 54 (2015) 2785-2806.
[39] D. Vassilev, Existence of solutions and regularity near the characteristic boundary for sub-Laplacian equations on Carnot Groups, Pacific J. Math. 227 (2006) 361-397.
[40] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983) 437-477.
[41] J. Liao, H. Li, P. Zhang, Existence and multiplicity of solutions for a non-local problem with critical Sobolev exponent, Comput. math. Appl. 75 (2018) 787-797.
[42] S. Liang, D. D. Repovs̆, B. Zhang, On the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity, Comput. math. Appl. 75 (2018) 1778-1794.
[43] A. Fiscella, P. Pucci, Degenerate Kirchhoff (p, q)-fractional systems with critical nonlinearities, Fract. calc. Appl. Anal. 23 (2020) 723-752.
[44] G. Palatucci, A. Pisante, Improve Sobolev embeddings, profile decomposition, and cocentration-compactness for fractional Sobolev Spaces, Calc. Var. Partial Differential Equations 50 (2014) 799-829.
[45] P. Pucci, S. Saldi, Critical Stationary Kirchhoff equations in \mathbb{R}^{N} involving nonlocal operators, Rev. Mat. Iberoam. 32 (2016) 1-22.
[46] L. wang, k. Xie, B. Zhang, Existence and multiplicity of solutions for critical Kirchhoff-type p-laplacian problems, J. Math. Anal. Appl. 458 (2018) 361-378.
[47] Y. Song, S. Shi, On a degenerate p-fractional Kirchhoff equations involving critical Sobolevhardy nonlinearities, Mediterr. J. math. 15 (2018) 17.

Volume 12 Issue 12, December 2023 www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[48] S. Liang, P. Pucci, Multiple solutions for critical Kirchhoff-Poisson systems in the Heisenberg group, Appl. Math. Lett. 127 (2022) 107846.
[49] S. Deng, X. Tian, Existence of solutions for Kirchhoff-type systems involving Q-Laplacian operator in Heisenberg group, J. Math. Anal. Appl. 495 (2021) 124727.
[50] P. Pucci, L. Temperini, Existence for (p, q) critical systems in the Heisenberg group, Adv. Nonlinear Anal. 9 (2020) 895-922.
[51] X. Sun, Y. Song, S. Liang, B. Zhang, Critical Kirchhoff equations involving the p-sublaplacians on the Heisenberg group, Bull. Math. Sci. , Vol. 13, No. 2 (2023) 2250006.
[52] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBME Regional Conference Series in Mathematics, Vol. 65 (American Mathematical Society, Providence, RI, 1986).
[53] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and application, J. Funct. Anal. 14 (1973) 349-381.

