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Abstract: This study investigates the vibrational behavior of orthotropic visco-elastic rectangular plates with exponential varying
thickness under non-homogeneous conditions. Utilizing Galerkins technique, the research evaluates the influence of non-homogeneity
parameters, taper constant, and aspect ratio on the plate’s vibration characteristics. This analysis is crucial for applications in high-
temperature environments, such as in aerospace engineering, offering valuable insights for the design and analysis of structures in
dynamic stress conditions.
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1. Introduction

This chapter aims to study the effect of exponential non-
homogeneity on the vibration of orthotropic viscoelastic
rectangular plates with exponentially varying thickness. The
equation of motion derived in chapter-1 for visco-elastic
rectangular plate of variable thickness has been used. Hewitt
and Mazumdar [55] have considered vibration of triangular
viscoelastic plates. Huffington and Hoppmann [60] have
solved the problem of the transverse vibrations of
rectangular orthotropic plates.

In this chapter, the thickness of plate is assumed to vary
exponentially in one direction (along X-axis). Galerkin’s
technique has been applied to determine the frequency

equation of the plate. Deflection, Time period and
4 4 4
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Logarithmic decrement at different points for the first two
modes of vibration are obtained for various values of aspect
ratio, taper constant and three non-homogeneous parameters.

2. Equation of Motion & Analysis

The governing differential equation of transverse motion and
differential equation of time function of a visco-elastic
orthotropic rectangular plate of variable thickness in
Cartesian coordinate are the governing differential
equations, as detailed in my previous research titled Impact
of Non-Homogeneity on the Vibrational Dynamics of
Orthotropic Visco-Elastic Rectangular Plates with Linearly
Varying Thickness, are presented in sections 1.6 and 1.7.
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And If the thickness and non-homogeneity varies exponentially
- - in x-direction only. Consequently, the thickness h, flexural
' rigidity —*’ Yand torsional rigidity ¥ of plate become

where W(X’ y)the transverse displacement, h is the plate
thickness.

Equation (2.1) is a differential equation of motion of
transverse motion for orthotropic plate of variable thickness
and equation (2.2) is differential equation of time function of
free vibration of visco-elastic orthotropic rectangular plate.

function of x only. Further let the two opposite edges, y=0
and y=b of the plate be simply supported so that the free

transverse vibrations of the plate can be expressed as

W(x,y) =w1(x)8in(%) -

Using equation (2.3) in (2.1) and simplifying, we have
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Thus equation (2.4) reduces to a form independent of y and on introducing the non-dimensional variables.
- h - W X D D
H=—, W=-—12% X=2, D,=—%, D, =2
a a a’ ¢ at Tt al
into equation (2.4). It becomes in non-dimensional form.
*W oDy 0°W 9°D H? . 0*W
+2—2 + X _2r*{v.D, +G,, — -~
“oxt T X ax?® [ax2 Dy + G 6}]6X2
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(2.5)
2
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where b Considering equation (2.6), (2.7) and (2.8), the expression
for rigidities comes out as
Let the thickness variation of the plate is. D, =Dy et :|
— _ el 3gY 20
H(X)=H0eﬂx (2.6) Dy =De™e @9
B where
Ho=H| x - EH3
where B is taper constant and the D Lo

P 12(L-v,v,)’
modulus variations are EH?

E,(X)=Ee" D= 220

E.(X) = E,e™ 12(1-v,v,)

y o2 (2.7)  Substituting equations (2.6), (2.8) and (2.9) into (2.5) the
and the density varies as differential equation takes the form.
_ aX
P = po€ (2.8)

where & is non-homogeneous parameter and
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where
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and P isa frequency parameter.

2=

LIW (X)W (X) dX =0
3. Solution of Free Vibration of Rectangular J.R W XOIW (X)
Plate (2.13)

where LW (X)] is the left-hand side of equation (2.10).

Let the deflection function W (X) of the plate be assumed Taking the first two terms of sum (2.11) for the function

W (X : .
to be a finite sum of characteristic functions Wi (X) (XD as the solution of equation (2.10), one has

W(X) = ZA W (X) (2.11)

- Y w2 _ 2 _
where Ak ’s are the undetermined coefficients and Wi (X) w (X) =X (1 X) [Al + Az X (1 X )]

are the characteristic functions chosen to satisfy the (2.14)
boundary conditions of the plate. where "and %2 are undetermined coefficients.

aX 28X 5
For a rectangular clamped plate at both the edges X =0and  We have expanded € and € up to a term of order X
X =1, boundary conditions are that the deflection and the

slope of the plate must be zero i.e. Using equation (2.10) and (2.14) in equation (2.13) and then
- o eliminating A and A2 , gives the frequency equation as
oW
W x.o= - x-0=0
aX F, F 0
F, F|
- AT (2.15)
W i =—|+.,=0
Xal ax Xal (2.12) where
Using Galerkin’s technique one | requires that
4 4
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The frequency equation (2.15) is a quadratic equation in p where %1 and @2are  different non-homogeneous
2
from which the two values of P can be found. parameters and G| o = 77|>< =0’

Hence deflection function W(X) can be obtained from

equation (2.14) after determining constants A and A2 .
__R
, = _
Choosing Al: 1, we obtain F, and then W(X)

comes out as

W(X)=X?1- X)z[l—%X(l— X)]

2
(2.16)

4. Time Functions of Vibrations of
Viscoelastic Orthotropic Plates

Time functions of free vibrations of viscoelastic orthotropic
plates are defined by the general ordinary differential
equation (2.2). Their form depends on the viscoelastic

operator D,
We have taken Kelvin’s model, for which.

D= (1+——)
G dt (2.17)

where G is shear modulus and 77 is viscoelastic constant.

Taking variation of G and M as linearly i.e.

G(X) = G,[1 + &, X]

nX) =m,[1 + o, X] (2.18)

Using equation (2.18) in (2.17), we get

[~) =1+ Si
dt (2.19)
where
_ Mo [1+a,X]
Gyl+ o, X] (2.20)
Using equation (2.19) in equation (2.2), we obtain
T+ p?sT + p?T = 2.21)

Equation (2.21) is a differential equation of second order for
time function T.

On solving equation (2.21), its solution comes out as

2

[ )
T(t)=e 2 |[c, cosat+c, sin at] 2.22)
where
1
2 2 4.2
a“=p°—-=p’s
4
(2.23)
Cl C2 - .
and ’ are constants to be determined from initial

conditions of the plate which assume as

T=1gg | =0att=0 (2.24)

Using condition (2.24) in equation (2.22), we obtain
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—p’st 2
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Z2 [cosat + % sin at]
a

T(t)=¢'
(2.25)

Hence, deflection w(X, y,1) may be expressed from
equation (2.3), (2.16) and (2.25), as

. B, %s
w(x, y, t) =W, (x)sin (%)e 2 [cosat+ % sin at]
a
(2.26)
Time period of the vibration of the plate is given by.
2r
K=—
P (2.27)

where P is the frequency given by equation (2.15).

Logarithmic decrement of the vibration is given by the
standard formula.

n=log, (C2)
1 (2.28)

where w; is the deflection at any point of the plate at a time
period K= K; and w, is the deflection at the same point at
the time period succeeding Kj.

5. Results and Discussions

Time period K, Deflection w and Logarithmic decrement A
are computed for a clamped visco-elastic orthotropic
rectangular plate of exponentially varying thickness for
different values of non-homogeneous parameters a , oy, o
and taper constant B and aspect ratio a/b at different points
for first two modes of vibrations. All these results are
presented in tables 2.1 to 2.15 and graphically shown in
figures from 2.1 to 2.15.

For the numerical computation, the following orthotropic
material parameters are used:

G, 1l-vyv
B o1, S8V a3
El El
v, =03, B 30
(1_VxVy)po

g_o =0.000069, H, = 0.01 meter

0

In tables 2.1 — 2.3 results of time period K for first two
modes of vibrations for all X, Y and oy, a, are given as
follows:

Table 2.1: Different non-homogeneous parameter o and
fixed aspect ratio % = 1.5 for two values of taper constant 8
i.e. =0.0 and p= 0.4.

Table 2.2: Different taper constant 3 and fixed aspect ratio
% = 1.5 for two values of non-homogeneous parameter a i.e.
a=0.0and a=0.4.

Table 2.3: Different aspect ratio % and four combination of

non-homogeneous parameter o and taper constant p i.e. a
=0.0, B =0.0; o = 0.0, p=0.4; o = 0.4, p=0.0 and a =0.4,
p=0.4

Table 2.1 shows that as non-homogeneous parameter o
increase time period K of vibration also increases. Figure 2.1
shows the effect of non-homogeneous parameter & on time
period K. It is clearly observed in figure 2.1 that there is a
steady increase in time period K with increase of non-
homogeneous parametera.

Tables 2.2 and 2.3 shows that as taper constant 3 and aspect
ratio a/b increase, time period K decrease for the first two
modes of vibration. It is clearly shown in figures 2.2 and 2.3
that there is a steady decrease in time period K with increase
of taper constant  and aspect ratio a/b.

In tables 2.4 — 2.11 results of deflection for the first two
modes of vibrations for different X, Y, and a fixed aspect
ratio a/b = 1.5 for initial time 0.K and time 5.K are given for
the following combination of a, B, al and a.2:

a=00,5=00, o, =0.0,, =0.0
a=04,8=04,a,=00,a,=00
a=00,3=00,a, =04, a,=02
a=04,3=04,a, =04, a,=02

It can be seen from tables 2.4 — 2.11 that deflection w starts
from zero to increase and then decrease to zero for the first
mode of vibration but for the second mode of vibration,
deflection w starts from zero to increase then decrease then
increase and finally come to zero for fixed Y and different
value of X for time 0.K and 5.K.

It is also note that for fixed X, deflection w starts from zero
to increase and then decreases in both modes of vibration for
both time 0.K and 5.K for different values of Y.

One can conclude also that deflection w decreases for time
increase for both the modes of vibration. These results are
plotted in figures 2.4 to 2.11.

In tables 2.12 - 2.15 are given results of logarithmic
decrement A for first two modes of vibration for different
X, Y and constant aspect ratio a/b = 1.5 for the following
four cases
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a=00,8=00,a, =00,a, =00
a=04,8=04,a,=00,a,=00
a=00,3=00,a, =04, a,=02
a=04,3=04,a, =04, a,=02

It is interesting observed that the logarithmic decrement A

IS

constant

across

th

e

2=00, =00 ,0,=00,a,=00 .,

plate

for

a=04,5=04, o=00,,=00
a=00,4=00,0, =04,0,=0.2
a=04,=04, =04,0,=02

for

while increase
and

for different

values of X and fixed value of Y. But it is same for fixed
value of X and different value of Y. These results are plotted
in figures 2.12 to 2.15.

Table 2.1: Time period K (in seconds) for different non-homogeneous parameter (o) and a constant aspect ratio (a/b = 1.5)
forall X, Y and al, a2

" B=0.0 B=0.4

First Mode Second Mode First Mode Second Mode
0.0 0.149813 0.029783 0.125528 0.024786
0.2 0.150257 0.029808 0.126798 0.024841
0.4 0.150833 0.029837 0.128218 0.024900
0.6 0.151549 0.029871 0.129806 0.024963
0.8 0.152413 0.029910 0.131583 0.025031

Table 2.2: Time period K (in seconds) for different taper constant () and a constant aspect ratio (a/b = 1.5) for all X, Y and

al, a2
a=0.0 a=04
B First Mode Second Mode First Mode Second Mode
0.0 0.149813 0.029783 0.150833 0.029837
0.2 0.136334 0.027060 0.138209 0.027146
0.4 0.125528 0.024786 0.128218 0.024900
0.6 0.117035 0.022876 0.120598 0.023016
0.8 0.110629 0.021241 0.115249 0.021403

Table 2.3: Time period K (in seconds) for different aspect ratio (a/b) for all X, Y and al, a2

alb « =0.0,  =0.0 « =0.0, B =0.4 a.=0.4, § =0.0 a.=0.4, p =0.4

First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode
0.5 0.173851 0.030987 0.145469 0.025792 0.174321 0.031007 0.147744 0.025880
1.0 0.163628 0.030520 0.137000 0.025401 0.164373 0.030553 0.139499 0.025500
1.5 | 0.149813 0.029783 0.125528 0.024786 0.150833 0.029837 0.128218 0.024900
2.0 | 0.135004 0.028830 0.1131960 0.023990 0.136204 0.028910 0.115953 0.024123
2.5 0.120795 0.027723 0.101331 0.023065 0.122067 0.027827 0.104028 0.023216

Table 2.4: Deflection w for different X, Y and o =0.0, B =0.0, a1 =0.0,

a2 =0.0 and a/b = 1.5 at initial time 0.K

X Y=0.2 Y=04 Y =0.6 Y=0.8
First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode

0.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 | 0.015438 0.004461 0.024975 0.007217 0.024965 0.007214 0.015412 0.004454
0.4 | 0.035170 -0.001877 0.056897 -0.003037 0.056873 -0.003036 0.035109 -0.001874
0.6 | 0.035170 -0.001877 0.056897 -0.003037 0.056873 -0.003036 0.035109 -0.001874
0.8 | 0.015438 0.004461 0.024975 0.007217 0.024965 0.007214 0.015412 0.004454
1.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 2.5: Deflection w for

different X, Y and o =0.0, B =0.0, a1 =0.0, a2 = 0.0 and a/b = 1.5 at time 5.K

X Y=0.2 Y=04 Y =06 Y=0.8
First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode
0.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 | 0.014751 0.003549 0.023863 0.005741 0.023853 0.005739 0.014725 0.003543
0.4 | 0.033604 -0.001493 0.054363 -0.002416 0.054341 -0.002415 0.033546 -0.001491
0.6 | 0.033604 -0.001493 0.054363 -0.002416 0.054341 -0.002415 0.033546 -0.001491
0.8 | 0.014751 0.003549 0.023863 0.005741 0.023853 0.005739 0.014725 0.003543
1.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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Table 2.6: Deflection w for different X, Y and o =0.4, B =0.4, a1 =0.0, o2 = 0.0 and a/b = 1.5 at initial time 0.K
X Y =02 Y=04 Y =0.6 Y=0.8

First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode
0.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 | 0.004722 0.004460 0.007680 0.007215 0.007635 0.007212 0.004713 0.004452
0.4 | -0.000998 -0.001881 -0.001615 -0.003043 -0.001615 -0.003042 -0.000997 -0.001878
0.6 | -0.000998 -0.001881 -0.001615 -0.003043 -0.001615 -0.003042 -0.000997 -0.001878
0.8 | 0.004722 0.004460 0.007680 0.007215 0.007635 0.007212 0.004713 0.004452
1.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 2.7: Deflection w for different X, Y and o =0.4, B =0.4, a1 =0.0, 2 = 0.0 and a/b = 1.5 at time 5.K

Y =02 Y=04 Y =0.6 Y=0.8

X | First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode
0.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 | 0.004477 0.003392 0.007243 0.005488 0.007240 0.005486 0.004469 0.003386
0.4 | -0.000947 -0.001431 -0.001532 -0.002315 -0.001531 -0.002314 -0.000945 -0.001428
0.6 | -0.000947 -0.001431 -0.001532 -0.002315 -0.001531 -0.002314 -0.000945 -0.001428
0.8 | 0.004477 0.003392 0.007243 0.005488 0.007240 0.005486 0.004469 0.003386
1.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 2.8: Deflection w for different X, Y and o =0.0, B =0.0, a1 =0.4, a2 = 0.2 and a/b = 1.5 at initial time 0.K

X Y=0.2 Y=04 Y =0.6 Y=0.8

First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode
0.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 | 0.015438 0.004461 0.024975 0.007217 0.024965 0.007214 0.015412 0.004454

0.4 | 0.035170 -0.001877 0.056897 -0.003037 0.056873 -0.003036 0.035109 -0.001874
0.6 | 0.035170 -0.001877 0.056897 -0.003037 0.056873 -0.003036 0.035109 -0.001874
0.8 | 0.015438 0.004461 0.024975 0.007217 0.024965 0.007214 0.015412 0.004454
1.0 | 0.000000 0.000000 0.000000 | 0.000000 0.000000 0.000000 0.000000 0.000000

Table 2.9: Deflection w for different X, Y and a =0.0, $ =0.0, a1 =0.4, 02 = 0.2 and a/b = 1.5 at time 5.K
X Y =02 Y=04 Y =0.6 Y=0.8
First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode

0.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 | 0.014776 0.003579 0.023903 0.005790 0.023893 0.005788 0.014750 0.003573
0.4 | 0.033710 -0.001517 0.054534 -0.002454 0.054511 -0.002453 0.033651 -0.001514
0.6 | 0.033752 -0.001527 0.054603 -0.002470 0.054580 -0.002469 0.033694 -0.001524
0.8 | 0.014832 0.003649 0.023995 0.005902 0.023985 0.005900 0.014807 0.003642
1.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 2.10: Deflection w for different X, Y and o =0.4,  =0.4, a1 =0.4, a2 = 0.2 and a/b = 1.5 at initial time 0.K
Y =0.2 Y=04 Y=0.6 Y=0.8
First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode
0.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 | 0.004722 0.004460 0.007680 0.007215 0.007635 0.007212 0.004713 0.004452
0.4 | -0.000998 -0.001881 -0.001615 -0.003043 -0.001615 -0.003042 -0.000997 -0.001878
0.6 | -0.000998 -0.001881 -0.001615 -0.003043 -0.001615 -0.003042 -0.000997 -0.001878
0.8 | 0.004722 0.004460 0.007680 0.007215 0.007635 0.007212 0.004713 0.004452
1.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 2.11: Deflection w for different X, Y and o =0.4, 3 =0.4, 01 =0.4, 02 = 0.2 and a/b = 1.5 at time 5.K

X Y=0.2 Y=04 Y =0.6 Y=0.8
First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode

0.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.2 | 0.004486 0.003427 0.007257 0.005544 0.007254 0.005541 0.004478 0.003421

0.4 | -0.000950 | -0.001458 -0.001537 | -0.002359 -0.001537 | -0.002358 -0.000949 | -0.001455
0.6 | -0.000952 | -0.001469 -0.001539 | -0.002377 -0.001539 | -0.002376 -0.000950 | -0.001467
0.8 | 0.004506 0.003507 0.007289 0.005673 0.007286 0.005671 0.004498 0.003501

1.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 2.12: Logarithmic decrement A for different X, Y and a =0.0,  =0.0, a1 =0.0, a2 =0.0and a/b = 1.5
X Y=0.2 Y=04 Y =0.6 Y=0.8

First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode
0.2 | -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753
0.4 | -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753
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0.6 | -0.009098
0.8 | -0.009098

-0.045753
-0.045753

-0.009098
-0.009098

-0.045753
-0.045753

-0.009098
-0.009098

-0.045753
-0.045753

-0.009098
-0.009098

-0.045753
-0.045753

Table 2.13: Logarithmic decrement A for different X, Y and o =0.4,  =0.4, 01 =0.0, a2 =0.0and a/b = 1.5

X Y =02 Y=04 Y=0.6 Y=0.8

First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode
0.2 | -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726
0.4 | -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726
0.6 | -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726
0.8 | -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726 -0.010630 -0.054726

Table 2.14: Logarithmic decrement A for different X, Y and a =0.0,  =0.0, a1 =0.4, a2 =0.2and a/b = 1.5

X Y =02 Y=04 Y =0.6 Y=0.8

First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode | First Mode | Second Mode
0.2 | -0.008761 -0.044059 -0.008761 -0.044059 -0.008761 -0.044059 -0.008761 -0.044059
0.4 | -0.008471 -0.042598 -0.008471 -0.042598 -0.008471 -0.042598 -0.008471 -0.042598
0.6 | -0.008218 -0.041326 -0.008218 -0.041326 -0.008218 -0.041326 -0.008218 -0.041326
0.8 | -0.007996 -0.040208 -0.007996 -0.040208 -0.007996 -0.040208 -0.007996 -0.040208

Table 2.15: Logarithmic decrement A for different X, Y and o =0.4, B =0.4, a1 =0.4, a2 =0.2and a/b = 1.5

X Y =02 Y=04 Y =0.6 Y=0.8
First Mode |Second Mode | First Mode |Second Mode | First Mode |Second Mode | First Mode |Second Mode
0.2 -0.010236 -0.052699 -0.010236 -0.052699 -0.010236 -0.052699 -0.010236 -0.052699
0.4 -0.009897 -0.050951 -0.009897 -0.050951 -0.009897 -0.050951 -0.009897 -0.050951
0.6 -0.009602 -0.049430 -0.009602 -0.049430 -0.009602 -0.049430 -0.009602 -0.049430
0.8 -0.009342 -0.048092 -0.009342 -0.048092 -0.009342 -0.048092 -0.009342 -0.048092
6. Conclusion [5] Avalos, D.R., Larrondo, H.A. and Laura, P.AA.

‘Analysis of Vibrating Rectangular Anisotropic Plates
In conclusion, the research presents significant insights into with Free-Edge Holes’, J. Sound and Vibration, Vol.
the vibrational behavior of orthotropic visco-elastic 222, No. 4, Pp. 691-695, 1999.
rectangular plates with exponential varying thickness  [6] Avalos, D.R. and Laura, P.A.A. ‘Transverse Vibrations
variation, under the influence of non-homogeneity. The of a Simply Supported Plate of Generalized Anisotropy

study findings highlight the intricate relationship between
the non-homogeneous parameters, taper constants, and
aspect ratios, and their collective impact on the plate’s
vibration characteristics. It emphasizes the importance of
considering these factors in the design and analysis of
structures subjected to dynamic stress, particularly in high-
temperature environments. This research paves the way for
further exploration in the field of material science and
structural engineering, especially in applications involving
extreme conditions such as those encountered in aerospace
engineering.

with an Oblique Cut-Out’, J. Sound and Vibration, Vol.
258, No. 4, Pp. 773-776, 2002.

[7] Bala Subrahmanyan, P. and Sujith R.I.‘Exact Solution
for Ax symmetric Vibration of Solid Circular and
Annular Membranes with Continuously Varying
Density’, J. Sound and Vibration, Vol. 248, No. 2, Pp.
371-378, 2001.

[8] Bambill, D.V., C.A., Laura, P.ALA. and Rossi,
R.E.‘Transverse ~ Vibration of An Orthotropic
Rectangular Plate of Linearly Varying Thickness and
With a Free Edge’, J. Sound and Vibration, Vol. 235,
No. 3, Pp. 530-538, 2000.
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