
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 12, December 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

AI-Based Clinical Decision Support Systems in 

Smart Hospitals 
 

Dhanaraj Sathiri 
 

Independent Researcher, India 

Email: dhanrajsathiri[at]gmail.com 

 

 

Abstract: Artificial Intelligence (AI) has the potential to transform healthcare delivery and enhance clinical decision-making. AI-based 

Clinical Decision Support Systems (CDSS) can complement human expertise, leading to improved patient care and greater efficiency in 

smart hospitals. Smart hospitals represent an evolution of the concept of smart health by incorporating real-time, event-driven monitoring 

of patients and the hospital environment, enabling intelligent deployment of AI techniques in CDSS. Three architectural features 

characterize smart hospital CDSS: integration with Electronic Health Records for patient and environmental monitoring, a human-AI 

collaboration model aligned with clinical workflow, and seamless communication with monitoring equipment, devices, and other CDSS. 

AI-based CDSS support a variety of clinical tasks, including diagnostic and therapeutic decision-making, critical care, medication safety, 

and adverse event prevention. Evaluation of AI-based CDSS encompasses the effects on clinical outcomes, care quality, user experience, 

safety, security, privacy, intelligibility, bias and discrimination, alignment with regulatory frameworks, implementation roadmaps, 

governance, and continuous improvement. A foundational strategy for developing AI-based CDSS in smart hospitals combines existing 

knowledge and evidence with breakthroughs in intelligent predictive models and natural language processing. There are three principal 

driving forces: the massive quantities of health-related data generated within smart hospitals, the increasing overlap and redundancy in 

clinical work due to repetitive and routine tasks, and the societal imperative to enhance the science of medicine in order to achieve precision 

medicine and precision public health. When used responsibly, AI-based CDSS reduce system-wide heterogeneity, standardize responses 

to predictable scenarios, improve system efficiency, and minimize latent error. However, it is crucial to ensure that AI is not deployed 

simply for efficiency gains, which shifts the balance of responsibility and may have negative consequences for patients, hospital staff, and 

society. Promising AI-based CDSS applications will serve as testbeds for the implementation of these systems in real-time operation at 

scale in smart hospital environments. 
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1. Introduction 
 

Artificial intelligence (AI) has made its most significant 

impact on clinical decision support systems (CDSS), 

facilitating the availability of diagnostic and therapeutic 

recommendations that are closely aligned with clinical 

evidence. CDSS provides health care personnel with a second 

opinion, thereby helping physicians with emergency 

diagnosis and reducing the risk of human error. Modern 

CDSS leverages AI to analyse large amounts of medical data 

from a wide variety of data sources. AI-based CDSS 

integrates patient data from electronic health records (EHRs) 

and other structured and unstructured databases; includes 

extensive clinical knowledge graph data comprising disease 

semantics; and applies the latest deep learning, natural 

language processing, and reasoning technologies to support 

clinical development. 

 

Smart hospitals are generally viewed as a more integrated and 

intelligent hospital buildings. Smart hospitals can readily be 

connected to various clinical information systems, enabling 

real-time health monitoring, dynamic event-driven control, 

and the AI-based decision support at any stage in the hospital 

workflow. Therefore, smart hospitals create an appropriate 

environment for deploying AI-based CDSS to improve 

clinical outcomes and quality of care.  

 
Figure 1: Artificial-Intelligence-Based Clinical Decision 

Support 

 

1.1 Background and Significance 

 

Globally, the aging population and the increasing incidence 

of chronic diseases, along with the scarcity of healthcare 

professionals and financial resources, place enormous 

pressure on healthcare systems. Despite the rising demand for 

quality healthcare services, the ability to provide such 

services remains deficient. Smart hospitals based on the 

internet of things (IoT) and big data technologies 

continuously collect real-time information on hospitalized 

patients and available hospital resources. Artificial 

intelligence (AI) techniques applied to clinical decision 

support systems (CDSS)—including predictive models, 
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diagnostic engines, risk stratification, clinical event detection, 

and recommender systems—enable integration of clinical and 

contextual information acquired from electronic health 

records and health information exchange platforms, and 

derived from online monitoring. This facilitates timely 

alerting of clinical events, delivering the right information to 

the right person at the right time and place, thereby enhancing 

patient safety. Implementing AI-based CDSS in smart 

hospitals poses multiple challenges and AI model 

performance needs to be continually monitored. Advanced 

CDSS hold the potential to prevent diagnostic errors, support 

precision medicine, enhance triaged decision-making in 

critical situations, improve medication safety, and mitigate 

adverse events. 

 

Clinical decision support systems (CDSS) are AI-supported 

applications helping healthcare professionals deliver quality 

health services. CDSS have become ubiquitous in modern 

healthcare, capturing more than 70% of the market share in 

2021. Although the existing status and development of CDSS 

is promising, only 0.9% of CDSS meet all of the clinical 

usability and integration criteria for implementation. AI-

based CDSS enable improved clinical decision-making 

through real-time clinical event detection, risk stratification, 

timely alerts, predictive analytics, machine-assisted 

diagnosis, and therapeutic recommendations. Clinical and 

contextual information, including comparative statistics on 

similar patients, is supplied through integration with 

electronic health record (EHR) systems and health 

information exchange (HIE) platforms. 

 

2. Foundations of AI-Based Clinical Decision 

Support 
 

Three foundations are essential for reliably transferring the 

power of AI into clinical practice: all core AI techniques 

crucial for decision support, the data resources required for 

evidence generation today and tomorrow, and the standards 

necessary for the validation of AI-based CDSS. Addressing 

these areas will engender trust among hospital administrators, 

clinicians, and patients. More importantly, expanding the 

body of scholarly work in AI techniques and their integration 

will bolster clinical decision support in a way that is urgently 

needed for improved health and well-being. 

 

A comprehensive understanding of how AI techniques 

support medical decision-making is required for integrating 

those capabilities into a hospital environment. For diagnostic 

decision support, it is important to leverage the entirety of the 

diagnostic process in conjunction with the systems for 

determining, testing, and rewriting differential diagnoses. 

Therapeutic decision support should also integrate the full 

therapeutic determination process, including the prescription 

of therapeutic regimens alongside dosing, selection of assays 

to monitor progress, adjustment in light of physiologic and 

laboratory milieu, and safety concerns. Beyond CT scan 

interpretation, common applications are in the initiation or 

adjustment of mechanical ventilation or oxygenation, 

identification of need for escalation of care, and diagnosis of 

thrombosis and pulmonary embolism. Supporting the safety 

and trustworthiness of drug therapies is another pressing need 

for decision support systems. 

 

Equation 1: Bayes’ theorem (core for differential 

diagnosis) 

Let: 

• (D) = a disease (e.g., sepsis) 

• (E) = observed evidence (vitals, labs, notes) 

 

We want the posterior probability of disease given 

evidence: 

[P(D\mid E)] 

 

Step-by-step derivation 

Start from conditional probability definition: 

[P(D\mid E)=\frac{P(D\cap E)}{P(E)}] 

 

Similarly: 

[P(E\mid D)=\frac{P(D\cap E)}{P(D)}] 

 

Solve the second equation for (P(D\cap E)): 

[P(D\cap E)=P(E\mid D),P(D)] 

 

Substitute into the first: 

[P(D\mid E)=\frac{P(E\mid D)P(D)}{P(E)}] 

 

If evidence can occur under multiple diseases 

(D_1,\dots,D_k), the denominator expands by total 

probability: 

[P(E)=\sum_{i=1}^{k} P(E\mid D_i),P(D_i)] 

 

So: 

[P(D_j\mid E)=\frac{P(E\mid D_j)P(D_j)}{\sum_{i=1}^{k} 

P(E\mid D_i)P(D_i)}] 

 

2.1 Core AI Techniques in Decision Support  

 

Machine learning, especially deep learning, is an 

indispensable technology for computer-aided detection 

[classifying pixels or regions in images of radiology, 

pathology, etc.] and certain other specific tasks, including 

natural language understanding. An essential type of model, 

trained on massive datasets from experiments with human 

subjects, is Large Language Models (LLM) [e.g., ChatGPT]. 

LLMs can process unstructured textual information and 

provide humanlike textual output. Such models can indeed be 

harnessed in diagnostics, but key aspects of decision support, 

including best treatment for given patient conditions, require 

reasoning. 

 

Together, smart hospitals’ data environments can support 

probabilistic logic-based inference over data, with support 

from graph neural networks or LLMs. Probabilistic logic is 

particularly suited for integrating medical knowledge 

(tailored ontologies) with real-world patient data (from 

electronic health records and natural language processing of 

clinical narratives) across multiple time slices. Its foundation- 

axioms linking causes to effects- unlike neural networks, is 

easy to review and validate. The variety of AI tools, each 

suited to specific technical needs, brings automation. With 

growing datasets and clinically validated AI-based systems, 

the time needed for training is shrinking. 

 

Machine reasoning must be complemented by explainable AI, 

which justifies and elucidates model predictions to clinicians, 
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saved for particularly challenging cases. The goal is that 

simplest models do the heavy lift, with sophisticated AI 

applied judiciously when humanlike reasoning is too difficult 

or time-consuming. 

 

2.2 Data Infrastructure and Interoperability  

 

AI-based CDSS are data-hungry, requiring high volumes of 

structured and unstructured data to support training, 

calibration, validation, and operational applications. A 

comprehensive data network within a smart hospital is 

essential to ensuring the quality of training and operational 

AI-based CDSS applications. The supporting systems of the 

smart hospital need to focus on standardized information 

exchange that enables the timely delivery of high-quality data 

sources for training and validation of AI models on different 

clinical or nonclinical tasks. A primary requirement for the 

successful integration of many AI-based CDSS applications 

is accurate, timely, coherent, and integrated data. Adoption of 

the principles and technical solutions established in the 

source, integration, and analysis of clinical big data can 

dramatically reduce the performance gap of AI-based CDSS 

in real-life clinical settings. 

 

A major obstacle to the successful uptake of AI-based CDSS 

is the limited availability of structured data for model training 

and calibration. Traditional clinical CDSS largely rely on 

patient information pulled together within EMR systems and 

presented to users when necessary. The majority of hospital 

operations support systems (e.g., finance and radiology 

systems) do not directly share data with clinical CDSS. 

Moreover, the voice of medical imaging, pathology, and 

neurosurgical open reports mostly exists in unstructured text 

form and therefore requires natural language processing 

capability when used by the CDSS. AI techniques for visual 

recognition, speech processing, language understanding, and 

multimodal integration present the opportunity to close the 

missing data gap in practical applications of AI-based CDSS. 

 

 
 

2.3 Evidence Standards and Validation  

 

AI-based clinical decision support systems employ multiple 

AI technologies across different functional modules. A CDSS 

is effective only if it is based on robust evidence for a specific 

clinical task. Just like the development of pharmaceutical 

drugs or medical devices, clinical decision support models 

must be validated in controlled studies with appropriate 

sample sizes before being deployed. 

 

Two additional aspects of the validation evidence are also 

important. First, models that are built using data from specific 

disease populations or geographic locations will not 

necessarily generalize to other populations, and it is important 

to know if and under what circumstances they can. Second, 

for the domain of clinical care it is expected that the clinical 

care provided under the decision support model will have 

been shown to improve patient health outcomes and not 

merely that the model is producing correct answers. 

Therefore, models can be recommended for integration into 

routine workflows only when the associated clinical care has 

been validated to improve health outcomes compared to the 

alternative management strategies. 

 

3. Architectural Models of Smart Hospitals 
 

Integration of AI-based CDSS within the information 

architecture of EHR systems is fundamental to ensuring 

safety and effectiveness in the management of patients by 

providing alerts that require human attention and intervention 

only when warranted. Treatment guidelines need to take 

account of rapid changes in a patient's condition, for instance 

when monitoring is undertaken in an intensive care unit. 

Event-driven modelling enables automated action (including 

the capable allocation of limited hospital resources) when 

continuous monitoring identifies patients requiring 

immediate care. Evidence-based decision support continues 

to be ineffective when the ultimate decision-making is not 

integrated into clinician workflow. 

 

Architectural models of smart hospitals provide guidance on 

the design of AI components that are fused with, and 

temporally and semantically aligned to, human cognition and 

information systems. The primary motivation is a better 

approach to Acute Resuscitation Decisions. Smart hospital 

architecture captures the human decision-making process and 

uses it to drive intelligent decision-support systems that use 

clinical data, patient condition and context. This enables 

clinicians to make smarter and safe decisions like an "AI-

assisted smart browsed CDSS" system for the differential 

diagnosis of 24 diseases related to physical examination 

document (TPED). 

 

Resource provisioning and usage allocation rely on predictive 

diagnostics of need, dynamic booking and assignment of 

people, beds, procedures, equipment, and consul­tation, 

external fulfillment of capability demand (e.g., surgery, 

procedure), and support for maintenance and overhaul 

scheduling. Event-driven process automation responds to 

overflow or underflow situations with predetermined actions, 

and facilitates temporal, conditional, and resource role-driven 

workflow orchestration. 

 

 
Figure 2: Smart healthcare system architecture 
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3.1 Integration with Electronic Health Records 

 

AI-based CDSS must be integrated with EHR systems to 

realize their full potential and reach a wide clinical audience. 

At this stage, the EHR serves as a passive repository of patient 

information and is not intelligently utilized to facilitate 

clinical decision-making. Integrating CDSS with EHR and 

augmenting its functionality with advanced AI enables the 

presentation of rich analytics from real-time patient data that 

can support medical diagnostics and treatment 

recommendations. Event-triggered alerts generated from real-

time patient monitoring can also serve as useful decision aids. 

The default EHR systems are often unusable due to their 

complexity of use and hard-to-navigate user interfaces. 

Investment in AI tools can improve system usability and 

maximize. EHR usability can be improved using AI via 

natural language processing (NLP)-based techniques. The use 

of funny personal names for the patient can ease sensitivity 

while expressing potentially important and dangerous 

information. Moreover, the detailed history is generated using 

a document summarization methodology with improved 

readability and execution. Combined use of generative Pre-

trained Transformer (GPT) and semantic-based techniques 

improves response structure. CDSS driven alert system helps 

the insurance policy holders in selecting the right plan. 

Privacy and security of data in CDSS driven EHR-integrated 

system have been addressed well. 

 

3.2 Real-Time Monitoring and Event-Driven Alerts  

 

Real-time event-driven CDSS support constitutes evidence-

based alerts linked through reliable statistical associations to 

clinically meaningful outcomes—such as safety threats, re-

admission risk, need for risk mitigation, or care gap closure. 

Real-time monitoring and detection of significant patient 

deterioration support early recognition and intervention to 

avert adverse outcomes, particularly in high-risk areas like the 

ICU or general wards. Prognostic indices that integrate 

multiple signals to predict clinical deterioration drive set 

goals, protocol adherence, and escalation decisions. Explicit 

cause-effect modeling of abnormal data patterns with 

treatment recommendations, such as sepsis bundles, monitor 

pattern evolution in near real-time to trigger alerts. 

 

Fine-grained critical resource monitoring keeps track of 

availability status at a high resolution and proactively informs 

care teams and resource owners of potential usa­bi­lity about 

to enter unsafe regions, need for treatment, or pre-emptive 

remedy. Condition monitoring assesses readiness for resource 

allocation and recovery from demand, capacity, or usage 

distortion.  

 

3.3 Human-AI Collaboration and Workflow Integration  

 

Clinical decision support systems are designed to support 

clinicians in real-time. For interaction to be efficient and 

seamless, not only must CDSS be integrated with EHRs and 

event-driven alerting systems, the alert content must also 

match the human context and cognitive capacity. Analysis of 

the human-computer partnership suggests several general 

considerations for the design of such systems. 

 

When clinicians encounter a challenging commitment, they 

welcome assistance that is relevant, timely, and trustworthy. 

Around 30% of support requests when managing critically ill 

patients in the ICU are met with disagreement, but the very 

act of consulting a colleague represented an opportunity for 

learning. Although physicians usually prefer consultation 

with colleagues over automated systems, surveys have shown 

that 30-40% regard AI support as desirable, especially when 

dealing with common problems. Given the complexities of 

safe drug prescription, bias in drug effect in different patient 

groups, and the difficulties in diagnosis and treatment of 

many conditions, physicians clearly need additional 

expertise. AI-based systems should be able to acquire and 

summarize medical knowledge rapidly enough to supplement 

rather than supplant expert human consultation. Command or 

precaution prompts can draw a clinician's attention to safety 

issues in drug prescription, monitoring, or abnormal test result 

interpretation. 

 

4. Applications of AI-Based CDSS 
 

The areas of clinical decision support most ready for 

deployment in smart hospitals correspond to predictions of 

mortality risk or changes in clinical status, diagnostic or 

differential diagnosis suggestions, guidance on therapeutic 

decisions or drug administration, posting of drug-drug and 

drug-allergy warnings, rules for adverse event screening or 

prevention, and management of imaging examinations. 

 

AI-based clinical decision support systems (CDSS) are poised 

to aid in diagnosis, provide therapeutic guidance, respond to 

crisis situations, and support medication safety. Five types of 

applications deserve particular attention. AI systems that 

suggest the most likely diagnosis or a set of possible 

diagnoses are of great interest. Adding the new perspective of 

large language models to the process of differential diagnosis 

has gained momentum, as demonstrated by DualGPT, a dual-

step framework for a more accurate, fairer, and safer 

differential diagnosis. Applications for predicting the clinical 

outcome of a critical illness. Early detection and clinical 

deterioration prediction, especially for COVID-19 patients, 

enhance the potential of smart hospitals to save lives. 

Providing recommendations for a drug treatment proposal 

and indication is also supported by evidence. Furthermore, AI 

applications designed to suggest clinical actions that prevent 

imminent adverse events collect great attention, especially in 

intensive and emergency care settings. 

 

Machine learning–powered algorithms capable of evaluating 

the current clinical conditions of a patient and anticipating 

functional needs constitute a unique subset of such 

applications. They are designed to exploit real-time data from 

wearable sensors to forecast health changes in patients with 

chronic diseases and assist home-care patients. Similar ideas 

have been proposed for administrating imaging examinations, 

although under a different perspective. In this case, the goal 

is to develop a system that distributes imaging requests 

among available resources, guaranteeing quality in the 

administered examinations and minimizing the overall time 

and cost. 
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Equation 2: Logistic regression risk model (common 

baseline in CDSS) 

Let features (x_1,\dots,x_m) (age, HR, BP, lactate, etc.). 

Logistic regression models log-odds as linear: 

[\log\left(\frac{p}{1-

p}\right)=\beta_0+\beta_1x_1+\cdots+\beta_mx_m] 

Step-by-step to solve for (p) 

1) Exponentiate both sides: 

[\frac{p}{1-p}=\exp(\beta_0+\beta^\top x)] 

2) Multiply both sides by ((1-p)): 

[p=\exp(\beta_0+\beta^\top x),(1-p)] 

3) Expand RHS: 

[p=\exp(\beta_0+\beta^\top x)-p\exp(\beta_0+\beta^\top 

x)] 

4) Bring (p) terms together: 

[p + p\exp(\beta_0+\beta^\top 

x)=\exp(\beta_0+\beta^\top x)] 

[p\left(1+\exp(\beta_0+\beta^\top 

x)\right)=\exp(\beta_0+\beta^\top x)] 

5) Divide: 

[p=\frac{\exp(\beta_0+\beta^\top 

x)}{1+\exp(\beta_0+\beta^\top 

x)}=\frac{1}{1+\exp\left(-(\beta_0+\beta^\top 

x)\right)}] 

 

4.1 Diagnostic Support and Differential Diagnosis  

 

Various AI algorithms trained with data from diverse patient 

cohorts can predict disease occurrence, improve clinical 

prediction tools, and enhance the accuracy of differential 

diagnosis. Using large clinical databases, attention-based 

Transformers found imaging patterns in chest X-rays that 

were significantly correlated with 20 different diseases and 

were helpful for differential diagnosis. A web-based tool, 

termed EasyDL, supported precisely detecting major 

diseases, such as pneumonia, with dermatoscopic images. A 

graphical representation visualized overfitting patterns, 

revealing discriminant confidence of each image for each 

disease, hence enabling quick and accurate disease 

verification. Explainable AI enhanced the accuracy of models 

predicting clinical events from high-dimensional patient 

databases, and built-in interpretable attention models 

improved prediction of various diagnosis codes 1–2 years in 

advance. 

 

Impressive results emerged with multi-morbidity studies. A 

federated machine learning framework, privacy-preserving 

Multi-Party Computation Distributed Learning, designed to 

predict 30 diseases from cross-section data in 139.2 million 

hospital visits, substantially reduced prediction bias among 

model installed in hospitals with varying disease distribution. 

Such approaches were extended to the five most prevalent 

diseases. An ensemble of 24 different models showed that 

parity and accessibility to adequate healthcare resources 

could reduce the burden of multimorbidity for both genders. 

Multiple morbidities history integrated into risk approaches 

could better quantify risks of 10 common surgical conditions 

involving placement and removal of devices, and habitual 

sedentary lifestyle might be a general risk factor for spatio-

temporal distributions of a wide range of diseases. Deep 

learning with real-world cohort information also provided 

useful mappings for identifying co-occurrence or absence of 

common conditions in patients. 

Combining advanced multi-source data can improve 

prediction accuracy of multi-risk ADLs. Automatic 

diagnostic prediction models reinforced by interpretable 

layers and projections of explicit knowledge from clinical 

guidelines can provide accurate and intuitive suggestions for 

doctors. Models identifying oral diseases using ML and DL 

frameworks demonstrated viable sensitivity and specificity 

and may help doctors eliminate oral diseases. Closed-loop 

and explainable AI incorporated into Non-communicable 

Disease Risk Factor Surveillance comprehensive disease 

prediction models showed clear advantages compared to 

traditional prediction methods and could have positive effects 

in clinical practice. 

 

4.2 Therapeutic Guidance and Precision Medicine  

 

AI methods are being applied to assist clinicians in providing 

the most effective therapies for patients. Their capability to 

consider multiple factors and large volumes of clinical 

evidence makes them suitable enablers of precision medicine. 

Recent work has shown that an AI method can be trained to 

highlight drug options that are statistically most effective for 

specific patient profiles, and other studies have introduced 

CDSS for the selection of multiple drugs and dosages. 

 

AI methods have been developed to assist clinicians in 

choosing specific therapies for patients, disease stages, and 

clinical conditions. Rapid advances in precision medicine and 

systems biology have generated vast amounts of data on the 

molecular basis of disease, therapeutic targets, drug response, 

and drug side effects, some of it useful for clinical decision 

making regarding therapy. AI methods can therefore search 

through structured data, such as molecular profiles, biological 

networks, and clinical outcome records, for statistical 

associations between gene mutations, copy number 

variations, and/or mRNA expression, and drug efficacy, 

and/or drug side effects. Examples include probabilistic 

graphical models for scoring disease–molecular alterations–

drug–efficacy associations, AI selection of the most effective 

drugs and dosages for patients with hepatocellular carcinoma, 

and deep-learning-based prediction of the drugs–patients 

compatibility, as well as CDSS that consider disease stages 

and multiple drugs simultaneously to minimize adverse 

effects. 

 

4.3 Critical Care and Triage  

 

AI technology finds various applications in smart hospitals, 

ranging from diagnostic support to medication safety. 

 

Specific solutions include real-time monitoring of patients’ 

health conditions, forecast of clinical events that may lead to 

deterioration, recommendation of appropriate investigations 

or interventions, triage of patients waiting for consultation or 

admission, and prediction of life-threatening adverse events. 

These AI‐based systems help to alleviate the cognitive burden 

on clinicians and support real-time decision-making. 

 

Critically ill patients are more likely to develop unexpected 

complications during hospitalization. Early prediction and 

prevention of clinical deterioration must be a priority for 

healthcare teams, especially in critical-care departments. 

However, timely identification of at-risk patients remains a 
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major challenge. AI has enabled improvement of proactive 

prediction in hospital settings by integrating real-time vital 

signs with referral data into state-of-the-art machine-learning 

algorithms based on electronic health records. Real-time 

prediction of common adverse events as well as acute-

inpatient-declining conditions has become possible, 

enhancing clinical awareness and enabling timely avoidance 

of deterioration. 

 

In emergency care, AI technology can be mounted into 

clinical workflows to develop effective solutions, notably 

through supporting or replacing existing decision-making 

processes. Current models can predict, for all patients 

awaiting consultation, the most suitable location for 

management according to common principles in emergency-

medicine unit organization. Such prediction can enable 

smooth access to health resources and improve operational 

efficiency of emergency departments. 

 

 
 

5. Evaluation and Effectiveness 
 

5.1 Clinical Outcomes and Quality of Care 

 

Evidence of clinical improvement for AI-based clinical 

decision support systems (CDSS) is still limited: a systematic 

review analyzing 510 publications found 63 studies assessing 

clinical outcomes, 43 of which reported at least one clear 

improvement. The most beneficial subtypes were associated 

with diagnosis support, critical care, and medication safety. 

Increased quality of care was found to correlate with usability 

and trust, but malicious attacks compromised classification 

performance, highlighting the need to strengthen safety, 

security, and privacy. 

 

Healthcare costs continue to rise without major improvements 

in clinical outcomes, largely because standardization lowers 

hospital costs but sacrifices innovation and individualization. 

The advent of affordable, cloud-based computing and the 

volume of real-world health data now offer opportunities for 

smart hospitals to integrate their clinical decision support, 

diagnostic, and therapeutic systems using artificial 

intelligence. In such settings, AI-CDSS have the potential to 

substantially improve clinical outcomes, but mapping quality 

attributes to technology architecture is challenging. A 

framework aligning these attributes with evidence-based 

properties and the architectural model applied to an AI-CDSS 

for the diagnosis and management of chlamydia support 

quality improvements across all functional categories. 

 

 

5.2 Usability, Trust, and Adoption Barriers 

Increased quality of care correlates with usability and trust, 

while insufficient training data and the complexity of the 

healthcare model hinder adoption. Effective deployment 

requires stakeholder governance with a roadmap spanning 

training, technological readiness, data management, and 

biocompatibility. All AI-based applications ideally should 

constitute a hospital product rather than a project to ensure 

continuous improvement. In a smart hospital, real-time 

monitoring, intervention triggers, and direct integration with 

electronic health records are essential for CDSS supporting 

laboratory tests, critical care, medication safety, and diversion 

surgery. Relying on crowd input and behavior-based learning 

fosters trust. 

 

Despite facilitating greater efficiency in health systems, AI-

CDSS has not yet reached mainstream adoption. Evidence 

shows that user trust, acceptance, and usability are crucial for 

a positive impact on clinical outcomes. Trust is strengthened 

by close collaboration between AI and humans, as well as by 

reliable simulation. Errors stemming from imprecision inhibit 

user trust, while poor usability diminishes acceptance. 

Malicious attacks- including adversarial examples, poisoning, 

data extraction, model inversion, and exploitation of biases- 

compromise classification performance and clinical utility. 

 

5.3 Safety, Security, and Privacy Considerations 

 

Although security, safety, and privacy aspects are less 

evident, defense against malicious attacks such as adversarial 

examples, poisoning, and data extraction is essential to 

sustaining performance and trust. Malicious manipulations 

reduce classification accuracy, rendering AI-CDSS 

vulnerable to the very threats that intelligent design seeks to 

mitigate. Despite healthcare data being one of the most 

valuable assets in today's digital world, studies have 

highlighted weaknesses in privacy policies and mechanisms. 

Moreover, the balance between retaining user privacy and 

enhancing system recommendation quality is poorly 

understood. 

 

Table: “Smart hospital CDSS”- 3 architectural features (as 

stated) 
Architectural feature What it means operationally 

EHR integration Use EHR for patient + environment 

monitoring and data access 

Human-AI collaboration 

aligned to workflow 

CDSS advice must fit clinical 

cognitive/workflow context 

Seamless communication 

with devices/other systems 

Connect monitoring equipment + 

other CDSS for event-driven actions 

 

5.4 Clinical Outcomes and Quality of Care  

 

AI-based CDSS has the potential to improve a range of 

clinical outcomes and the quality of care. Effectiveness may 

be assessed through correlation with key clinical measures, 

through comparison with historical data, or through the 

application of clinical trial methodology. Such systems 

combine evidence-based algorithms with patient-specific data 

to deliver real-time alerts at the point of care. 

 

The majority of studies found beneficial effects on disease 

prevention, decision-making and care quality, although few 
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measured direct endpoints such as morbidity, mortality or 

costs. The number of clinical trials remains limited, with 

particular reference to the randomly controlled design.  

 
Figure 3: Clinical Outcomes and Quality 

 

5.5 Usability, Trust, and Adoption Barriers  

 

Since the primary end users of AI-based Clinical Decision 

Support Systems (CDSS) are care givers, whose day-to-day 

clinical decisions are no longer solely made through their own 

cognitive reasoning but rather supported by an AI engine, 

usability must be a key property of AI-based CDSS, 

especially for enabling the user to understand why the system 

produced a certain output and to easily spot the context within 

which the CDSS performs well or poorly. To address these 

concerns, proper attention must be paid to the CI-AI user 

interface and interaction design and to the transparency of AI-

based CDSS. 

 

Usability studies usually draw from the literature of human-

computer interaction or information science, adopting 

methods such as user testing or interviews. In the innovative 

area of augmented intelligence, researchers are also 

investigating the adoption of established usability guidelines 

from the User Experience community and User-Centered 

Design methodologies. Usability studies has also included 

end-users represents low-fidelity mock-ups of the CDSS 

output and interface, testing both recommendations and 

diagnosis support. Usability testing of perceptive user 

interface and interaction design prototypes has also been 

emphasized, with a desirability matrix used to benchmark 

human-rated desirability, usefulness, relevance, and novelty 

of the designs in the context of farming. 

 

Trust appears to be critical to the long-term acceptance of 

Augmented Intelligence and trustworthy AI at large. A sound 

trust relationship hinges on several factors, such as how the 

AI system provides its advice, how often the advice is right 

and of good quality and the quality of the underlying data. 

Evidence of positive or negative consequences of following 

the system's suggestion over time also contribute to its trust 

relationship, as does the completeness of the training and 

learning data, whether they are reliable and whether they 

carry a sufficient level of diversity. As the system matures, 

trust also grows, but in human-AI collaboration – as different 

from a human-human relationship – the AI should keep 

earning the trust continuously. In recommendation-oriented 

scenarios, another critical factor for users’ trust is indeed the 

risk level. Adoption of ethical design principles grounded on 

equity considerations, involvement of users during the design 

process and provision of explainable-by-design functionality 

all contribute to trustworthiness, as demonstrated in the areas 

of gender fairness and emotional companions. 

 

Interaction between the AI and its users should be user-

centered and user-friendly, even when it acts in an assistive 

way. Hence, the suggestions and recommendations should not 

chastise the user but only offer help. It should sound natural 

from the interaction perspective. The system's ability to learn 

or develop emotional capabilities also affects the comfort 

level of human-AI interaction and ultimately the acceptance 

of the system itself. To promote a more human-like 

interaction, it can also be used for an advanced natural 

turnover that steers the interaction or for dealing with 

sensitive topics. AI-related jobs also appear promising for 

human-AI interaction, as they allow users to develop various 

types of interaction with affective chatbots and companions. 

 

5.6 Safety, Security, and Privacy Considerations  

 

Data access and communication security are vital to instilling 

clinician trust, yet AI-based clinical decision support systems 

typically draw on a detailed amalgamation of a hospital’s data 

resources, such as e-Government services, smart healthcare 

services and open data portals, which are inherently exposed 

to security breaches. Such systems merit careful scrutiny, 

however, as even slight neural network perturbation can result 

in misdirection. Also evident are the need to regularly retrain 

AI models using external data, the need to limit privacy 

leakage TV and even the EU directive requiring anti-

discrimination measures in AI. 

 

Privacy and regulation need special consideration in these 

systems. The General Data Protection Regulation (GDPR) 

and the EU medical device regulation (MD) require that 

development and validation of AI-based clinical decision 

support systems adhere to privacy and regulatory compliance, 

especially when using personal medical data. These laws 

follow specific guidelines, such as the Establishment of 

General Principles for Developing AI Techniques in Health-

care Settings, which proclaim the right to explainability when 

AI models suggest medical decisions. Consequently, deep 

learning models’ often opaque nature tends to make them 

rather challenging to subject to this principle. Regulatory 

requirements are even stricter for AI systems assisting 

medical diagnosis, affecting both AI development and future 

use. 

 

6. Ethical, Legal, and Social Implications 
 

Concerns about accountability are often raised in discussions 

of AI, particularly for high-stakes applications such as 

autonomous weapons or CDSS that affect human lives. 

Regulations for AI that use third-class neural networks in the 

European Union stipulate that “high-risk AI systems” must 

ensure a clear legal mechanism to determine liability in the 

event of damage to individuals or property. At the same time, 

the intricate complexity of some AI systems makes it difficult 

for these systems to self-interpret the logic underlying their 

inference processes. 

 

Various forms of explanation, transparency, interpretability, 

and trustworthiness are now actively researched in connection 

with AI and CDSS. Approaches such as Shapley additive 

explanations (SHAP) and LIME (Local Interpretable Model-

Agnostic Explanations) shed light on the workings of black-

box models and furnish explanations that can be conveyed to 

users. The efficacy, impact, and value of such explanations 

are debated, however, and it is recognized that exhaustive, 
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understandable, and trustworthy explanations are not always 

possible. The objective is therefore to provide explanations 

that can improve user trust and acceptance. 

 

The bias and potential discrimination that may emerge from 

AI training based on imbalanced or incomplete datasets are 

also matters of grave concern, as are the ways to ensure 

fairness, diversity, inclusion, equity, and accessibility in AI 

implementation. The 2021 OECD AI Principles recommend 

the testing and monitoring of AI systems for biased outputs, 

and the design of AI systems grounded in a process of 

engagement with diverse audiences. Moreover, AI-based 

systems must comply with ethical and legal frameworks and 

align with the values and strategies of society. Both bias and 

the technical solutions for mitigation must be communicated 

transparently to users, stakeholders, and affected individuals 

during the AI system’s entire lifecycle. 

 

Equation 3: Probabilistic graphical models (PGMs) 

implied by the paper 

If variables are (X_1,\dots,X_n) and each (X_i) has parents 

(\mathrm{Pa}(X_i)) in a DAG, then: 

[P(X_1,\dots,X_n)=\prod_{i=1}^{n} P(X_i\mid 

\mathrm{Pa}(X_i))] 

 

Why this is true (step-by-step idea) 

1) Chain rule always holds: 

[P(X_1,\dots,X_n)=\prod_{i=1}^{n} P(X_i\mid 

X_1,\dots,X_{i-1})] 

 

2) A Bayesian network encodes conditional 

independencies, letting us replace 

(P(X_i\mid X_1,\dots,X_{i-1})) with (P(X_i\mid 

\mathrm{Pa}(X_i))). 

 

That gives the product form above. 

 

If (T) is a treatment option and (E) is evidence, 

recommendation can be: 

[T^*=\arg\max_{t} P(T=t \mid E)] 

 

Using Bayes: 

[P(T\mid E)\propto P(E\mid T),P(T)] 

 

So ranking treatments is often: 

• Compute (or approximate) (P(E\mid T)) from the model 

and data 

• Multiply by prior (P(T)) (guidelines, prevalence, 

contraindications) 

• Choose the highest posterior (or show top-k with 

explanations) 

 

6.1 Accountability and Transparency  

 

The ethical, legal, and social aspects of AI-based clinical 

decision support systems (CDSS) in smart hospitals are 

discussed through the lenses of accountability and 

transparency, bias and fairness, and compliance with 

regulatory frameworks. AI-based CDSS operate within a 

complex system comprising procedures, organisational 

culture, supporting actors and technologies in addition to the 

intelligent agent itself. The human support and corrective 

functions around CDSS and the supporting technologies are 

crucial for making the service more trustworthy, efficient, 

progressive and reliable. It is vital that the system be 

transparent and that the reasons for decisions taken are 

interpretable and communicated to healthcare professionals 

involved as well as to other related actors. This transparency 

favours accountability and enables healthcare professionals to 

assume the legal responsibilities and risks associated with the 

decisions made. Healthcare professionals need to understand 

the strengths and weaknesses of their supporting technology 

as well as the potential impact of bias in the underlying 

models embedded in the technology. 

 

Bias and fairness are pervasive issues in AI, with the 

emergence of multiple, paired definitions of fairness that 

highlight how context-dependent the concept is. The rapid 

adoption of AI-based solutions in medical practice raises 

equity, justice, fairness and inequality concerns. A broad 

range of measures for computational fairness has been 

proposed, and a verifying index able to capture and quantify 

inequality in any decision-making process has been 

formulated that is sensitive to the choices made by decision-

makers in clinical practice. Recent advances in patient-

centered adaptive clinical trials are laying the foundation for 

the consideration of an Equity Adjustment during the design 

and analysis stages of these trials. It is important that the rich 

sources of accumulated knowledge and expertise in hospitals- 

treatment protocols, clinical practice guidelines, patient-care 

pathways and the like- be represented as formal computable 

knowledge that groups working on intelligent agents in 

healthcare can appropriately exploit. 

 

6.2 Bias, Fairness, and Equity  

 

Despite their growing prospects, AI-based Clinical Decision 

Support Systems (CDSS) also pose several challenges that 

require careful consideration. AI systems inevitably reflect 

the data used to train them. Biases in the data can propagate 

to the AI solution, resulting in models that provide suboptimal 

or even damaging outcomes for the populations under 

consideration. Models must be trained and validated on 

diverse datasets representing the full range of clinical 

conditions and life experiences of patients, and the CDSS 

must be employed in ways that protect against the negative 

ramifications of biased predictions. Attention to fairness, 

equity, and inclusiveness in the data sources, model 

development, and use of the solutions is essential. 

 

Clinical Artificial Intelligence systems must be developed on 

robust sets of inclusive and fair data. Highly imbalanced 

datasets—those with very few or no samples to represent a 

certain subgroup—often lead to non-generalizable AI 

solutions. Addressing social biases inherent in clinical record 

data is also important. For example, in demographic-sensitive 

tasks (e.g., predicting gestational diabetes for patients of 

different ethnicities), ethnicity-bias mitigation methods 

should be adopted. Other best practices for bias and fairness 

include using explainable AI‐based risk models, indirect 

fairness constraints, bias detection techniques, explainability‐

based group imbalance risk‐sensitive loss functions, and 

domain generalization methods to build fair models for 

practical risk prediction for patients. Moreover, by providing 

pathways to cold-start learning and recommendation, the AI 
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system might also avoid biases associated with cold-start 

recommendations 

Table: AI-CDSS application buckets explicitly listed in the 

article 
Bucket Examples mentioned 

Diagnostic / differential 

diagnosis 

Diagnostic suggestions, differential 

diagnosis tools 

Predict clinical deterioration 

/ mortality risk 

Real-time monitoring, deterioration 

prediction 

Therapeutic guidance / 

precision medicine 

Therapy/drug selection, dosages, 

molecular associations 

Medication safety Drug-drug / drug-allergy warnings 

Adverse event prevention / 

screening 

Rules for screening/preventing 

imminent adverse events 

Imaging exam management Managing imaging examinations / 

distributing imaging requests 

 

6.3 Compliance with Regulatory Frameworks  

 

Whether they are classed as medical devices, decision-aid 

software, or tools embedded in the operation of a smart 

hospital, AI applications must comply with relevant 

frameworks and standards to ensure safety, efficacy, and 

optimal clinical outcomes. Useful guidelines have already 

been developed and are evolving alongside advances in 

technology and experience with AI-based CDSS. 

 

Architectural considerations may go a long way toward 

mitigating ethical concerns in medical AI decision-support 

tools- including concerns about accountability, trust, bias, 

privacy, and security- but organizational change must also 

pay close attention to laws and privacy standards in the 

healthcare sector. Data governance is therefore key, both 

because the data superclusters need stringent policies on 

ownership and access to safeguard proprietary information 

and intellectual property, and because weak data governance 

policies expose CDSS to intrusion and hacking, which in turn 

could lead to undetected data manipulation and force clinical 

processes and hospitals into a situation similar to that of 

computer hacking. 

 

7. Implementation Strategies and Change 

Management 
 

A roadmap is proposed for the deployment of AI-based CDSS 

in smart hospitals. Successful implementation entails 

consideration of governance and stakeholder engagement and 

the establishment of metrics for continuous improvement. 

 

AI-based CDSS can take many forms, from applications to be 

accessed by clinicians themselves to behind-the-scenes alerts 

issued to clinicians by the AI systems. Although these 

systems have the potential to improve clinical outcomes and 

the quality of care, root causes of nurse and physician 

burnout, as well as factors influencing the adoption of AI 

tools, merit consideration when charting a course for 

deployment. There is no substitute for involving clinical staff 

from the outset: these stakeholders are crucial not only to 

acceptability but also to the definition of problems faced, 

possible AI-based solutions and domains of use. 

 

7.1 Roadmaps for Deployment in Smart Hospitals  

 

Strategies for implementing AI-based clinical decision 

support systems in smart hospitals comprise the definition of 

roadmaps that connect targeted CDSS applications with 

specific hospital characteristics and interdependencies. 

Considerations include the influence of market strength, 

digitization and smartness on the hospital size, the degree of 

integration with electronic health record systems, real-time 

monitoring and event-driven alerts, human-machine 

collaboration, and the infrastructure for enabling seamless 

information flow exchanges. 

 

Three roadmaps offer diverse implementation options. The 

first addresses hospitals in less-developed countries, where 

the first priority should be medication safety and adverse 

event prevention supported by a system-based approach to 

promoting prescriptions, transfusions and surgeries- areas 

with proven higher effects on quality of care. The second 

roadmap is designed for hospitals in developed countries 

lacking an advanced level of digitization but enjoying market 

strength. Here, the main effort should focus on integrating 

clinical decision support with electronic health record 

systems to improve diagnostic accuracy and therapeutic 

guidance. The final roadmap is aimed at advanced smart 

hospitals in mature markets, where the objective should be the 

enhancement of real-time monitoring capabilities. 

 
Figure 4: AI Is Transforming Hospital Management 

 

7.2 Governance and Stakeholder Engagement  

 

Skilful strategies for introducing AI-based clinical decision 

support systems in smart hospitals will employ a 

multifaceted, multi-tiered approach that integrates 

consideration of technical, human, and organisational factors 

across a broad spectrum of stakeholders. It is of paramount 

importance to focus on all societal stakeholders throughout 

the process of innovation, including governments, health 

authorities, regulatory bodies, funders, health professionals, 

patients, and the community at large. Though patients and 

health professionals will be the principal end users of clinical 

decision support systems, they do not wield much decision-

making power: they thus require supporting roles in the idea-

generation phase and should be consulted and guided by 

national health authorities to ensure evidence-based, valid 

solutions.  

 

Publicly funded health care systems must invest in funding, 

research, infrastructure, services, training, and education, as 

well as providing incentives and regulation. Financing drawn 

from several and/or dedicated sources- public and non-profit 

organisations, hospitals, foundations, industry, and 

governments, among others- can help reduce the burden on 

any single stakeholder. In addition to funding, organisations 

must constantly adapt to the changing environment and invest 

in research to remain at the forefront of innovation. The 

ongoing involvement of health professionals in the 

development of valid evidence-based solutions is also key, as 
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it ensures system usability and institutional acceptance. In this 

respect, special focus should be placed on education and 

training, with emphasis on preventive actions and 

implementation roadmaps. 

 

7.3 Metrics for Continuous Improvement  

 

Evaluation and implementation phases of AI-based CDSS are 

characterized by technological readiness, enhancing trust 

among users. Hospital management and other stakeholders 

are responsible for developing a deployment roadmap that 

addresses infrastructure, data quality and integration, 

regulatory approval, governance, and change management. 

Two major aspects of deployment are campaign management 

and continuous improvement, for which metrics are 

recommended. 
 

Longitudinal data on clinical outcomes, quality, safety, cost 

of care, and adoption should be collected to support a 

campaign management framework inspired by the Plan-Do-

Study-Act model for continuous quality improvement. At 

each hospital, the framework monitors clinical evidence-

based drivers of care quality and detects variations from 

expected quality for all conditions and procedures, to support 

evidence-based dissemination, such as clinical practice 

guidelines. A portfolio of metrics suitable for monitoring and 

continuously improving AI-based CDSS has been developed. 

These metrics belong to five clusters: incident detection, fault 

diagnosis, validation, acceptance, and operating metrics. 

An inference engine based on probabilistic graphical models 

combines local expertise, clinical practice guidelines, peer-

reviewed literature, and information from past cases to 

generate a recommended treatment. For any possible clinical 

condition, the modelling framework identifies minimum-

sufficient evidence to comprehend it based on patient data 

stored in hospitals' information systems. The model is 

integrated into the longitudinal clinical information system; 

information extracted from the database triggers inference 

engine deployment, modelling campaigns related to the 

selected patient cohort and care condition. 

 

8. Conclusion 
 

AI-based clinical decision support systems (CDSS) enable 

smart hospitals to deliver superior patient care by augmenting 

medical professional capabilities with evidence-based 

recommendations delivered through natural language. 

Clinical outcomes, quality of care, and safety can all improve 

through effective application and integrated deployment with 

other information technologies. Barriers to adoption and 

effective use include usability, trust, and concerns with data 

security and privacy. Ethical considerations include 

transparency, fairness, and compliance with local regulations 

and legislation. 

 

Clinical informatics represents one important aspect of digital 

and data governance in health. Consequently, a roadmap and 

strategy should be developed for the implementation of AI 

CDSS that integrates these functionalities with the main 

electronic health records application of a smart hospital, 

monitors the quality of information in real time, facilitates the 

responsible deployment of advanced AI capabilities, supports 

medical professionals through trusted autonumeric responses, 

and ensures that patient data are used only for benevolent 

purposes. 

8.1 Future Trends 

 

AI-based CDSS are already present in many hospitals but 

require additional evaluation to establish whether they 

improve real-world clinical outcomes and quality of care, 

while also making clinicians more efficient and less error-

prone. Nevertheless, a number of factors are expected to 

accelerate their development and deployment: As predictive 

models are increasingly tested, validated, and shown to be 

useful in new settings, they will be integrated into the clinical 

workflow and fed with real-time data from basic health 

infrastructures. 

 

Over time, the real-time alerting system will evolve towards 

medicine-timed information delivery, for example, sending 

therapy suggestions after a vital signs change, or actively 

prompting when results of predictive models suggest an 

unintended outcome. Evidence-based clinical pathways for a 

great variety of conditions are undergoing continuous 

refinement, using large databases, and AI systems will 

increasingly assist clinicians in identifying deviations from 

such pathways and subsequently selecting the most optimal 

and safe approach, accounting for patient-specific 

characteristics. In relatively rare conditions, patient history 

and genomic data will be combined to improve the selection 

of available therapies for precision medicine, thus increasing 

the chances for a positive response and reducing adverse 

reactions. AI systems will support triage, clinical 

management, and follow-up of critical patients; and help 

identifying and avoiding prescription errors and adverse 

events related to pharmaceutical therapy. 
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