International Journal of Science and Research (IJSR)
ISSN: 2319-7064
SJIF (2022): 7.942

Al-Based Clinical Decision Support Systems in
Smart Hospitals

Dhanaraj Sathiri

Independent Researcher, India
Email: dhanrajsathirifat]gmail.com

Abstract: Artificial Intelligence (AI) has the potential to transform healthcare delivery and enhance clinical decision-making. AI-based
Clinical Decision Support Systems (CDSS) can complement human expertise, leading to improved patient care and greater efficiency in
smart hospitals. Smart hospitals represent an evolution of the concept of smart health by incorporating real-time, event-driven monitoring
of patients and the hospital environment, enabling intelligent deployment of Al techniques in CDSS. Three architectural features
characterize smart hospital CDSS: integration with Electronic Health Records for patient and environmental monitoring, a human-AIl
collaboration model aligned with clinical workflow, and seamless communication with monitoring equipment, devices, and other CDSS.
Al-based CDSS support a variety of clinical tasks, including diagnostic and therapeutic decision-making, critical care, medication safety,
and adverse event prevention. Evaluation of AI-based CDSS encompasses the effects on clinical outcomes, care quality, user experience,
safety, security, privacy, intelligibility, bias and discrimination, alignment with regulatory frameworks, implementation roadmaps,
governance, and continuous improvement. A foundational strategy for developing Al-based CDSS in smart hospitals combines existing
knowledge and evidence with breakthroughs in intelligent predictive models and natural language processing. There are three principal
driving forces: the massive quantities of health-related data generated within smart hospitals, the increasing overlap and redundancy in
clinical work due to repetitive and routine tasks, and the societal imperative to enhance the science of medicine in order to achieve precision
medicine and precision public health. When used responsibly, AI-based CDSS reduce system-wide heterogeneity, standardize responses
to predictable scenarios, improve system efficiency, and minimize latent error. However, it is crucial to ensure that Al is not deployed
simply for efficiency gains, which shifts the balance of responsibility and may have negative consequences for patients, hospital staff, and
society. Promising Al-based CDSS applications will serve as testbeds for the implementation of these systems in real-time operation at
scale in smart hospital environments.

Keywords: Artificial intelligence, clinical decision support systems, smart hospitals, electronic health records, differential diagnosis clinical
decision support systems, disease-specific literature-based support, telemedicine, COVID-19, patient safety
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Figure 1: Artificial-Intelligence-Based Clinical Decision
Support

Smart hospitals are generally viewed as a more integrated and
intelligent hospital buildings. Smart hospitals can readily be
connected to various clinical information systems, enabling
real-time health monitoring, dynamic event-driven control,
and the Al-based decision support at any stage in the hospital
workflow. Therefore, smart hospitals create an appropriate
environment for deploying Al-based CDSS to improve
clinical outcomes and quality of care.

1.1 Background and Significance

Globally, the aging population and the increasing incidence
of chronic diseases, along with the scarcity of healthcare
professionals and financial resources, place enormous
pressure on healthcare systems. Despite the rising demand for
quality healthcare services, the ability to provide such
services remains deficient. Smart hospitals based on the
internet of things (IoT) and big data technologies
continuously collect real-time information on hospitalized
patients and available hospital resources. Artificial
intelligence (Al) techniques applied to clinical decision
support systems (CDSS)—including predictive models,
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diagnostic engines, risk stratification, clinical event detection,
and recommender systems—enable integration of clinical and
contextual information acquired from electronic health
records and health information exchange platforms, and
derived from online monitoring. This facilitates timely
alerting of clinical events, delivering the right information to
the right person at the right time and place, thereby enhancing
patient safety. Implementing Al-based CDSS in smart
hospitals poses multiple challenges and Al model
performance needs to be continually monitored. Advanced
CDSS hold the potential to prevent diagnostic errors, support
precision medicine, enhance triaged decision-making in
critical situations, improve medication safety, and mitigate
adverse events.

Clinical decision support systems (CDSS) are Al-supported
applications helping healthcare professionals deliver quality
health services. CDSS have become ubiquitous in modern
healthcare, capturing more than 70% of the market share in
2021. Although the existing status and development of CDSS
is promising, only 0.9% of CDSS meet all of the clinical
usability and integration criteria for implementation. Al-
based CDSS enable improved clinical decision-making
through real-time clinical event detection, risk stratification,
timely alerts, predictive analytics, machine-assisted
diagnosis, and therapeutic recommendations. Clinical and
contextual information, including comparative statistics on
similar patients, is supplied through integration with
electronic health record (EHR) systems and health
information exchange (HIE) platforms.

2. Foundations of Al-Based Clinical Decision
Support

Three foundations are essential for reliably transferring the
power of Al into clinical practice: all core Al techniques
crucial for decision support, the data resources required for
evidence generation today and tomorrow, and the standards
necessary for the validation of Al-based CDSS. Addressing
these areas will engender trust among hospital administrators,
clinicians, and patients. More importantly, expanding the
body of scholarly work in Al techniques and their integration
will bolster clinical decision support in a way that is urgently
needed for improved health and well-being.

A comprehensive understanding of how Al techniques
support medical decision-making is required for integrating
those capabilities into a hospital environment. For diagnostic
decision support, it is important to leverage the entirety of the
diagnostic process in conjunction with the systems for
determining, testing, and rewriting differential diagnoses.
Therapeutic decision support should also integrate the full
therapeutic determination process, including the prescription
of therapeutic regimens alongside dosing, selection of assays
to monitor progress, adjustment in light of physiologic and
laboratory milieu, and safety concerns. Beyond CT scan
interpretation, common applications are in the initiation or
adjustment of mechanical ventilation or oxygenation,
identification of need for escalation of care, and diagnosis of
thrombosis and pulmonary embolism. Supporting the safety
and trustworthiness of drug therapies is another pressing need
for decision support systems.

Equation 1:
diagnosis)
Let:

e (D) =adisease (e.g., sepsis)

e (E) = observed evidence (vitals, labs, notes)

Bayes’ theorem (core for differential

We want the posterior probability of disease given
evidence:
[P(D\mid E)]

Step-by-step derivation
Start from conditional probability definition:
[P(D\mid E)=\frac{P(D\cap E)} {P(E)}]

Similarly:
[P(E\mid D)=\frac{P(D\cap E)} {P(D)}]

Solve the second equation for (P(D\cap E)):
[P(D\cap E)=P(E\mid D),P(D)]

Substitute into the first:
[P(D\mid E)=\frac {P(E\mid D)P(D)} {P(E)}]

diseases
total

occur under
denominator

If evidence can
(D_1,\dots,D k), the
probability:
[P(E)=\sum_{i=1}"{k} P(E\mid D_i),P(D _i)]

multiple
expands by

So:
[P(D_j\mid E)=\frac{P(E\mid D_j)P(D_j)} {\sum_{i=1}"{k}
P(E\mid D_i)P(D 1)}]

2.1 Core Al Techniques in Decision Support

Machine learning, especially deep learning, is an
indispensable technology for computer-aided detection
[classifying pixels or regions in images of radiology,
pathology, etc.] and certain other specific tasks, including
natural language understanding. An essential type of model,
trained on massive datasets from experiments with human
subjects, is Large Language Models (LLM) [e.g., ChatGPT].
LLMs can process unstructured textual information and
provide humanlike textual output. Such models can indeed be
harnessed in diagnostics, but key aspects of decision support,
including best treatment for given patient conditions, require
reasoning.

Together, smart hospitals’ data environments can support
probabilistic logic-based inference over data, with support
from graph neural networks or LLMs. Probabilistic logic is
particularly suited for integrating medical knowledge
(tailored ontologies) with real-world patient data (from
electronic health records and natural language processing of
clinical narratives) across multiple time slices. Its foundation-
axioms linking causes to effects- unlike neural networks, is
easy to review and validate. The variety of Al tools, each
suited to specific technical needs, brings automation. With
growing datasets and clinically validated Al-based systems,
the time needed for training is shrinking.

Machine reasoning must be complemented by explainable Al,
which justifies and elucidates model predictions to clinicians,
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saved for particularly challenging cases. The goal is that
simplest models do the heavy lift, with sophisticated Al
applied judiciously when humanlike reasoning is too difficult
or time-consuming.

2.2 Data Infrastructure and Interoperability

Al-based CDSS are data-hungry, requiring high volumes of
structured and unstructured data to support training,
calibration, validation, and operational applications. A
comprehensive data network within a smart hospital is
essential to ensuring the quality of training and operational
Al-based CDSS applications. The supporting systems of the
smart hospital need to focus on standardized information
exchange that enables the timely delivery of high-quality data
sources for training and validation of Al models on different
clinical or nonclinical tasks. A primary requirement for the
successful integration of many Al-based CDSS applications
is accurate, timely, coherent, and integrated data. Adoption of
the principles and technical solutions established in the
source, integration, and analysis of clinical big data can
dramatically reduce the performance gap of Al-based CDSS
in real-life clinical settings.

A major obstacle to the successful uptake of Al-based CDSS
is the limited availability of structured data for model training
and calibration. Traditional clinical CDSS largely rely on
patient information pulled together within EMR systems and
presented to users when necessary. The majority of hospital
operations support systems (e.g., finance and radiology
systems) do not directly share data with clinical CDSS.
Moreover, the voice of medical imaging, pathology, and
neurosurgical open reports mostly exists in unstructured text
form and therefore requires natural language processing
capability when used by the CDSS. Al techniques for visual
recognition, speech processing, language understanding, and
multimodal integration present the opportunity to close the
missing data gap in practical applications of Al-based CDSS.

Adoption vs. Implementation-Readiness Indicators Mentioned in the Article
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2.3 Evidence Standards and Validation

Al-based clinical decision support systems employ multiple
Al technologies across different functional modules. A CDSS
is effective only if it is based on robust evidence for a specific
clinical task. Just like the development of pharmaceutical
drugs or medical devices, clinical decision support models
must be validated in controlled studies with appropriate
sample sizes before being deployed.

disease populations or geographic locations will not
necessarily generalize to other populations, and it is important
to know if and under what circumstances they can. Second,
for the domain of clinical care it is expected that the clinical
care provided under the decision support model will have
been shown to improve patient health outcomes and not
merely that the model is producing correct answers.
Therefore, models can be recommended for integration into
routine workflows only when the associated clinical care has
been validated to improve health outcomes compared to the
alternative management strategies.

3. Architectural Models of Smart Hospitals

Integration of Al-based CDSS within the information
architecture of EHR systems is fundamental to ensuring
safety and effectiveness in the management of patients by
providing alerts that require human attention and intervention
only when warranted. Treatment guidelines need to take
account of rapid changes in a patient's condition, for instance
when monitoring is undertaken in an intensive care unit.
Event-driven modelling enables automated action (including
the capable allocation of limited hospital resources) when
continuous monitoring identifies patients requiring
immediate care. Evidence-based decision support continues
to be ineffective when the ultimate decision-making is not
integrated into clinician workflow.

Architectural models of smart hospitals provide guidance on
the design of AI components that are fused with, and
temporally and semantically aligned to, human cognition and
information systems. The primary motivation is a better
approach to Acute Resuscitation Decisions. Smart hospital
architecture captures the human decision-making process and
uses it to drive intelligent decision-support systems that use
clinical data, patient condition and context. This enables
clinicians to make smarter and safe decisions like an "Al-
assisted smart browsed CDSS" system for the differential
diagnosis of 24 diseases related to physical examination
document (TPED).

Resource provisioning and usage allocation rely on predictive
diagnostics of need, dynamic booking and assignment of
people, beds, procedures, equipment, and consul-tation,
external fulfillment of capability demand (e.g., surgery,
procedure), and support for maintenance and overhaul
scheduling. Event-driven process automation responds to
overflow or underflow situations with predetermined actions,
and facilitates temporal, conditional, and resource role-driven
workflow orchestration.
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3.1 Integration with Electronic Health Records

Al-based CDSS must be integrated with EHR systems to
realize their full potential and reach a wide clinical audience.
At this stage, the EHR serves as a passive repository of patient
information and is not intelligently utilized to facilitate
clinical decision-making. Integrating CDSS with EHR and
augmenting its functionality with advanced Al enables the
presentation of rich analytics from real-time patient data that
can support medical diagnostics and treatment
recommendations. Event-triggered alerts generated from real-
time patient monitoring can also serve as useful decision aids.
The default EHR systems are often unusable due to their
complexity of use and hard-to-navigate user interfaces.
Investment in Al tools can improve system usability and
maximize. EHR usability can be improved using Al via
natural language processing (NLP)-based techniques. The use
of funny personal names for the patient can ease sensitivity
while expressing potentially important and dangerous
information. Moreover, the detailed history is generated using
a document summarization methodology with improved
readability and execution. Combined use of generative Pre-
trained Transformer (GPT) and semantic-based techniques
improves response structure. CDSS driven alert system helps
the insurance policy holders in selecting the right plan.
Privacy and security of data in CDSS driven EHR-integrated
system have been addressed well.

3.2 Real-Time Monitoring and Event-Driven Alerts

Real-time event-driven CDSS support constitutes evidence-
based alerts linked through reliable statistical associations to
clinically meaningful outcomes—such as safety threats, re-
admission risk, need for risk mitigation, or care gap closure.
Real-time monitoring and detection of significant patient
deterioration support early recognition and intervention to
avert adverse outcomes, particularly in high-risk areas like the
ICU or general wards. Prognostic indices that integrate
multiple signals to predict clinical deterioration drive set
goals, protocol adherence, and escalation decisions. Explicit
cause-effect modeling of abnormal data patterns with
treatment recommendations, such as sepsis bundles, monitor
pattern evolution in near real-time to trigger alerts.

Fine-grained critical resource monitoring keeps track of
availability status at a high resolution and proactively informs
care teams and resource owners of potential usa-bi-lity about
to enter unsafe regions, need for treatment, or pre-emptive
remedy. Condition monitoring assesses readiness for resource
allocation and recovery from demand, capacity, or usage
distortion.

3.3 Human-AlI Collaboration and Workflow Integration

Clinical decision support systems are designed to support
clinicians in real-time. For interaction to be efficient and
seamless, not only must CDSS be integrated with EHRs and
event-driven alerting systems, the alert content must also
match the human context and cognitive capacity. Analysis of
the human-computer partnership suggests several general
considerations for the design of such systems.

When clinicians encounter a challenging commitment, they
welcome assistance that is relevant, timely, and trustworthy.
Around 30% of support requests when managing critically ill
patients in the ICU are met with disagreement, but the very
act of consulting a colleague represented an opportunity for
learning. Although physicians usually prefer consultation
with colleagues over automated systems, surveys have shown
that 30-40% regard Al support as desirable, especially when
dealing with common problems. Given the complexities of
safe drug prescription, bias in drug effect in different patient
groups, and the difficulties in diagnosis and treatment of
many conditions, physicians clearly need additional
expertise. Al-based systems should be able to acquire and
summarize medical knowledge rapidly enough to supplement
rather than supplant expert human consultation. Command or
precaution prompts can draw a clinician's attention to safety
issues in drug prescription, monitoring, or abnormal test result
interpretation.

4. Applications of AI-Based CDSS

The areas of clinical decision support most ready for
deployment in smart hospitals correspond to predictions of
mortality risk or changes in clinical status, diagnostic or
differential diagnosis suggestions, guidance on therapeutic
decisions or drug administration, posting of drug-drug and
drug-allergy warnings, rules for adverse event screening or
prevention, and management of imaging examinations.

Al-based clinical decision support systems (CDSS) are poised
to aid in diagnosis, provide therapeutic guidance, respond to
crisis situations, and support medication safety. Five types of
applications deserve particular attention. Al systems that
suggest the most likely diagnosis or a set of possible
diagnoses are of great interest. Adding the new perspective of
large language models to the process of differential diagnosis
has gained momentum, as demonstrated by DualGPT, a dual-
step framework for a more accurate, fairer, and safer
differential diagnosis. Applications for predicting the clinical
outcome of a critical illness. Early detection and clinical
deterioration prediction, especially for COVID-19 patients,
enhance the potential of smart hospitals to save lives.
Providing recommendations for a drug treatment proposal
and indication is also supported by evidence. Furthermore, Al
applications designed to suggest clinical actions that prevent
imminent adverse events collect great attention, especially in
intensive and emergency care settings.

Machine learning—powered algorithms capable of evaluating
the current clinical conditions of a patient and anticipating
functional needs constitute a unique subset of such
applications. They are designed to exploit real-time data from
wearable sensors to forecast health changes in patients with
chronic diseases and assist home-care patients. Similar ideas
have been proposed for administrating imaging examinations,
although under a different perspective. In this case, the goal
is to develop a system that distributes imaging requests
among available resources, guaranteeing quality in the
administered examinations and minimizing the overall time
and cost.
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Equation 2: Logistic regression risk model (common
baseline in CDSS)
Let features (x_l,\dots,x_m) (age, HR, BP, lactate, etc.).
Logistic regression models log-odds as linear:
[Mog\left(\frac{p} {1-
p}iright)=\beta O+\beta 1x_l+\cdots+\beta mx_ m)]
Step-by-step to solve for (p)
1) Exponentiate both sides:

[\frac{p} {1-p}=\exp(\beta O0-+\beta"\top x)]
2) Multiply both sides by ((1-p)):

[p=\exp(\beta O-+\beta™\top x),(1-p)]
3) Expand RHS:

[p=\exp(\beta_0+\beta™\top x)-p\exp(\beta 0-+\beta™\top

X)]
4) Bring (p) terms together:
[p + p\exp(\beta_0+\beta”™\top

x)=\exp(\beta_0-+\beta™top x)]
[p\left(1+\exp(\beta 0-+\beta™\top
x)\right)=\exp(\beta_0+\beta"\top x)]

5) Divide:
[p=\frac{\exp(\beta_0+\beta™\top
x)} {1+H\exp(\beta_0-+\beta™\top
x)}=\frac {1} {1+\exp\left(-(\beta_0+\beta”™\top
x)\right)}]

4.1 Diagnostic Support and Differential Diagnosis

Various Al algorithms trained with data from diverse patient
cohorts can predict disease occurrence, improve clinical
prediction tools, and enhance the accuracy of differential
diagnosis. Using large clinical databases, attention-based
Transformers found imaging patterns in chest X-rays that
were significantly correlated with 20 different diseases and
were helpful for differential diagnosis. A web-based tool,
termed EasyDL, supported precisely detecting major
diseases, such as pneumonia, with dermatoscopic images. A
graphical representation visualized overfitting patterns,
revealing discriminant confidence of each image for each
disease, hence enabling quick and accurate disease
verification. Explainable Al enhanced the accuracy of models
predicting clinical events from high-dimensional patient
databases, and built-in interpretable attention models
improved prediction of various diagnosis codes 1-2 years in
advance.

Impressive results emerged with multi-morbidity studies. A
federated machine learning framework, privacy-preserving
Multi-Party Computation Distributed Learning, designed to
predict 30 diseases from cross-section data in 139.2 million
hospital visits, substantially reduced prediction bias among
model installed in hospitals with varying disease distribution.
Such approaches were extended to the five most prevalent
diseases. An ensemble of 24 different models showed that
parity and accessibility to adequate healthcare resources
could reduce the burden of multimorbidity for both genders.
Multiple morbidities history integrated into risk approaches
could better quantify risks of 10 common surgical conditions
involving placement and removal of devices, and habitual
sedentary lifestyle might be a general risk factor for spatio-
temporal distributions of a wide range of diseases. Deep
learning with real-world cohort information also provided
useful mappings for identifying co-occurrence or absence of
common conditions in patients.

Combining advanced multi-source data can improve
prediction accuracy of multi-risk ADLs. Automatic
diagnostic prediction models reinforced by interpretable
layers and projections of explicit knowledge from clinical
guidelines can provide accurate and intuitive suggestions for
doctors. Models identifying oral diseases using ML and DL
frameworks demonstrated viable sensitivity and specificity
and may help doctors eliminate oral diseases. Closed-loop
and explainable Al incorporated into Non-communicable
Disease Risk Factor Surveillance comprehensive disease
prediction models showed clear advantages compared to
traditional prediction methods and could have positive effects
in clinical practice.

4.2 Therapeutic Guidance and Precision Medicine

Al methods are being applied to assist clinicians in providing
the most effective therapies for patients. Their capability to
consider multiple factors and large volumes of clinical
evidence makes them suitable enablers of precision medicine.
Recent work has shown that an Al method can be trained to
highlight drug options that are statistically most effective for
specific patient profiles, and other studies have introduced
CDSS for the selection of multiple drugs and dosages.

Al methods have been developed to assist clinicians in
choosing specific therapies for patients, disease stages, and
clinical conditions. Rapid advances in precision medicine and
systems biology have generated vast amounts of data on the
molecular basis of disease, therapeutic targets, drug response,
and drug side effects, some of it useful for clinical decision
making regarding therapy. Al methods can therefore search
through structured data, such as molecular profiles, biological
networks, and clinical outcome records, for statistical
associations between gene mutations, copy number
variations, and/or mRNA expression, and drug efficacy,
and/or drug side effects. Examples include probabilistic
graphical models for scoring disease—molecular alterations—
drug—efficacy associations, Al selection of the most effective
drugs and dosages for patients with hepatocellular carcinoma,
and deep-learning-based prediction of the drugs—patients
compatibility, as well as CDSS that consider disease stages
and multiple drugs simultaneously to minimize adverse
effects.

4.3 Critical Care and Triage

Al technology finds various applications in smart hospitals,
ranging from diagnostic support to medication safety.

Specific solutions include real-time monitoring of patients’
health conditions, forecast of clinical events that may lead to
deterioration, recommendation of appropriate investigations
or interventions, triage of patients waiting for consultation or
admission, and prediction of life-threatening adverse events.
These Al-based systems help to alleviate the cognitive burden
on clinicians and support real-time decision-making.

Critically ill patients are more likely to develop unexpected
complications during hospitalization. Early prediction and
prevention of clinical deterioration must be a priority for
healthcare teams, especially in critical-care departments.
However, timely identification of at-risk patients remains a
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major challenge. Al has enabled improvement of proactive
prediction in hospital settings by integrating real-time vital
signs with referral data into state-of-the-art machine-learning
algorithms based on electronic health records. Real-time
prediction of common adverse events as well as acute-
inpatient-declining conditions has become possible,
enhancing clinical awareness and enabling timely avoidance
of deterioration.

In emergency care, Al technology can be mounted into
clinical workflows to develop effective solutions, notably
through supporting or replacing existing decision-making
processes. Current models can predict, for all patients
awaiting consultation, the most suitable location for
management according to common principles in emergency-
medicine unit organization. Such prediction can enable
smooth access to health resources and improve operational
efficiency of emergency departments.

Evidence Counts Reported for AI-CDSS Clinical Outcomes
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S. Evaluation and Effectiveness
5.1 Clinical Outcomes and Quality of Care

Evidence of clinical improvement for Al-based clinical
decision support systems (CDSS) is still limited: a systematic
review analyzing 510 publications found 63 studies assessing
clinical outcomes, 43 of which reported at least one clear
improvement. The most beneficial subtypes were associated
with diagnosis support, critical care, and medication safety.
Increased quality of care was found to correlate with usability
and trust, but malicious attacks compromised classification
performance, highlighting the need to strengthen safety,
security, and privacy.

Healthcare costs continue to rise without major improvements
in clinical outcomes, largely because standardization lowers
hospital costs but sacrifices innovation and individualization.
The advent of affordable, cloud-based computing and the
volume of real-world health data now offer opportunities for
smart hospitals to integrate their clinical decision support,
diagnostic, and therapeutic systems using artificial
intelligence. In such settings, AI-CDSS have the potential to
substantially improve clinical outcomes, but mapping quality
attributes to technology architecture is challenging. A
framework aligning these attributes with evidence-based
properties and the architectural model applied to an AI-CDSS
for the diagnosis and management of chlamydia support
quality improvements across all functional categories.

5.2 Usability, Trust, and Adoption Barriers

Increased quality of care correlates with usability and trust,
while insufficient training data and the complexity of the
healthcare model hinder adoption. Effective deployment
requires stakeholder governance with a roadmap spanning
training, technological readiness, data management, and
biocompatibility. All Al-based applications ideally should
constitute a hospital product rather than a project to ensure
continuous improvement. In a smart hospital, real-time
monitoring, intervention triggers, and direct integration with
electronic health records are essential for CDSS supporting
laboratory tests, critical care, medication safety, and diversion
surgery. Relying on crowd input and behavior-based learning
fosters trust.

Despite facilitating greater efficiency in health systems, Al-
CDSS has not yet reached mainstream adoption. Evidence
shows that user trust, acceptance, and usability are crucial for
a positive impact on clinical outcomes. Trust is strengthened
by close collaboration between Al and humans, as well as by
reliable simulation. Errors stemming from imprecision inhibit
user trust, while poor usability diminishes acceptance.
Malicious attacks- including adversarial examples, poisoning,
data extraction, model inversion, and exploitation of biases-
compromise classification performance and clinical utility.

5.3 Safety, Security, and Privacy Considerations

Although security, safety, and privacy aspects are less
evident, defense against malicious attacks such as adversarial
examples, poisoning, and data extraction is essential to
sustaining performance and trust. Malicious manipulations
reduce classification accuracy, rendering AI-CDSS
vulnerable to the very threats that intelligent design seeks to
mitigate. Despite healthcare data being one of the most
valuable assets in today's digital world, studies have
highlighted weaknesses in privacy policies and mechanisms.
Moreover, the balance between retaining user privacy and
enhancing system recommendation quality is poorly
understood.

Table: “Smart hospital CDSS”- 3 architectural features (as
stated)
What it means operationally
Use EHR for patient + environment
monitoring and data access
CDSS advice must fit clinical
aligned to workflow cognitive/workflow context
Seamless communication Connect monitoring equipment +
with devices/other systems | other CDSS for event-driven actions

Architectural feature
EHR integration

Human-AlI collaboration

5.4 Clinical Outcomes and Quality of Care

Al-based CDSS has the potential to improve a range of
clinical outcomes and the quality of care. Effectiveness may
be assessed through correlation with key clinical measures,
through comparison with historical data, or through the
application of clinical trial methodology. Such systems
combine evidence-based algorithms with patient-specific data
to deliver real-time alerts at the point of care.

The majority of studies found beneficial effects on disease
prevention, decision-making and care quality, although few
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measured direct endpoints such as morbidity, mortality or
costs. The number of clinical trials remains limited, with
particular reference to the randomly controlled design.
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Figure 3: Clinical Outcomes and Quality
5.5 Usability, Trust, and Adoption Barriers

Since the primary end users of Al-based Clinical Decision
Support Systems (CDSS) are care givers, whose day-to-day
clinical decisions are no longer solely made through their own
cognitive reasoning but rather supported by an Al engine,
usability must be a key property of Al-based CDSS,
especially for enabling the user to understand why the system
produced a certain output and to easily spot the context within
which the CDSS performs well or poorly. To address these
concerns, proper attention must be paid to the CI-AI user
interface and interaction design and to the transparency of Al-
based CDSS.

Usability studies usually draw from the literature of human-
computer interaction or information science, adopting
methods such as user testing or interviews. In the innovative
area of augmented intelligence, researchers are also
investigating the adoption of established usability guidelines
from the User Experience community and User-Centered
Design methodologies. Usability studies has also included
end-users represents low-fidelity mock-ups of the CDSS
output and interface, testing both recommendations and
diagnosis support. Usability testing of perceptive user
interface and interaction design prototypes has also been
emphasized, with a desirability matrix used to benchmark
human-rated desirability, usefulness, relevance, and novelty
of the designs in the context of farming.

Trust appears to be critical to the long-term acceptance of
Augmented Intelligence and trustworthy Al at large. A sound
trust relationship hinges on several factors, such as how the
Al system provides its advice, how often the advice is right
and of good quality and the quality of the underlying data.
Evidence of positive or negative consequences of following
the system's suggestion over time also contribute to its trust
relationship, as does the completeness of the training and
learning data, whether they are reliable and whether they
carry a sufficient level of diversity. As the system matures,
trust also grows, but in human-AlI collaboration — as different
from a human-human relationship — the AI should keep
earning the trust continuously. In recommendation-oriented
scenarios, another critical factor for users’ trust is indeed the
risk level. Adoption of ethical design principles grounded on
equity considerations, involvement of users during the design
process and provision of explainable-by-design functionality
all contribute to trustworthiness, as demonstrated in the areas
of gender fairness and emotional companions.

Interaction between the Al and its users should be user-
centered and user-friendly, even when it acts in an assistive

way. Hence, the suggestions and recommendations should not
chastise the user but only offer help. It should sound natural
from the interaction perspective. The system's ability to learn
or develop emotional capabilities also affects the comfort
level of human-Al interaction and ultimately the acceptance
of the system itself. To promote a more human-like
interaction, it can also be used for an advanced natural
turnover that steers the interaction or for dealing with
sensitive topics. Al-related jobs also appear promising for
human-Al interaction, as they allow users to develop various
types of interaction with affective chatbots and companions.

5.6 Safety, Security, and Privacy Considerations

Data access and communication security are vital to instilling
clinician trust, yet Al-based clinical decision support systems
typically draw on a detailed amalgamation of a hospital’s data
resources, such as e-Government services, smart healthcare
services and open data portals, which are inherently exposed
to security breaches. Such systems merit careful scrutiny,
however, as even slight neural network perturbation can result
in misdirection. Also evident are the need to regularly retrain
Al models using external data, the need to limit privacy
leakage TV and even the EU directive requiring anti-
discrimination measures in Al.

Privacy and regulation need special consideration in these
systems. The General Data Protection Regulation (GDPR)
and the EU medical device regulation (MD) require that
development and validation of Al-based clinical decision
support systems adhere to privacy and regulatory compliance,
especially when using personal medical data. These laws
follow specific guidelines, such as the Establishment of
General Principles for Developing Al Techniques in Health-
care Settings, which proclaim the right to explainability when
Al models suggest medical decisions. Consequently, deep
learning models’ often opaque nature tends to make them
rather challenging to subject to this principle. Regulatory
requirements are even stricter for Al systems assisting
medical diagnosis, affecting both Al development and future
use.

6. Ethical, Legal, and Social Implications

Concerns about accountability are often raised in discussions
of Al, particularly for high-stakes applications such as
autonomous weapons or CDSS that affect human lives.
Regulations for Al that use third-class neural networks in the
European Union stipulate that “high-risk Al systems” must
ensure a clear legal mechanism to determine liability in the
event of damage to individuals or property. At the same time,
the intricate complexity of some Al systems makes it difficult
for these systems to self-interpret the logic underlying their
inference processes.

Various forms of explanation, transparency, interpretability,
and trustworthiness are now actively researched in connection
with Al and CDSS. Approaches such as Shapley additive
explanations (SHAP) and LIME (Local Interpretable Model-
Agnostic Explanations) shed light on the workings of black-
box models and furnish explanations that can be conveyed to
users. The efficacy, impact, and value of such explanations
are debated, however, and it is recognized that exhaustive,
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understandable, and trustworthy explanations are not always
possible. The objective is therefore to provide explanations
that can improve user trust and acceptance.

The bias and potential discrimination that may emerge from
Al training based on imbalanced or incomplete datasets are
also matters of grave concern, as are the ways to ensure
fairness, diversity, inclusion, equity, and accessibility in Al
implementation. The 2021 OECD Al Principles recommend
the testing and monitoring of Al systems for biased outputs,
and the design of Al systems grounded in a process of
engagement with diverse audiences. Moreover, Al-based
systems must comply with ethical and legal frameworks and
align with the values and strategies of society. Both bias and
the technical solutions for mitigation must be communicated
transparently to users, stakeholders, and affected individuals
during the Al system’s entire lifecycle.

Equation 3: Probabilistic graphical models (PGMs)
implied by the paper

If variables are (X_1,\dots,X n) and each (X i) has parents
(\mathrm{Pa}(X 1)) in a DAG, then:

[P(X_1)\dots,X n)=\prod {i=1}"{n} P(X i\mid

\mathrm{Pa} (X 1))]

‘Why this is true (step-by-step idea)

1) Chain rule always holds:

[P(X _1,\dots,X n)=\prod {i=1}"{n} P(X_i\mid

X I\dots, X {i-1})]

2) A  Bayesian  network encodes conditional
independencies, letting us replace
(P(X_i\mid X 1,\dots,X {i-1})) with (P(X_ i\mid

\mathrm{Pa}(X 1i))).
That gives the product form above.
If (T) is a treatment option and (E)

recommendation can be:
[TM*=\arg\max_{t} P(T=t \mid E)]

is evidence,

Using Bayes:
[P(T\mid E)\propto P(E\mid T),P(T)]

So ranking treatments is often:

e Compute (or approximate) (P(E\mid T)) from the model
and data

e Multiply by prior
contraindications)

e Choose the highest posterior (or show top-k with
explanations)

(P(T)) (guidelines, prevalence,

6.1 Accountability and Transparency

The ethical, legal, and social aspects of Al-based clinical
decision support systems (CDSS) in smart hospitals are
discussed through the lenses of accountability and
transparency, bias and fairness, and compliance with
regulatory frameworks. Al-based CDSS operate within a
complex system comprising procedures, organisational
culture, supporting actors and technologies in addition to the
intelligent agent itself. The human support and corrective
functions around CDSS and the supporting technologies are

crucial for making the service more trustworthy, efficient,
progressive and reliable. It is vital that the system be
transparent and that the reasons for decisions taken are
interpretable and communicated to healthcare professionals
involved as well as to other related actors. This transparency
favours accountability and enables healthcare professionals to
assume the legal responsibilities and risks associated with the
decisions made. Healthcare professionals need to understand
the strengths and weaknesses of their supporting technology
as well as the potential impact of bias in the underlying
models embedded in the technology.

Bias and fairness are pervasive issues in Al, with the
emergence of multiple, paired definitions of fairness that
highlight how context-dependent the concept is. The rapid
adoption of Al-based solutions in medical practice raises
equity, justice, fairness and inequality concerns. A broad
range of measures for computational fairness has been
proposed, and a verifying index able to capture and quantify
inequality in any decision-making process has been
formulated that is sensitive to the choices made by decision-
makers in clinical practice. Recent advances in patient-
centered adaptive clinical trials are laying the foundation for
the consideration of an Equity Adjustment during the design
and analysis stages of these trials. It is important that the rich
sources of accumulated knowledge and expertise in hospitals-
treatment protocols, clinical practice guidelines, patient-care
pathways and the like- be represented as formal computable
knowledge that groups working on intelligent agents in
healthcare can appropriately exploit.

6.2 Bias, Fairness, and Equity

Despite their growing prospects, Al-based Clinical Decision
Support Systems (CDSS) also pose several challenges that
require careful consideration. Al systems inevitably reflect
the data used to train them. Biases in the data can propagate
to the Al solution, resulting in models that provide suboptimal
or even damaging outcomes for the populations under
consideration. Models must be trained and validated on
diverse datasets representing the full range of clinical
conditions and life experiences of patients, and the CDSS
must be employed in ways that protect against the negative
ramifications of biased predictions. Attention to fairness,
equity, and inclusiveness in the data sources, model
development, and use of the solutions is essential.

Clinical Artificial Intelligence systems must be developed on
robust sets of inclusive and fair data. Highly imbalanced
datasets—those with very few or no samples to represent a
certain subgroup—often lead to non-generalizable Al
solutions. Addressing social biases inherent in clinical record
data is also important. For example, in demographic-sensitive
tasks (e.g., predicting gestational diabetes for patients of
different ethnicities), ethnicity-bias mitigation methods
should be adopted. Other best practices for bias and fairness
include using explainable Al-based risk models, indirect
fairness constraints, bias detection techniques, explainability-
based group imbalance risk-sensitive loss functions, and
domain generalization methods to build fair models for
practical risk prediction for patients. Moreover, by providing
pathways to cold-start learning and recommendation, the Al
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system might also avoid biases associated with cold-start

recommendations

Table: AI-CDSS application buckets explicitly listed in the
article

Bucket Examples mentioned
Diagnostic / differential | Diagnostic suggestions, differential
diagnosis diagnosis tools

Predict clinical deterioration | Real-time monitoring, deterioration
/ mortality risk prediction
Therapeutic guidance / Therapy/drug selection, dosages,
precision medicine molecular associations
Medication safety Drug-drug / drug-allergy warnings
Adverse event prevention / Rules for screening/preventing
screening imminent adverse events
Imaging exam management | Managing imaging examinations /
distributing imaging requests

6.3 Compliance with Regulatory Frameworks

Whether they are classed as medical devices, decision-aid
software, or tools embedded in the operation of a smart
hospital, Al applications must comply with relevant
frameworks and standards to ensure safety, efficacy, and
optimal clinical outcomes. Useful guidelines have already
been developed and are evolving alongside advances in
technology and experience with Al-based CDSS.

Architectural considerations may go a long way toward
mitigating ethical concerns in medical Al decision-support
tools- including concerns about accountability, trust, bias,
privacy, and security- but organizational change must also
pay close attention to laws and privacy standards in the
healthcare sector. Data governance is therefore key, both
because the data superclusters need stringent policies on
ownership and access to safeguard proprietary information
and intellectual property, and because weak data governance
policies expose CDSS to intrusion and hacking, which in turn
could lead to undetected data manipulation and force clinical
processes and hospitals into a situation similar to that of
computer hacking.

7. Implementation
Management

Strategies and Change

A roadmap is proposed for the deployment of Al-based CDSS
in smart hospitals. Successful implementation entails
consideration of governance and stakeholder engagement and
the establishment of metrics for continuous improvement.

Al-based CDSS can take many forms, from applications to be
accessed by clinicians themselves to behind-the-scenes alerts
issued to clinicians by the Al systems. Although these
systems have the potential to improve clinical outcomes and
the quality of care, root causes of nurse and physician
burnout, as well as factors influencing the adoption of Al
tools, merit consideration when charting a course for
deployment. There is no substitute for involving clinical staff
from the outset: these stakeholders are crucial not only to
acceptability but also to the definition of problems faced,
possible Al-based solutions and domains of use.

7.1 Roadmaps for Deployment in Smart Hospitals

Strategies for implementing Al-based clinical decision
support systems in smart hospitals comprise the definition of
roadmaps that connect targeted CDSS applications with
specific hospital characteristics and interdependencies.
Considerations include the influence of market strength,
digitization and smartness on the hospital size, the degree of
integration with electronic health record systems, real-time
monitoring and event-driven alerts, human-machine
collaboration, and the infrastructure for enabling seamless
information flow exchanges.

Three roadmaps offer diverse implementation options. The
first addresses hospitals in less-developed countries, where
the first priority should be medication safety and adverse
event prevention supported by a system-based approach to
promoting prescriptions, transfusions and surgeries- areas
with proven higher effects on quality of care. The second
roadmap is designed for hospitals in developed countries
lacking an advanced level of digitization but enjoying market
strength. Here, the main effort should focus on integrating
clinical decision support with electronic health record
systems to improve diagnostic accuracy and therapeutic
guidance. The final roadmap is aimed at advanced smart
hospitals in mature markets, where the objective should be the
enhancement of real-time monitoring capabilities.

// e —N
And Resources k 02 > Clinical Decision Support { 04
Business Management  \, / \

Treatment Route "
Operational

Efficiency

AN N N N
Automation Of . . Patient
Administrative Empowerment And
01 Functions 03 Support 05

Figure 4: Al Is Transforming Hospital Management
7.2 Governance and Stakeholder Engagement

Skilful strategies for introducing Al-based clinical decision
support systems in smart hospitals will employ a
multifaceted, multi-tiered approach that integrates
consideration of technical, human, and organisational factors
across a broad spectrum of stakeholders. It is of paramount
importance to focus on all societal stakeholders throughout
the process of innovation, including governments, health
authorities, regulatory bodies, funders, health professionals,
patients, and the community at large. Though patients and
health professionals will be the principal end users of clinical
decision support systems, they do not wield much decision-
making power: they thus require supporting roles in the idea-
generation phase and should be consulted and guided by
national health authorities to ensure evidence-based, valid
solutions.

Publicly funded health care systems must invest in funding,
research, infrastructure, services, training, and education, as
well as providing incentives and regulation. Financing drawn
from several and/or dedicated sources- public and non-profit
organisations, hospitals, foundations, industry, and
governments, among others- can help reduce the burden on
any single stakeholder. In addition to funding, organisations
must constantly adapt to the changing environment and invest
in research to remain at the forefront of innovation. The
ongoing involvement of health professionals in the
development of valid evidence-based solutions is also key, as
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it ensures system usability and institutional acceptance. In this
respect, special focus should be placed on education and
training, with emphasis on preventive actions and
implementation roadmaps.

7.3 Metrics for Continuous Improvement

Evaluation and implementation phases of Al-based CDSS are
characterized by technological readiness, enhancing trust
among users. Hospital management and other stakeholders
are responsible for developing a deployment roadmap that
addresses infrastructure, data quality and integration,
regulatory approval, governance, and change management.
Two major aspects of deployment are campaign management
and continuous improvement, for which metrics are
recommended.

Longitudinal data on clinical outcomes, quality, safety, cost
of care, and adoption should be collected to support a
campaign management framework inspired by the Plan-Do-
Study-Act model for continuous quality improvement. At
each hospital, the framework monitors clinical evidence-
based drivers of care quality and detects variations from
expected quality for all conditions and procedures, to support
evidence-based dissemination, such as clinical practice
guidelines. A portfolio of metrics suitable for monitoring and
continuously improving Al-based CDSS has been developed.
These metrics belong to five clusters: incident detection, fault
diagnosis, validation, acceptance, and operating metrics.

An inference engine based on probabilistic graphical models
combines local expertise, clinical practice guidelines, peer-
reviewed literature, and information from past cases to
generate a recommended treatment. For any possible clinical
condition, the modelling framework identifies minimum-
sufficient evidence to comprehend it based on patient data
stored in hospitals' information systems. The model is
integrated into the longitudinal clinical information system;
information extracted from the database triggers inference
engine deployment, modelling campaigns related to the
selected patient cohort and care condition.

8. Conclusion

Al-based clinical decision support systems (CDSS) enable
smart hospitals to deliver superior patient care by augmenting
medical professional capabilities with evidence-based
recommendations delivered through natural language.
Clinical outcomes, quality of care, and safety can all improve
through effective application and integrated deployment with
other information technologies. Barriers to adoption and
effective use include usability, trust, and concerns with data
security and privacy. Ethical considerations include
transparency, fairness, and compliance with local regulations
and legislation.

Clinical informatics represents one important aspect of digital
and data governance in health. Consequently, a roadmap and
strategy should be developed for the implementation of Al
CDSS that integrates these functionalities with the main
electronic health records application of a smart hospital,
monitors the quality of information in real time, facilitates the
responsible deployment of advanced Al capabilities, supports
medical professionals through trusted autonumeric responses,

and ensures that patient data are used only for benevolent
purposes.
8.1 Future Trends

Al-based CDSS are already present in many hospitals but
require additional evaluation to establish whether they
improve real-world clinical outcomes and quality of care,
while also making clinicians more efficient and less error-
prone. Nevertheless, a number of factors are expected to
accelerate their development and deployment: As predictive
models are increasingly tested, validated, and shown to be
useful in new settings, they will be integrated into the clinical
workflow and fed with real-time data from basic health
infrastructures.

Over time, the real-time alerting system will evolve towards
medicine-timed information delivery, for example, sending
therapy suggestions after a vital signs change, or actively
prompting when results of predictive models suggest an
unintended outcome. Evidence-based clinical pathways for a
great variety of conditions are undergoing continuous
refinement, using large databases, and Al systems will
increasingly assist clinicians in identifying deviations from
such pathways and subsequently selecting the most optimal
and safe approach, accounting for patient-specific
characteristics. In relatively rare conditions, patient history
and genomic data will be combined to improve the selection
of available therapies for precision medicine, thus increasing
the chances for a positive response and reducing adverse
reactions. Al systems will support triage, clinical
management, and follow-up of critical patients; and help
identifying and avoiding prescription errors and adverse
events related to pharmaceutical therapy.
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