Synthesis and Characterization of Sugar Derived Novel Bioactive Isoxazole Derivatives

Amrendra Kumar Singh¹, Ram Naresh Yadav², Vijay Pratap Singh³

Department of Chemistry, Faculty of Engineering & Technology VBSPU, Jaunpur-222003
Email: aks.vbspu[at]gmail.com, vpsingh.chem[at]gmail.com

Abstract: This study explores the synthesis and characterization of novel isoxazole derivatives derived from sugar. We employed 1-3 dipolar cycloaddition between aldoxime dipole precursor and alkyne derivative of sugar dipolarophile in presence of weak base at 0°C in DMF. The newly synthesized isoxazole derivatives as cycloadducts were separated from solvent and characterized by IR, 1H NMR, and 13C NMR.

Keywords: Isoxazole, Nitrile oxide, 1-3 dipolar cycloaddition, Hetero-cyclization reaction, dipolarophile

1. Introduction

The isoxazole moiety in natural and synthetic origin have broad spectrum biological activity. These are potent antiallergic, herbicidal, antifungal, anti-inflammatory [1-2] and antibacterial motifs. The synthesis of carbohydrate functionalized derivatives has given considerable attention [3-7]. The 1-3 dipolar cyclo addition is a valuable route for synthesis of five membered heterocycles including isoxazoles [8-11]. Thus 1-3 dipolar cycloaddition is a good tool for conjugate motifs, to synthesize adducts with structural diversity [12-17]. The importance of the isoxazole-sugar functionalization moiety has encouraged us to synthesize and report our results of cycloaddition of alkyne derivatives of sugar and nitrile oxide, as derivatives of isoxazole.

2. Result and Discussion

![Figure: Dipolarophile (alkyne derivative of sugar)](image)

![Figure: Dipole precursor (aldoxime),](image)

Here we are reporting 1,3 dipolar cycloaddition of carbohydrate derivatives of alkynes and nitrile oxide (oxime), this regioselective synthesis Yields D-glucose derivatives of isoxazole (1-10, Scheme 1). The sugar-alkyne derivatives (dipolarophiles) utilized as precursors and synthesized by following method. The 1,2,5,6 diisopropylidene, α-D-glucopyranose was synthesized by using α, D-glucopyranose and propyne derivatives by fusion reaction, subsequently followed by esterification, yields dipolarophiles (a). The dipoles, i.e., nitrile oxides, were generated in situ from the biphasic oxidation of the oximes(b) with NaOCl in dichloromethane-triethyl amine.

Scope of the reaction between dipole precursor and dipolarophile

Volume 12 Issue 11, November 2023

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: SR231125003436
DOI: https://dx.doi.org/10.21275/SR231125003436

1610
These dipoles and dipolarophiles undergo 1-3 dipolar cycloaddition to afford cycloadducts, i.e., new isoxazole conjugates of sugars in good yields. The dipolarophile 1a upon treatment with benzonitrile oxide, 4-acetyl benzonitrile oxide, and 3-hydroxy 4-methoxy benzonitrile oxide afforded cycloadducts (1C–3C) in 85%–90% yields.

The dipolarophile (2a) when reacted with mentioned nitrile oxides separately to generate corresponding cycloadducts (4C–6C) in 79%–85% yields. Then our afford for other derivatives on reaction of 2a with benzonitrile oxide to yield cycloadduct (7C) in 79% yield. Then (4a) was accessed by O-glycosylation of 3,4,6-tri-O-acetyl derivative with propargyl alcohol. Its 1,3-dipolar cycloaddition with benzonitrile oxide to gives (8C) in 77% yield.

Now due to our next interest to synthesize bis-isoxazole derivatives, the cycloadduct 7C was subjected for propargylation to give dipolarophile (5a), then it was subjected to cycloaddition with benzonitrile oxide and 4-methoxy benzonitrile oxide to affords (9Cand 10C) 75% and 77% yields, (Table 1). The reaction was with high degree of regioselectivity, confirmed from 1H NMR spectra of the products. The signals are obtained in the range of δ 6.5–6.7.

All isoxazoles have protected protected furanoside ring which becomes accessible for elaboration after deprotection. When isoxazole moiety decomposed it yield 1,3-functionalized cycloadducts, were purified by silica gel column chromatography, which can serve as handles for next manipulation.

3. Experimental

Procedure for the preparation of sugar derived isoxazole:

[Diagram]

Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c</td>
<td>85%</td>
</tr>
<tr>
<td>2c</td>
<td>87%</td>
</tr>
<tr>
<td>3c</td>
<td>90%</td>
</tr>
<tr>
<td>4c</td>
<td>85%</td>
</tr>
<tr>
<td>5c</td>
<td>79%</td>
</tr>
<tr>
<td>6c</td>
<td>80%</td>
</tr>
<tr>
<td>7c</td>
<td>79%</td>
</tr>
<tr>
<td>8c</td>
<td>77%</td>
</tr>
<tr>
<td>9c</td>
<td>75%</td>
</tr>
<tr>
<td>10c</td>
<td>77%</td>
</tr>
</tbody>
</table>
Characterization data: Cycloadduct 1C:

[a]D 34.62 (c 2.0, CHCl3). IR (cm-1): 3038, 2946, 1384, 1228, 1081, 1024. 1H NMR (300 MHz, CDCl3, ppm): 7.77 (dd, 2H, J = 3.9 Hz), 7.44 (m, 3H), 7.30 (m, 5H), 6.56 (s, 1H), 5.95 (d, 1H, J = 3.6 Hz), 4.76–4.61 (m, 4H), 4.49 (d, 1H, J = 12 Hz), 4.43–4.38 (m, 1H), 3.97–s3.93 (overlapping peaks, 7H), 3.83 (d, 2H, J = 6 Hz), 1.49 (s, 3H), 1.32 (s, 3H). 13C NMR (75 MHz, CDCl3, ppm): 168.87, 162.02, 161.07, 128.22, 121.38,114.33, 112.03, 110.81, 109.24, 105.26, 100.94, 82.77, 82.34, 81.15, 72.24, 67.54, 63.46, 55.36, 26.91, 26.82, 26.22, 25.41.

Cycloadduct 2C:

[a]D 22.7 (c 1.0, CHCl3). IR (cm-1): 3037, 2922, 1258,1023. H NMR (300 MHz, CDCl3, ppm): 7.41 (d, 1H, J =1.8 Hz), 7.31 (overlapping peaks, 6H), 6.93 (d, 1H, J = 8.4 Hz), 6.53 (s, 1H), 5.95 (d, 1H, J = 3.6 Hz), 4.75–4.61 (m, 4H), 4.49 (d, 1H, J = 12 Hz), 4.43–4.38 (m, 1H), 3.97–s3.93 (overlapping peaks, 7H), 3.83 (d, 2H, J = 6 Hz), 1.49 (s, 3H), 1.32 (s, 3H). 13C NMR (75 MHz, CDCl3, ppm): 169.45, 162.06, 150.33, 149.22, 137.27, 128.49, 127.96, 127.64, 121.60, 119.91, 110.96, 109.21, 105.13, 100.97, 82.11, 81.65, 79.10, 71.91, 68.75, 64.29, 55.97, 55.91, 26.76, 26.25.

Cycloadduct 3C:

[a]D 15.05 (c 2.0, CHCl3). IR (cm-1): 3121, 1528, 1376, 1082, 853. H NMR (300 MHz, CDCl3, ppm): 7.42 (d, 1H, J = 1.8 Hz), 7.28 (dd, 1H, J = 1.8, 8.1 Hz), 6.93 (d,1H, J = 8.1 Hz), 6.63 (s, 1H), 5.91 (d, 1H, J = 3.9 Hz), 4.80 (s, 2H), 4.59 (d, 1H, J = 3.6 Hz), 4.35 (dd, 1H, J = 6.4, 13.3 Hz), 4.16–4.10 (m, 3H), 4.04–3.93 (overlapping peaks,7H). 13C NMR (75 MHz, CDCl3, ppm): 169.98, 162.17, 150.78, 149.44, 121.67, 119.99, 112.06, 111.13, 109.41, 105.30, 101.00, 82.82, 82.46, 81.20, 72.30, 67.58, 63.53, 56.08, 55.99, 26.92, 28.82, 26.26, 25.45.

Cycloadduct 4C:

[a]D 27 –30.8 (c 2.0, CHCl3). IR (cm-1): 3038, 2946, 1384, 1228, 1081, 1024. 1H NMR (300 MHz, CDCl3, ppm): 7.77 (d, 2H, J = 3.9 Hz), 7.44 (m, 3H), 7.30 (m, 5H), 6.56 (s,1H), 5.95 (d, 1H, J = 3.6 Hz), 4.76–4.61 (m, 4H), 4.49 (d, 1H, J = 12 Hz), 4.43–4.38 (m, 1H), 3.97 (d, 1H, J = 2.7 Hz), 3.83 (d, 2H, J = 6.0 Hz), 1.48 (s, 3H), 1.31 (s, 3H). 13C NMR(75 MHz, CDCl3, ppm): 169.58, 162.36, 137.31 130.00, 128.90, 128.51, 127.99, 127.66, 128.81, 111.78, 105.17, 101.17, 82.16, 81.69, 79.12, 71.94, 68.79, 64.28, 26.80, 26.28.

Cycloadduct 5C:

[a]D 28.89 (c 2.0, CHCl3). IR (cm-1): 3038, 2956, 1384, 1261, 1086. H NMR (300 MHz,CDCl3, ppm): 7.72(d, 2H, J = 8.7 Hz), 7.36–7.21 (m, 5H), 6.96 (d, 2H, J = 8.7 Hz), 6.50 (s, 1H), 5.95 (d, 1H, J = 3.9 Hz), 4.73–4.59 (m, 4H), 4.49 (d, J = 12 Hz, 1H), 4.43–4.38 (m, 1H), 3.9(d,1H, J = 3.3 Hz), 3.83 (overlapping peaks,5H), 1.48 (s,3H), 1.32 (s, 3H). 13C NMR (75 MHz, CDCl3, ppm):169.30, 161.96, 199.02, 137.33,129.46, 128.51, 128.21, 128.10, 127.98, 127.69, 127.66, 121.44, 114.28, 111.78, 105.13, 100.94, 82.19, 81.71, 79.13, 71.96, 68.75, 64.25, 55.33, 26.80, 26.29.

Cycloadduct 6C:

[a]D 22.7 (c 1.0, CHCl3). IR (cm-1): 3037, 2922, 1258,1023. H NMR (300 MHz, CDCl3, ppm): 7.41 (d, 1H, J =1.8 Hz), 7.31 (overlapping peaks, 6H), 6.93 (d, 1H, J = 8.4 Hz), 6.53 (s, 1H), 5.95 (d, 1H, J = 3.6 Hz), 4.75–4.61 (m, 4H), 4.49 (d, 1H, J = 12 Hz), 4.43–4.38 (m, 1H), 3.97–s3.93 (overlapping peaks, 7H), 3.83 (d, 2H, J = 6 Hz), 1.49(s, 3H), 1.32 (s, 3H). 13C NMR (75 MHz, CDCl3, ppm): 169.45, 162.06, 150.33, 149.22, 137.27, 128.49, 127.96, 127.64, 121.60, 119.91, 110.96, 109.21, 105.13, 100.97, 82.11, 81.65, 79.10, 71.91, 68.75, 64.29, 55.97, 55.91, 26.76, 26.25.
molecules support high yield. Here the bio logical profile of
isoxazole derivatives coupled with sugar through C-O
linkage was diversified.

Acknowledgement
We wish to thank for the financial supports of Research
Project “R & D Scheme” GO: No.-1/2022/01/70 4-2022-4-
(28)/2021, and No.-89/2022/1585/70-4-2022/001-4- 32-
2022, the secretary of Higher Education Section-4, Utter
Pradesh, Higher Education Parishad, Lucknow-226001.

References

4. Conclusion
Here we have developed well planned procedure for 1,3-
dipolar cycloaddition strategy for cyclization of conjugate
sugar molecules with isoxazoles. The isoxazole derivatives of sugar were obtained in moderate to good yield with high
degree of regioselectivity. The aromatic moieties on sugar

Volume 12 Issue 11, November 2023
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: SR231125003436
DOI: https://dx.doi.org/10.21275/SR231125003436

1613