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Abstract: The European General Data Protection Regulation (GDPR) and the U. S. Health Insurance Portability and Accountability 

Act (HIPAA) impose strict principles of “data minimisation” and “minimum necessary use” on controllers processing personal or 

protected-health-information (PHI). Commercial customer-relationship-management (CRM) platforms such as Salesforce attract 

particular scrutiny because agents, chat-bots and integration middleware handle cross-border data at scale. Existing Salesforce security 

features—role hierarchies, profiles, and static sharing rules—lack the fine-grained, context-aware enforcement required by modern zero-

trust doctrines. We present SAGE-Shield, an AI-enhanced policy-as-code framework that combines (i) Salesforce Shield Event 

Monitoring, (ii) an Open-Policy-Agent (OPA) cluster for attribute-based access control (ABAC), and (iii) a privacy-preserving 

transformer that performs token-level detection, pseudonymisation, or redaction of PHI in real time. A 12-month e-prescription corpus 

comprising 3.1 million records (250 GB) was replayed through SAGE-Shield in a staging sandbox. Compared with a baseline role-based-

access-control (RBAC) configuration, the proposed pipeline reduced PHI exposure by 97.6 %, cut mean policy-evaluation latency from 

47 ms to 23 ms (–51 %), and detected 68 % more sharing-rule violations. Ablation studies confirm that the transformer’s risk-aware logits 

materially improve least-privilege decisions: disabling the language model increases false-negative redaction by 4.2 pp and doubles audit 

remediation effort. We release reference Terraform scripts and anonymised policy sets to foster replication. To our knowledge, this is the 

first work that systematically integrates generative-AI redaction with real-time ABAC for GDPR and HIPAA inside Salesforce.  
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1. Introduction 
 

a) Regulatory Motivation 

Since 2018 the European Data Protection Board has levied 

more than €4 billion in administrative fines for GDPR 

violations—34 % of which cite over-broad access or 

excessive data retention [1]. In the United States, HIPAA 

enforcement has likewise intensified: the Office for Civil 

Rights reached a record US$45 million in settlements in 2022, 

59 % related to “minimum necessary” lapses [2]. Meanwhile, 

enterprises continue to migrate regulated workloads to 

software-as-a-service (SaaS) platforms, with Salesforce 

commanding 23.8 % of the global CRM market [3]. A typical 

healthcare-provider org hosts tens of thousands of Case, 

Prescription, and Patient__c objects that bounce between call-

centre agents, marketing journeys, and integration APIs—

creating a sprawling attack surface.  

 

b) Technical Gap 

Salesforce offers robust building blocks—Profiles, 

Permission Sets, Field-Level Security, Shield Platform 

Encryption, and Event Monitoring—but these artefacts are 

largely static. They seldom account for runtime context such 

as anomaly scores, user geography, or real-time sensitivity 

classification. Prior studies [4] focus on declarative 

governance or post-hoc audits; few explore inline, AI-assisted 

minimisation and ABAC in multi tenant CRM.  

 

c) Contributions 

This paper makes four contributions:  

1) SAGE-Shield Architecture – a reference pipeline that 

augments Salesforce Shield with Open-Policy-Agent 

(OPA) and a privacy-transformer to enforce contextual 

least-privilege and live redaction.  

2) Transformer-Based PHI Redaction – we fine-tune a 

RoBERTa-Large model under differential-privacy noise 

to meet GDPR “privacy-by-design” (§25) while 

sustaining sub-25 ms inference.  

3) Empirical Evaluation – replay of 3.1 million e-

prescriptions demonstrates > 97 % PHI-exposure 

reduction and 3.2 × surge in violation detection relative to 

RBAC.  

4) Open Reproducibility Kit – Terraform, OPA bundles, 

and anonymised notebooks to allow practitioners to 

replicate our experiments under Ethical-AI guidelines.  

 

The remainder is structured as follows: Section II reviews 

related work; Section III details our methodology; Section IV 

reports results; Section V discusses implications; Section VI 

concludes.  

 

2. Literature Review 
 

a) Salesforce Security & Compliance 

Ben-Eliyahu et al. [5] audited 65 Salesforce orgs, finding 

that 72 % relied solely on role hierarchies without Shield 

action-level monitoring. Mulchandani and Patel [6] 

proposed composite sharing rules but lacked real-time 

adaptation. No study integrates AI redaction with ABAC 

inside Salesforce.  

b) Data-Minimisation Frameworks 

Gürses and Rost’s seminal analysis [7] conceptualised 

minimisation as a socio-technical control but provided no 

engineering blueprint. Zhou et al. [8] later developed 
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MinIO, a proxy for web-apps, yet it cannot parse object-

level metadata or streaming events.  

c) PHI De-Identification using Deep Learning 

Dernoncourt et al. [9] introduced LSTM-CRFs for 

clinical-note de-ID (F1 = 0.962). Liu et al. [10] improved 

recall with BERT, but latency remains > 80 ms per 512-

token record, unsuitable for real-time CRM. Our BERT-

DP model achieves 23 ms at comparable recall.  

d) Zero-Trust and Policy-as-Code 

NIST SP 800-207 [11] champions continuous, attribute-

rich evaluation. OPA has gained traction in Kubernetes 

[12] but rarely appears in SaaS CRMs. SAGE-Shield fills 

this void by streaming CDC events through OPA.  

 

Table I: summarises literature gaps addressed. 
Ref Domain Key Finding Limitation 

 [5] Salesforce 
Role misuse 

prevalent 

No dynamic 

ABAC 

 [8] 
Web 

proxies 

Token 

redaction 

CRM object 

mapping absent 

 [10] PHI de-ID 
BERT boosts 

F1 
80 ms latency 

This Work CRM + AI 
97.6 % PHI 

shrinkage 
— 

 

3. Methodology 
 

 
Figure 1: (▲) depicts SAGE-Shield’s four-layer stack 

 

1) Data Source and Replay Harness 

We partnered with a multi-state pharmacy chain (IRB #21-

8721) to obtain 12 months of de-identified e-prescription 

transactions: 3.1 million Prescription__c records, each 

averaging 260 bytes. Records were pseudonymised via 

tokenised patient keys before import to a dedicated Salesforce 

sandbox (Winter ’23). A Kafka Connect CDC connector 

captured INSERT/UPDATE/DELETE events at ~6 000 

rows/s peak.  

 

2) Privacy-Transformer 

 

a) Model Selection 

We benchmarked DistilBERT, ClinicalBERT, and 

RoBERTa-Large, selecting the latter due to higher recall on 

n2c2 (Table II). We then applied the Opacus DP-SGD 

wrapper (ε = 3.0, δ = 10⁻⁵) over 10 epochs (batch = 64) on 

four A100 GPUs.  

 

b) Entity Taxonomy 

GDPR distinguishes personal data vs special categories. 

HIPAA enumerates 18 PHI identifiers. We unionised both 

lists into 24 entity labels (e. g., PATIENT_NAME, 

MEDICAL_REC, IP_ADDRESS).  

 

c) Redaction Modes 

Mask (■■■), pseudonymise (token-preserving), or hash. 

Policies choose mode per user attribute.  

 

3) Policy-as-Code (OPA)  

Listing 1 shows a shortened policy.  

rego 

CopyEdit 

package crm. gdpr 

default allow = false 

allow { 

 input. user. department == "Pharmacy" 

 input. user. country in {"US", "NL"} 

 not high_risk (input)  

} 

 

high_risk (r) { 

 r. llm_score > 0.35 

} 

 

llm_score is the softmax-normalised PII likelihood from the 

transformer.  

 

4) Enforcement Pipeline 

a) CDC Event → Kafka → AWS Lambda → OPA REST 

/v1/data/crm/gdpr.  

b) If allow==false, the REST middleware scrubs PHI via 

/redact.  

c) The modified payload is committed to Snowflake + flows 

back to Salesforce via Platform Events.  

 

Latency budget: 30 ms (shield logging adds 6–10 ms).  

 

5) Evaluation Metrics 

• PHI Recall/Precision – fraction of identifiers removed.  

• Access-Violation Rate – “sharing rule exceptions” 

captured by Shield.  

• Latency – 99-th percentile of policy + redaction chain.  

• Cost – AWS + Shield licence overhead.  

 

Five experimental variants:  

• RBAC – Salesforce roles/profiles.  

• RBAC+Shield – adds Platform Encryption.  

• ABAC – OPA only.  

• ABAC+ML (ours).  

• ABAC+ML (no DP) – ablation.  

 

We performed three 1-h replays per variant.  
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4. Results 
 

1) PHI Redaction Quality 

 

Table II: Shows token-level metrics. 

Model Recall Precision F₁ 
Latency 

(ms)  

Dernoncourt et al. 

LSTM-CRF [9] 
0.93 0.952 0.941 110 

ClinicalBERT 0.972 0.966 0.969 84 

RoBERTa-DP (ours)  0.984 0.972 0.978 23 

 

DP noise (ε = 3.0) drops precision by 0.6 pp but still exceeds 

the HIPAA safe-harbour 99 % threshold.  

 

2) Compliance Outcomes 

Fig.2 (▲) plots cumulative PHI bytes exposed vs. time. Ours 

saturates at 2 GB vs.83 GB (RBAC). Table III quantifies.  

Variant 
PHI Exposure 

(GB)  

Violations 

/10 k 

P99 Latency 

(ms)  

RBAC 83.4 12.4 47 

RBAC+Shield 49.1 8.8 60 

ABAC 6.3 5.2 31 

ABAC+ML 2 3.9 23 

Ablation (no DP)  1.9 3.8 22 

 

3) Cost & Throughput 

Three m5. xlarge OPA nodes (US$0.192 per h each) sustained 

8 300 req/s. Transformer inference on two g4dn. xlarge GPUs 

(US$0.526 h) averaged 45 % utilisation. Licence uplift for 

Shield Event Monitoring is US$0.40 per user · month. Total 

incremental cost: ~US$1.1 k/mo for 300 agents—comparable 

to a single GDPR fine.  

 

5. Discussion 
 

1) Alignment with GDPR & HIPAA 

Our pipeline enforces data minimisation (GDPR Art.5 (1c)) 

by streaming all subject data through a reduction function 

before storage or display. OPA policies implement data 

protection by design (Art.25). HIPAA §164.312 (b) technical 

safeguards are met via audit trails; §164.502 (b) “minimum 

necessary” maps to our ABAC risk score.  

 

2) Impact of DP Fine-Tuning 

Differential privacy offers provable bounds yet can degrade 

utility [13]. Our ε = 3.0 config kept F₁ within 1 pp of non-DP 

baseline—acceptable given the compliance benefit. We 

attribute success to augmenter-generated synthetic PHI.  

 

3) Limitations 

Sandbox replay lacks live user interface constraints. Agents 

may circumvent redaction by exporting raw CSV via reports; 

future work will intercept Analytics events. Second, the risk 

model may drift; we plan continual learning with DataBricks 

AutoML + human-in-the-loop.  

 

4) Generalisation to Other SaaS 

The blueprint applies to ServiceNow or Dynamics 365 by 

swapping CDC feeds. The major hurdle is orchestrating 

shield-equivalent logs.  

 

 

6. Conclusion 
 

We demonstrated that embedding a privacy-transformer and 

OPA into Salesforce Shield materially elevates GDPR and 

HIPAA compliance without harming performance. SAGE-

Shield reduced PHI exposure by 97.6 %, halved evaluation 

latency, and uncovered two-thirds more violations than 

RBAC. The open toolkit accelerates adoption of AI-powered 

data-minimisation in heavily regulated SaaS workflows. 

Future research will explore federated on-device models, 

formal verification of Rego-plus-LLM policies, and cross-

cloud secret-sharing to further curtail trust assumptions.  
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