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Abstract: This study delves into the vibrational behavior of orthotropic visco-elastic rectangular plates with linearly varying thickness, 

particularly under the influence of non-homogeneity. This aspect has gained significance due to its implications in high-temperature 

scenarios, such as those encountered by hypersonic vehicles. The research employs Galerkins technique to solve the fourth-order partial 

differential equation of motion, considering small deflection and linear visco-elastic properties. The study focuses on the effect of non-

homogeneity parameters on the deflection, time period, and logarithmic decrement of the plates vibration in various modes. It reveals a 

correlation between the non-homogeneity parameters, taper constant, and aspect ratio with the vibrational characteristics of the plate, 

presenting a comprehensive understanding of these dynamics. 
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1. Introduction 
 

In recent year, the exploration of dynamical behavior of 

plates because of non-homogeneity became important due to 

high temperatures reached on external skin panel of 

hypersonic vehicles. 

 

Sobotka [196] has investigated the vibration of rectangular 

orthotropic visco-elastic plates. Leissa [108,111] has given 

the solution for rectangular plate of variable thickness. 

Kishor and Rao [75] have discussed non linear vibration of 

rectangular plate on visco-elastic foundation. Saito and 

Yamaguchi [176] solved the problem of free vibration of a 

rectangular plate with visco-elastic stiffness. Jongwon Seok, 

Tiersten and Scarton [67, 68] have solved the problem of 

free vibrations of rectangular cantilever plates. 

 

Many real bodies can posses an initial non-homogeneity due 

to an inclusion of a material or imperfections. Therefore in 

elastic bodies and the material properties are not constant 

but vary with position in a random manner. It is well known, 

that in the presence of a constant non homogeneity 

parameter, the elastic coefficient of homogeneous materials 

become functions of the space variables.  

 

Cheung and Zhou [21] have discussed the free vibration of 

tapered rectangular plate using the Rayliegh-Ritz method. 

The problem of vibration of non-uniform orthotropic 

rectangular plate has been solved by Tomar, Sharma and 

Gupta [210]. Zhou and Cheung [231] have solved the 

problem of free vibration of line supported rectangularplate 

using a set of static beam functions. Laura, Avalos and 

Larrondo [83] have solved the problem of forced vibrations 

of simple supported anisotropic rectangular plate. Dickinson 

[26] has discussed the flexural vibration of rectangular 

orthotropic plates. Bambil, Laura and Rossi [8] have 

discussed the vibration of an orthotropic rectangular plate of 

linearly varying thickness.  

 

The object of work presented in this chapter is to study the 

non homogeneity effect on the vibration of orthotropic 

visco-elastic rectangular plate of linearly varying thickness. 

The assumption of small deflection and linear visco-elastic 

properties are made. Assuming that the visco-elastic 

properties of the plate are of the ‘Kelvin type’. Galerkin’s 

technique has been applied to solved the forth order partial 

differential equation of motion. Deflection, Time period and 

Logarithmic decrement at different points for the first two 

modes of vibration are obtained for various values of aspect 

ratio, taper constant and three non-homogeneous parameters. 

 

2. Equation of Motion & Analysis 
 
The equation of motion of a viscoelastic orthotropic 

rectangular plate of variable thickness may be written in the 

form, as by Sobotka [197] 
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Here 

xM , yM  and xyM are moments per unit length of plate, 

 is mass per unit volume, h is thickness of plate and w is 

displacement at time t. 

 

The expression for xyyx MMM ,,  are given by 
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where    
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is called the flexural rigidity of the plate in x- direction, and                
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is called the flexural rigidity of the plate in y- direction, and   
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is called the torsional rigidity, 

and    

)('

1 xyyx DvDvD   

Here yx EE &  are the moduli of elasticity in x- and y-

direction respectively, x  and y are the possion ratio &

xyG  is the shear modulus. 

 

On substituting equation (1.2) in (1.1), we obtain 
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Where 
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The solution of equation (1.3) can be taken in the form of 

product of two functions as follows:    

     tTyxWtyxww ,,,     (1.4) 

 

where  yxW ,  is the deflection and  tT  is the time 

function. 

 

Substituting equation (1.4) in (1.3), we obtain 
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(1.5) 

 

Here dot denotes the differentiation with respect to t. 

 

Equation (1.5) is satisfied if both its sides are equal to a 

constant. Denoting this constant by
2p , we get two 

equations 
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(1.6) 

 

and 
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~

2
..

 TDpT   (1.7) 

 

Equation (1.6) is a differential equation of motion for 

orthotropic rectangular plate of variable thickness and (1.7) 

is a differential equation of time functions of free vibration 

of viscoelastic rectangular orthotropic plate. 

 

Assuming that the thickness and non-homogeneity varies 

linearly in x-direction only. Consequently, the thickness h, 

flexural rigidity xD and yD & torsional rigidity xyD of plate 

become function of x only. Further let the two opposite 

edges, y=0 and y=b of the plate be simply supported so that 

the free transverse vibrations of the plate can be expressed as
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Using equation (1.8) in (1.6) and simplifying, we have 
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Thus equation (1.9) reduces to a form independent of y and 

on introducing the non-dimensional variables  
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into equation (1.9), it becomes in non-dimensional form 
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Let the thickness variation of the plate is  

    XHXH  10
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where   is taper constant and 0

_

0  XHH  

and the modulus variation are 

 

 
and the density varies as  
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where  is non-homogeneous parameter and  
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Considering equation (1.11), (1.12) and (1.13), the 

expression for rigidities comes out as  
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Substituting equation (1.11), (1.13) and (1.14) into (1.10), 

the differential equation takes the form  
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and p  is a frequency parameter. 

3. Solution of Free Vibration of Rectangular 

Plate 

Let the deflection function )(
_

XW  of the plate be assumed 

to be a finite sum of characteristic functions )(
_

XW k  
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where kA ’s are the undetermined coefficients and 

)(
_

XW k  are the characteristic functions chosen to satisfy 

the boundary conditions of the plate. 
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For a rectangular clamped plate at both the edges X = 0 and 

X = 1, boundary conditions  

are that the deflection and the slope of the plate must be zero 

i.e. 
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 Using Galerkin’s technique, we requires that  
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XWL  is the left hand side of equation (1.15). 

Taking the first two terms of series (1.16) for the function 
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where 1A and 2A are undetermined coefficients. 

Using equation (1.15) and (1.19) in equation (1.18) and then 

eliminating 1A and 2A , gives the frequency equation as  
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The frequency equation (1.20) is a quadratic equation in 
2p

from which the two values of 
2p can be found.Hence 

deflection function )(
_

XW  can be obtained from equation 

(1.19) after determining constants 1A  and 2A . Choosing 1A

= 1, we obtains
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4. Time Functions of Vibrations of 

Viscoelastic Orthotropic Plates 

 
Time functions of free vibrations of viscoelastic orthotropic 

plates are defined by the general ordinary differential 

equation (1.7). Their form depends on the viscoelastic 

operator
~

D . 

We have taken Kelvin’s model, for which 
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where G  is shear modulus and   is viscoelastic constant. 

Takes variation of G and   as  
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where 1 and 2  are different non-homogeneous 

parameters and .,
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Using equation (1.23) in (1.22), we get  
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Using equation (1.24) in equation (1.7), we obtains  

 02
.

2
..

 TpTspT  (1.26) 

Equation (1.26) is a differential equation of second order for 

time function T. 

On solving equation (1.26), its solution comes out as 

 ]sincos[)( 21

)
2

(
2

atcatcetT

stp





       
 (1.27) 

Where 
2422

4

1
sppa               (1.28) 

and 2,1 cc  are constants to be determined from initial 

conditions of the plate which assume as 1T  and

00
.

 tatT  (1.29) 

 

Using condition (1.29) in equation (1.27), we obtains  

 ]sin
2

cos[)(
2

)
2

(
2

at
a

sp
atetT

stp





 (1.30) 

 

Hence, deflection ),,( tyxw  may be expressed from 

equation (1.4), (1.8), (1.21) and (1.30), as 
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 (1.31) 

 

Time period of the vibration of the plate is given by 

 
p

K
2

  (1.32) 

where p  is the frequency given by equation (1.20). 

Logarithmic decrement of the vibration is given by the 

standard formula  

 )(log
1

2

w

w
e  (1.33) 

where 1w the deflection at any is point of the plate at a time 

period 1KK   and 2w  is the deflection at the same point 

at the time period succeeding 1K . 

 

 

5. Results and Discussions 
 

Time period K, Deflection w and Logarithmic decrement   

are computed for a clamped viscoelastic orthotropic 

rectangular plate of linearly varying thickness for different 

values of  non-homogeneous parameters α, α1, α2 and taper 

constant β and aspect ratio a/b at different points for first 

two modes of vibrations. All these results are presented in 

the tables 1.1 to 1.15 and graphically shown in figures from 

1.1 to 1.15. 

 

For the numerical computation, the following orthotropic 

material parameters are used: 
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In tables 1.1–1.3:  results of time period K for first two 

modes of vibrations for all X, Y and α1, α2 are given as 

follows: 

 

Table 1.1: Different non-homogeneous parameter   and 

fixed aspect ratio 
𝑎

𝑏
 =1.5 for two values of taper constant β 

i.e. β=0.0 and β=0.4 

 

Table 1.2: Different taper constant β and fixed aspect ratio 
𝑎

𝑏
 

=1.5 for two values of non-homogeneous parameter   i.e. α 

= 0.0 and α = 0.4 

 

Table 1.3: Different aspect ratio 
𝑎

𝑏
  and four combination of 

non-homogeneous parameter  and taper constant β i.e. α 

=0.0, β =0.0; α = 0.0, β=0.4; α = 0.4, β=0.0 and α =0.4, 

β=0.4 

 

Table 1.1: shows that as non-homogeneous parameter  

increase time period K of vibration also increases for 

uniform plate i.e. for β=0.0 for both the modes of vibration 

and decreases for non-uniform plate i.e. β=0.4 for both the 

modes of vibration. Figure 1.1 shows the effect of non-

homogeneous parameter on time period K. It is clearly 

observed in figure1.1 that there is a steady increase in time 

period K with increase of non-homogeneous parameter  for 

β=0.0.  

 

Tables 1.2 and 1.3 shows that as taper constant  and aspect 

ratio a/b increase respectively, time period K decrease for 

the first two modes of vibration. It is clearly shown in 

figures 1.2 and 1.3 that there is a steady decrease in time 

period K with increase of taper constant  and aspect ratio 

a/b respectively. 

 

In tables 1.4 – 1.11 results of deflection for the first two 

modes of vibrations for different X, Y and a fixed aspect 
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ratio a/b = 1.5 for initial time 0.K and time 5.K are given for 

the following combination of , 1 and 2 : 

 

2.0,4.0,4.0,4.0

2.0,4.0,0.0,0.0

0.0,0.0,4.0,4.0

0.0,0.0,0.0,0.0

21

21

21

21

















 

It can be seen from tables 1.4 – 1.11 that deflection w  starts 

from zero to increase and then decrease to zero for the first 

mode of vibration while for the second mode of vibration, 

deflection w  start from zero to increase then decrease then 

increase and finally come to zero, for fixed Y and different 

value of X for time 0.K and 5.K.  

 

It is also note that for fixed X, deflection w  start from zero 

to increase and then decrease in both modes of vibration for 

both time 0.K and 5.K for different values of Y. 

 

One can conclude also that deflection w  decrease for time 

increase for both the modes of vibration. These results are 

plotted in figures 1.4 to 1.11. 

 

In tables 1.12 - 1.15 results of logarithmic decrement   for 

first two modes of vibration for different X, Y and constant 

aspect ratio a/b = 1.5 are given for the following four cases: 

2.0,4.0,4.0,4.0

2.0,4.0,0.0,0.0

0.0,0.0,4.0,4.0

0.0,0.0,0.0,0.0

21

21

21

21

















 

It is interesting observed that the logarithmic decrement   

is constant across the plate for 

0.0,0.0,0.0,0.0 21   and 

,4.0,4.0   0.0,0.0 21    while increase 

for 2.0,4.0,0.0,0.0 21    and 

2.0,4.0,4.0,4.0 21    for different 

values of X and fixed value of Y. But it is same for fixed 

value of X and different value of Y. These results are plotted 

in figures 1.12 to 1.15.  
 

 

Table 1: Time period K (in seconds) for different non-homogeneous parameter () and a constant aspect ratio (a/b = 1.5) for 

all X, Y and 1, 2 

 
 = 0.0  = 0.4 

First Mode Second Mode First Mode Second Mode 

0.0 0.149813 0.029783 0.124489 0.024648 

0.2 0.150161 0.029804 0.124079 0.024472 

0.4 0.150452 0.029822 0.123746 0.024328 

0.6 0.150700 0.029837 0.123470 0.024208 

0.8 0.150913 0.029849 0.123237 0.024107 

 

Table 1.2: Time period K (in seconds) for different taper constant () and a constant aspect ratio (a/b = 1.5) for all X, Y and 

1, 2 

 
 = 0.0  = 0.4 

First Mode Second Mode First Mode Second Mode 

0.0 0.149813 0.029783 0.150452 0.029822 

0.2 0.136078 0.027020 0.135881 0.026840 

0.4 0.124489 0.024648 0.123746 0.024328 

0.6 0.114620 0.022611 0.113521 0.022202 

0.8 0.106137 0.020852 0.104809 0.020388 

 

Table 1.3: Time period K (in seconds) for different aspect ratio (a/b) for all X, Y and 1, 2 

a/b 
 =0.0,  =0.0  =0.0,  =0.4  =0.4,  =0.0  =0.4,  =0.4 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.5 0.173851 0.030987 0.144168 0.025637 0.173963 0.030992 0.142311 0.025259 

1.0 0.163628 0.030520 0.135814 0.025254 0.164000 0.030538 0.134483 0.024898 

1.5 0.149813 0.029783 0.124489 0.024648 0.150452 0.029822 0.123746 0.024328 

2.0 0.135004 0.028830 0.112305 0.023866 0.135828 0.028893 0.112045 0.023588 

2.5 0.120795 0.027723 0.100575 0.022955 0.121708 0.027810 0.100648 0.022723 

 

Table 1.4: Deflection w for different X, Y and  =0.0,  =0.0, 1 =0.0, 2 = 0.0 and a/b = 1.5 at initial time 0.K 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.015438 0.004461 0.024975 0.007217 0.024965 0.007214 0.015412 0.004454 

0.4 0.035170 -0.001877 0.056897 -0.003037 0.056873 -0.003036 0.035109 -0.001874 

0.6 0.035170 -0.001877 0.056897 -0.003037 0.056873 -0.003036 0.035109 -0.001874 

0.8 0.015438 0.004461 0.024975 0.007217 0.024965 0.007214 0.015412 0.004454 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
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Table 1.5: Deflection w for different X, Y and  =0.0,  =0.0, 1 =0.0, 2 = 0.0 and a/b = 1.5 at time 5.K 
 

X 

Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.014751 0.003549 0.023863 0.005741 0.023853 0.005739 0.014725 0.003543 

0.4 0.033604 -0.001493 0.054363 -0.002416 0.054341 -0.002415 0.033546 -0.001491 

0.6 0.033604 -0.001493 0.054363 -0.002416 0.054341 -0.002415 0.033546 -0.001491 

0.8 0.014751 0.003549 0.023863 0.005741 0.023853 0.005739 0.014725 0.003543 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 

Table 1.6: Deflection w for different X, Y and  =0.4,  =0.4, 1 =0.0, 2 = 0.0 and  a/b = 1.5 at initial time 0.K 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.015847 0.004467 0.025636 0.007226 0.025625 0.007223 0.015819 0.004459 

0.4 0.036548 -0.001858 0.059126 -0.003006 0.059102 -0.003005 0.036485 -0.001855 

0.6 0.036548 -0.001858 0.059126 -0.003006 0.059102 -0.003005 0.036485 -0.001855 

0.8 0.015847 0.004467 0.025636 0.007226 0.025625 0.007223 0.015819 0.004459 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 

Table 1.7: Deflection w for different X, Y and  =0.4,  =0.4, 1 =0.0, 2 = 0.0 and a/b = 1.5 at time 5.K 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.014997 0.003376 0.024261 0.005461 0.024251 0.005459 0.014971 0.003370 

0.4 0.034588 -0.001404 0.055954 -0.002272 0.055931 -0.002271 0.034528 -0.001402 

0.6 0.034588 -0.001404 0.055954 -0.002272 0.055931 -0.002271 0.034528 -0.001402 

0.8 0.014997 0.003376 0.024261 0.005461 0.024251 0.005459 0.014971 0.003370 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 

Table 1.8: Deflection w for different X, Y and  =0.0,  =0.0, 1 =0.4, 2 = 0.2 and a/b = 1.5 at initial time 0.K 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.015438 0.004461 0.024975 0.007217 0.024965 0.007214 0.015412 0.004454 

0.4 0.035170 -0.001877 0.056897 -0.003037 0.056873 -0.003036 0.035109 -0.001874 

0.6 0.035170 -0.001877 0.056897 -0.003037 0.056873 -0.003036 0.035109 -0.001874 

0.8 0.015438 0.004461 0.024975 0.007217 0.024965 0.007214 0.015412 0.004454 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

      

Table 1.9: Deflection w for different X, Y and  =0.0,  =0.0, 1 =0.4, 2 = 0.2 and a/b = 1.5 at time 5.K 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.014776 0.003579 0.023903 0.005790 0.023893 0.005788 0.014750 0.003573 

0.4 0.033710 -0.001517 0.054534 -0.002454 0.054511 -0.002453 0.033651 -0.001514 

0.6 0.033752 -0.001527 0.054603 -0.002470 0.054580 -0.002469 0.033694 -0.001524 

0.8 0.014832 0.003649 0.023995 0.005902 0.023985 0.005900 0.014807 0.003642 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 

Table 1.10: Deflection w for different X, Y and  =0.4,  =0.4, 1 =0.4, 2 = 0.2 and a/b = 1.5 at initial time 0.K 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.015847 0.004467 0.025636 0.007226 0.025625 0.007223 0.015819 0.004459 

0.4 0.036548 -0.001858 0.059126 -0.003006 0.059102 -0.003005 0.036485 -0.001855 

0.6 0.036548 -0.001858 0.059126 -0.003006 0.059102 -0.003005 0.036485 -0.001855 

0.8 0.015847 0.004467 0.025636 0.007226 0.025625 0.007223 0.015819 0.004459 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 

Table 1.11: Deflection w for different X, Y and  =0.4,  =0.4, 1 =0.4, 2 = 0.2 and  a/b = 1.5 at time 5.K 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.015027 0.003411 0.024310 0.005518 0.024300 0.005516 0.015001 0.003405 
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0.4 0.034720 -0.001432 0.056167 -0.002316 0.056144 -0.002315 0.034659 -0.001429 

0.6 0.034773 -0.001443 0.056253 -0.002334 0.056230 -0.002333 0.034712 -0.001440 

0.8 0.015097 0.003492 0.024423 0.005649 0.024413 0.005647 0.015071 0.003486 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 

Table 1.12: Logarithmic decrement Λ for different X, Y and  =0.0,  =0.0, 1 =0.0, 2 = 0.0 and a/b = 1.5  

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.2 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 

0.4 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 

0.6 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 

0.8 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 -0.009098 -0.045753 

 

Table 1.13: Logarithmic decrement Λ for different X, Y and  =0.4,  =0.4, 1 =0.0, 2 = 0.0 and a/b = 1.5  

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.2 -0.011014 -0.056012 -0.011014 -0.056012 -0.011014 -0.056012 -0.011012 -0.056012 

0.4 -0.011014 -0.056012 -0.011014 -0.056012 -0.011014 -0.056012 -0.011012 -0.056012 

0.6 -0.011014 -0.056012 -0.011014 -0.056012 -0.011014 -0.056012 -0.011012 -0.056012 

0.8 -0.011014 -0.056012 -0.011014 -0.056012 -0.011014 -0.056012 -0.011012 -0.056012 

 

Table 1.14: Logarithmic decrement Λ for different X, Y and  =0.0,  =0.0, 1 =0.4, 2 = 0.2 and    a/b = 1.5 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.2 -0.008761 -0.044059 -0.008761 -0.044059 -0.008761 -0.044059 -0.008761 -0.044059 

0.4 -0.008471 -0.042598 -0.008471 -0.042598 -0.008471 -0.042598 -0.008471 -0.042598 

0.6 -0.008218 -0.041326 -0.008218 -0.041326 -0.041326 -0.008218 -0.041326 -0.008218 

0.8 -0.007996 -0.040208 -0.007996 -0.040208 -0.007996 -0.040208 -0.007996 -0.040208 

 

Table 1.15: Logarithmic decrement Λ for different X, Y and  =0.4,  =0.4, 1 =0.4, 2 = 0.2 and a/b = 1.5 

X 
Y = 0.2 Y = 0.4 Y = 0.6 Y= 0.8 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.2 -0.010606 -0.053937 -0.010606 -0.053937 -0.010606 -0.053937 -0.010606 -0.053937 

0.4 -0.010255 -0.052149 -0.010255 -0.052149 -0.010255 -0.052149 -0.010255 -0.052149 

0.6 -0.009949 -0.050591 -0.009949 -0.050591 -0.009949 -0.050591 -0.009949 -0.050591 

0.8 -0.009679 -0.049223 -0.009679 -0.049223 -0.009679 -0.049223 -0.009679 -0.049223 

 

6. Conclusion 

 

In conclusion, the research presents significant insights into 

the vibrational behavior of orthotropic visco-elastic 

rectangular plates with linear thickness variation, under the 

influence of non-homogeneity. The study findings highlight 

the intricate relationship between the non-homogeneous 

parameters, taper constants, and aspect ratios, and their 

collective impact on the plates vibration characteristics. It 

emphasizes the importance of considering these factors in 

the design and analysis of structures subjected to dynamic 

stress, particularly in high-temperature environments. This 

research paves the way for further exploration in the field of 

material science and structural engineering, especially in 

applications involving extreme conditions such as those 

encountered in aerospace engineering. 
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