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Abstract: This study investigates the vibrational behavior of orthotropic visco-elastic rectangular plates with exponential varying 

thickness under non-homogeneous conditions. Utilizing Galerkins technique, the research evaluates the influence of non-homogeneity 

parameters, taper constant, and aspect ratio on the plate’s vibration characteristics. This analysis is crucial for applications in high-

temperature environments, such as in aerospace engineering, offering valuable insights for the design and analysis of structures in 

dynamic stress conditions. 
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1. Introduction 

 
This chapter aims to study the effect of exponential non-

homogeneity on the vibration of orthotropic viscoelastic 

rectangular plates with exponentially varying thickness. The 

equation of motion derived in chapter-1 for visco-elastic 

rectangular plate of variable thickness has been used. Hewitt 

and Mazumdar [55] have considered vibration of triangular 

viscoelastic plates. Huffington and Hoppmann [60] have 

solved the problem of the transverse vibrations of 

rectangular orthotropic plates. 

 

In this chapter, the thickness of plate is assumed to vary 

exponentially in one direction (along x-axis). Galerkin’s 

technique has been applied to determine the frequency 

equation of the plate. Deflection, Time period and 

Logarithmic decrement at different points for the first two 

modes of vibration are obtained for various values of aspect 

ratio, taper constant and three non-homogeneous parameters. 

 

2. Equation of Motion & Analysis 
 

The governing differential equation of transverse motion and 

differential equation of time function of a visco-elastic 

orthotropic rectangular plate of variable thickness in 

Cartesian coordinate are the governing differential 

equations, as detailed in my previous research titled Impact 

of Non-Homogeneity on the Vibrational Dynamics of 

Orthotropic Visco-Elastic Rectangular Plates with Linearly 

Varying Thickness, are presented in sections 1.6 and 1.7. 
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              (2.1) 

And   

0
~

2
..

 TDpT
           (2.2) 

 

where 
),( yxW

the transverse displacement, h is the plate 

thickness. 

 

Equation (2.1) is a differential equation of motion of 

transverse motion for orthotropic plate of variable thickness 

and equation (2.2) is differential equation of time function of 

free vibration of visco-elastic orthotropic rectangular plate. 

 

If the thickness and non-homogeneity varies exponentially 

in x-direction only. Consequently, the thickness h, flexural 

rigidity yx DD ,
and torsional rigidity xyD

of plate become 

function of x only. Further let the two opposite edges, y=0 

and y=b of the plate be simply supported so that the free 

transverse vibrations of the plate can be expressed as

  

)()(),( 1
b

y
SinxWyxW




                         (2.3) 

 

Using equation (2.3) in (2.1) and simplifying, we have 
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(2.4) 

Thus equation (2.4) reduces to a form independent of y and on introducing the non-dimensional variables.  
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into equation (2.4). It becomes in non-dimensional form. 
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           (2.5)   

where   
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Let the thickness variation of the plate is.   

  XeHXH   

0

_


    (2.6) 

where 


 is taper constant and 
0

_

0  XHH

  the 

modulus variations are  

X

y

X

x

eEXE

eEXE





2

1

)(

)(





  (2.7) 

and the density varies as 
Xe 0

    (2.8) 

where  is non-homogeneous parameter and 

020100 ,,



XyXxX

EEEE
 

Considering equation (2.6), (2.7) and (2.8), the expression 

for rigidities comes out as  

 

 
where 
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Substituting equations (2.6), (2.8) and (2.9) into (2.5) the 

differential equation takes the form. 
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where 
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and 
p

 is a frequency parameter. 

 
3. Solution of Free Vibration of Rectangular 

Plate 
 

Let the deflection function 
)(

_

XW
 of the plate be assumed 

to be a finite sum of characteristic functions 
)(

_

XW k  

 

where kA
’s are the undetermined coefficients and 

)(
_

XW k

are the characteristic functions chosen to satisfy the 

boundary conditions of the plate. 

 

For a rectangular clamped plate at both the edges X = 0 and 

X = 1, boundary conditions are that the deflection and the 

slope of the plate must be zero i.e. 

 
Using Galerkin’s technique, one requires that. 

  
0)()]([

__

 dXXWXWL
R  

     (2.13) 

where 
)]([

_

XWL
 is the left-hand side of equation (2.10). 

Taking the first two terms of sum (2.11) for the function 

)(
_

XW
as the solution of equation (2.10), one has 

 

  

 

)]1([)1()( 21

22
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XXAAXXXW 
                                 

(2.14) 

where 1A
and 2A

are undetermined coefficients. 

We have expanded 
Xe and 

Xe 2

up to a term of order 
5X

. 

Using equation (2.10) and (2.14) in equation (2.13) and then 

eliminating 1A
 and 2A

  , gives the frequency equation as
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The frequency equation (2.15) is a quadratic equation in 
2p

from which the two values of 
2p

 can be found. 

Hence deflection function 
)(

_

XW
 can be obtained from 

equation (2.14) after determining constants 1A
 and 2A

 . 

Choosing 1A
= 1, we obtain 2

1
2

F

F
A 

 and then 
)(

_

XW
 

comes out as 
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             (2.16) 

 

4. Time Functions of Vibrations of 

Viscoelastic Orthotropic Plates 
 

Time functions of free vibrations of viscoelastic orthotropic 

plates are defined by the general ordinary differential 

equation (2.2). Their form depends on the viscoelastic 

operator

~

D . 

 

We have taken Kelvin’s model, for which. 

 

)1(
~

dt

d

G
D




   (2.17) 

where G  is shear modulus and 


 is viscoelastic constant. 

 

Taking variation of G and 


 as linearly i.e. 

 

 

where 1 and 2 are different non-homogeneous 

parameters and 
.,

0000 


XX
GG 

 

 

Using equation (2.18) in (2.17), we get 

 

dt

d
sD 1

~

     (2.19) 

where 
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     (2.20) 

 

Using equation (2.19) in equation (2.2), we obtain 

 

02
.

2
..

 TpTspT
   (2.21) 

 

Equation (2.21) is a differential equation of second order for 

time function T. 

 

On solving equation (2.21), its solution comes out as 
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  (2.22) 

where 

   

2422

4

1
sppa 

               
(2.23) 

and 2,1 cc
 are constants to be determined from initial 

conditions of the plate which assume as 

1T  and
00

.

 tatT
   (2.24) 

 

Using condition (2.24) in equation (2.22), we obtain 
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Hence, deflection 
),,( tyxw

 may be expressed from 

equation (2.3), (2.16) and (2.25), as 
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(2.26) 

 

Time period of the vibration of the plate is given by. 

 

p
K

2


             (2.27) 

where 
p

 is the frequency given by equation (2.15). 

 

Logarithmic decrement of the vibration is given by the 

standard formula. 

 

)(log
1

2

w

w
e

      (2.28) 

 

where w1 is the deflection at any point of the plate at a time 

period K= K1  and w2 is the deflection at the same point at 

the time period succeeding K1. 

 

5. Results and Discussions 
 

Time period K, Deflection w and Logarithmic decrement   

are computed for a clamped visco-elastic orthotropic 

rectangular plate of exponentially varying thickness for 

different values of non-homogeneous parameters α , α1, α2 

and taper constant β and aspect ratio a/b at different points 

for first two modes of vibrations. All these results are 

presented in tables 2.1 to 2.15 and graphically shown in 

figures from 2.1 to 2.15. 

 

For the numerical computation, the following orthotropic 

material parameters are used: 
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In tables 2.1 – 2.3 results of time period K for first two 

modes of vibrations for all X, Y and α1, α2 are given as 

follows: 

 

Table 2.1: Different non-homogeneous parameter α and 

fixed aspect ratio 
𝑎

𝑏
= 1.5 for two values of taper constant β 

i.e. β = 0.0 and β= 0.4. 

 

Table 2.2: Different taper constant β and fixed aspect ratio 
𝑎

𝑏
= 1.5 for two values of non-homogeneous parameter α i.e. 

α = 0.0 and α= 0.4. 

 

Table 2.3: Different aspect ratio 
𝑎

𝑏
 and four combination of 

non-homogeneous parameter α and taper constant β i.e. α 

=0.0, β =0.0; α = 0.0, β=0.4; α = 0.4, β=0.0 and α =0.4, 

β=0.4 

 

Table 2.1 shows that as non-homogeneous parameter  

increase time period K of vibration also increases. Figure 2.1 

shows the effect of non-homogeneous parameter   on time 

period K. It is clearly observed in figure 2.1 that there is a 

steady increase in time period K with increase of non-

homogeneous parameter.  

 

Tables 2.2 and 2.3 shows that as taper constant  and aspect 

ratio a/b increase, time period K decrease for the first two 

modes of vibration. It is clearly shown in figures 2.2 and 2.3 

that there is a steady decrease in time period K with increase 

of taper constant  and aspect ratio a/b. 

 

In tables 2.4 – 2.11 results of deflection for the first two 

modes of vibrations for different X, Y, and a fixed aspect 

ratio a/b = 1.5 for initial time 0.K and time 5.K are given for 

the following combination of , , 1 and 2: 

 

2.0,4.0,4.0,4.0

2.0,4.0,0.0,0.0

0.0,0.0,4.0,4.0

0.0,0.0,0.0,0.0

21

21

21

21

















 
 

It can be seen from tables 2.4 – 2.11 that deflection w starts 

from zero to increase and then decrease to zero for the first 

mode of vibration but for the second mode of vibration, 

deflection w starts from zero to increase then decrease then 

increase and finally come to zero for fixed Y and different 

value of X for time 0.K and 5.K.  

 

It is also note that for fixed X, deflection w starts from zero 

to increase and then decreases in both modes of vibration for 

both time 0.K and 5.K for different values of Y. 

 

One can conclude also that deflection w decreases for time 

increase for both the modes of vibration. These results are 

plotted in figures 2.4 to 2.11. 

 

In tables 2.12 - 2.15 are given results of logarithmic 

decrement   for first two modes of vibration for different 

X, Y and constant aspect ratio a/b = 1.5 for the following 

four cases 
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It is interesting observed that the logarithmic decrement   

is constant across the plate for 

0.0,0.0,0.0,0.0 21  
and 

,4.0,4.0   0.0,0.0 21  
 while increase 

for 
2.0,4.0,0.0,0.0 21  

 and 

,4.0,4.0   2.0,4.0 21  
 for different 

values of X and fixed value of Y. But it is same for fixed 

value of X and different value of Y. These results are plotted 

in figures 2.12 to 2.15.  

 

Table 2.1: Time period K (in seconds) for different non-homogeneous parameter () and a constant aspect ratio (a/b = 1.5) 

for all X, Y and 1, 2 

 
 = 0.0  = 0.4 

First Mode Second Mode First Mode Second Mode 

0.0 0.149813 0.029783 0.125528 0.024786 

0.2 0.150257 0.029808 0.126798 0.024841 

0.4 0.150833 0.029837 0.128218 0.024900 

0.6 0.151549 0.029871 0.129806 0.024963 

0.8 0.152413 0.029910 0.131583 0.025031 

 

Table 2.2: Time period K (in seconds) for different taper constant () and a constant aspect ratio (a/b = 1.5) for all X, Y and 

1, 2 

 
 = 0.0  = 0.4 

First Mode Second Mode First Mode Second Mode 

0.0 0.149813 0.029783 0.150833 0.029837 

0.2 0.136334 0.027060 0.138209 0.027146 

0.4 0.125528 0.024786 0.128218 0.024900 

0.6 0.117035 0.022876 0.120598 0.023016 

0.8 0.110629 0.021241 0.115249 0.021403 

 

Table 2.3: Time period K (in seconds) for different aspect ratio (a/b) for all X, Y and 1, 2 

a/b 
 =0.0,  =0.0  =0.0,  =0.4  =0.4,  =0.0  =0.4,  =0.4 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.5 0.173851 0.030987 0.145469 0.025792 0.174321 0.031007 0.147744 0.025880 

1.0 0.163628 0.030520 0.137000 0.025401 0.164373 0.030553 0.139499 0.025500 

1.5 0.149813 0.029783 0.125528 0.024786 0.150833 0.029837 0.128218 0.024900 

2.0 0.135004 0.028830 0.1131960 0.023990 0.136204 0.028910 0.115953 0.024123 

2.5 0.120795 0.027723 0.101331 0.023065 0.122067 0.027827 0.104028 0.023216 

 

Table 2.4: Deflection w for different X, Y and  =0.0,  =0.0, 1 =0.0, 2 = 0.0 and a/b = 1.5 at initial time 0.K 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.015438 0.004461 0.024975 0.007217 0.024965 0.007214 0.015412 0.004454 

0.4 0.035170 -0.001877 0.056897 -0.003037 0.056873 -0.003036 0.035109 -0.001874 

0.6 0.035170 -0.001877 0.056897 -0.003037 0.056873 -0.003036 0.035109 -0.001874 

0.8 0.015438 0.004461 0.024975 0.007217 0.024965 0.007214 0.015412 0.004454 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

      

Table 2.5: Deflection w for different X, Y and  =0.0,  =0.0, 1 =0.0, 2 = 0.0 and a/b = 1.5 at time 5.K 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.014751 0.003549 0.023863 0.005741 0.023853 0.005739 0.014725 0.003543 

0.4 0.033604 -0.001493 0.054363 -0.002416 0.054341 -0.002415 0.033546 -0.001491 

0.6 0.033604 -0.001493 0.054363 -0.002416 0.054341 -0.002415 0.033546 -0.001491 

0.8 0.014751 0.003549 0.023863 0.005741 0.023853 0.005739 0.014725 0.003543 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
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Table 2.6: Deflection w for different X, Y and  =0.4,  =0.4, 1 =0.0, 2 = 0.0 and a/b = 1.5 at initial time 0.K 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.004722 0.004460 0.007680 0.007215 0.007635 0.007212 0.004713 0.004452 

0.4 -0.000998 -0.001881 -0.001615 -0.003043 -0.001615 -0.003042 -0.000997 -0.001878 

0.6 -0.000998 -0.001881 -0.001615 -0.003043 -0.001615 -0.003042 -0.000997 -0.001878 

0.8 0.004722 0.004460 0.007680 0.007215 0.007635 0.007212 0.004713 0.004452 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 

Table 2.7: Deflection w for different X, Y and  =0.4,  =0.4, 1 =0.0, 2 = 0.0 and a/b = 1.5 at time 5.K 

 

X 

Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.004477 0.003392 0.007243 0.005488 0.007240 0.005486 0.004469 0.003386 

0.4 -0.000947 -0.001431 -0.001532 -0.002315 -0.001531 -0.002314 -0.000945 -0.001428 

0.6 -0.000947 -0.001431 -0.001532 -0.002315 -0.001531 -0.002314 -0.000945 -0.001428 

0.8 0.004477 0.003392 0.007243 0.005488 0.007240 0.005486 0.004469 0.003386 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 

Table 2.8: Deflection w for different X, Y and  =0.0,  =0.0, 1 =0.4, 2 = 0.2 and a/b = 1.5 at initial time 0.K 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.015438 0.004461 0.024975 0.007217 0.024965 0.007214 0.015412 0.004454 

0.4 0.035170 -0.001877 0.056897 -0.003037 0.056873 -0.003036 0.035109 -0.001874 

0.6 0.035170 -0.001877 0.056897 -0.003037 0.056873 -0.003036 0.035109 -0.001874 

0.8 0.015438 0.004461 0.024975 0.007217 0.024965 0.007214 0.015412 0.004454 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 

Table 2.9: Deflection w for different X, Y and  =0.0,  =0.0, 1 =0.4, 2 = 0.2 and a/b = 1.5 at time 5.K  

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.014776 0.003579 0.023903 0.005790 0.023893 0.005788 0.014750 0.003573 

0.4 0.033710 -0.001517 0.054534 -0.002454 0.054511 -0.002453 0.033651 -0.001514 

0.6 0.033752 -0.001527 0.054603 -0.002470 0.054580 -0.002469 0.033694 -0.001524 

0.8 0.014832 0.003649 0.023995 0.005902 0.023985 0.005900 0.014807 0.003642 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 

Table 2.10: Deflection w for different X, Y and  =0.4,  =0.4, 1 =0.4, 2 = 0.2 and a/b = 1.5 at initial time 0.K 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.004722 0.004460 0.007680 0.007215 0.007635 0.007212 0.004713 0.004452 

0.4 -0.000998 -0.001881 -0.001615 -0.003043 -0.001615 -0.003042 -0.000997 -0.001878 

0.6 -0.000998 -0.001881 -0.001615 -0.003043 -0.001615 -0.003042 -0.000997 -0.001878 

0.8 0.004722 0.004460 0.007680 0.007215 0.007635 0.007212 0.004713 0.004452 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

  

Table 2.11: Deflection w for different X, Y and  =0.4,  =0.4, 1 =0.4, 2 = 0.2 and a/b = 1.5 at time 5.K 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.004486 0.003427 0.007257 0.005544 0.007254 0.005541 0.004478 0.003421 

0.4 -0.000950 -0.001458 -0.001537 -0.002359 -0.001537 -0.002358 -0.000949 -0.001455 

0.6 -0.000952 -0.001469 -0.001539 -0.002377 -0.001539 -0.002376 -0.000950 -0.001467 

0.8 0.004506 0.003507 0.007289 0.005673 0.007286 0.005671 0.004498 0.003501 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 

Table 2.12: Logarithmic decrement Λ for different X, Y and  =0.0,  =0.0, 1 =0.0, 2 = 0.0 and a/b = 1.5  

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.2 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 

0.4 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 
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0.6 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 

0.8 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 

  

Table 2.13: Logarithmic decrement Λ for different X, Y and  =0.4,  =0.4, 1 =0.0, 2 = 0.0 and a/b = 1.5 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.2 -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726 

0.4 -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726 

0.6 -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726 

0.8 -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726 

 

Table 2.14: Logarithmic decrement Λ for different X, Y and  =0.0,  =0.0, 1 =0.4, 2 = 0.2 and a/b = 1.5 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.2 -0.008761 -0.044059 -0.008761 -0.044059 -0.008761 -0.044059 -0.008761 -0.044059 

0.4 -0.008471 -0.042598 -0.008471 -0.042598 -0.008471 -0.042598 -0.008471 -0.042598 

0.6 -0.008218 -0.041326 -0.008218 -0.041326 -0.008218 -0.041326 -0.008218 -0.041326 

0.8 -0.007996 -0.040208 -0.007996 -0.040208 -0.007996 -0.040208 -0.007996 -0.040208 

 

Table 2.15: Logarithmic decrement Λ for different X, Y and  =0.4,  =0.4, 1 =0.4, 2 = 0.2 and a/b = 1.5 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.2 -0.010236 -0.052699 -0.010236 -0.052699 -0.010236 -0.052699 -0.010236 -0.052699 

0.4 -0.009897 -0.050951 -0.009897 -0.050951 -0.009897 -0.050951 -0.009897 -0.050951 

0.6 -0.009602 -0.049430 -0.009602 -0.049430 -0.009602 -0.049430 -0.009602 -0.049430 

0.8 -0.009342 -0.048092 -0.009342 -0.048092 -0.009342 -0.048092 -0.009342 -0.048092 

 

6. Conclusion 
 

In conclusion, the research presents significant insights into 

the vibrational behavior of orthotropic visco-elastic 

rectangular plates with exponential varying thickness 

variation, under the influence of non-homogeneity. The 

study findings highlight the intricate relationship between 

the non-homogeneous parameters, taper constants, and 

aspect ratios, and their collective impact on the plate’s 

vibration characteristics. It emphasizes the importance of 

considering these factors in the design and analysis of 

structures subjected to dynamic stress, particularly in high-

temperature environments. This research paves the way for 

further exploration in the field of material science and 

structural engineering, especially in applications involving 

extreme conditions such as those encountered in aerospace 

engineering. 
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