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Abstract: This article delves into the theory of summability, specifically focusing on the generalization of the limit concept for 

sequences and series influenced by linear means of sequence or series. Researchers have shown significant interest in exploring the 

degree of approximation of functions in the Lipschitz and Zygmund classes using various means of Fourier series and conjugate 

Fourier series. The paper introduces the generalized Zygmund class and investigates the degree of approximation of functions within it 

using the (N, Pn) (E, 1) means of Fourier series. The article presents a theorem that provides an expression for the degree of 

approximation in this context. The proof of the theorem involves several lemmas and mathematical techniques. This work contributes to 

the understanding of approximation theory and the application of Fourier series in generalized Zygmund classes. 
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1. Introduction 
 

The theory of summability is concern about the 

generalisation of concept of the limit of a sequence of series 

which is affected by an auxiliary of linear means of 

sequence or series The degree of approximation of function 

in Lipschitz and Zygmund class using different means of 

Fourier series ans conjugate Fourier series have been great 

interest among the researcher.The generalized Zygmund 

class was introduced by Leindler [3] Moricz [4], moricz and 

Nemeth [5] etc. Recently Singh et. al. [7] Mishra et. al. [6], 

Kim [2] find the results in Zygmund class by using different 

summability Means. In this paper we find the degree of 

approximation of function in the generalized Zygmund class 

by (N, Pn) (E, 1) means of Fourier series. 

 

2. Definition 
 
Let 𝑓 be a periodic function of period 2𝜋 integrable in the 

sense of Lebesgue over [π, - π]. Then the Fourier series of 𝑓 

given by  

 𝑓 𝑡 ≈  
𝑎𝑜

2
+  (𝑎𝑛𝑐𝑜𝑠 𝑛𝑥 + 𝑏𝑛𝑠𝑖𝑛 𝑛𝑥)∞

𝑛=1  …….(2.1) 

 

Zygmund class z is defined as  

 

𝑍 =  𝑓 ∈ 𝐶 −𝜋, 𝜋   𝑓 𝑥 + 𝑡 + 𝑓 𝑥 − 𝑡 − 2𝑓 𝑥  =
𝑂(𝑡). 

 

In this paper , we introduce a generalized Zygmund 

𝑍𝑤  𝛼, 𝛾  defined as  

𝑍𝑤  𝛼, 𝛾 =

 
 

 

𝑓 ∈ 𝐶 −𝜋, 𝜋    𝑓 𝑥 + 𝑡 + 𝑓 𝑥 − 𝑡 

𝜋

−𝜋

− 2𝑓 𝑥  𝛾𝑑𝑥 

1
𝛾

= 𝑂  𝑡 𝛼𝜔(𝑡)   

 ...........(2.2) 

Where 𝛼 ≥ 0 , 𝛾 ≥ 1 and 𝜔 is a continuous non negative and 

non decreasing function. If we take 𝛼 = 1, 𝜔 =
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑛𝑑 𝛾 → ∞ , then 𝑍𝑤  𝛼, 𝛾  class reduces to the z 

class.  

 

We write 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑝𝑎𝑝𝑒𝑟  
 ∅𝑥 (t) = 𝑓 𝑥 + 𝑡 − 2𝑓 𝑥 + 𝑓(𝑥 − 𝑡) ……. (2.3) 

 

  𝐾𝑛 𝑡 =
1

2𝜋𝑃𝑛
 

𝑝𝑛−𝑘

(1+𝑞)𝑘    𝑘
𝑣
 𝑞𝑘−𝑣 sin (𝑣+

1

2
)𝑡

sin (
𝑡

2
)

𝑘
𝑣=0  𝑛

𝑘=𝑜  (2.4) 

 

3. Main Result 
 

In this paper we prove the following theorem. 

Theorem - Let f be a 2𝜋 periodic function, Lebesgue 

integrable in  0 ,2𝜋  and belonging to generalized Zygmund 

class 𝑍𝑟
(𝑤)

  𝑟 ≥ 1 . Then the degree of approximation of 

function f by (N, Pn) (E,1) product mean of Fourier series is 

given by 

𝐸𝑛 𝑓 = 𝑖𝑛𝑓  𝑡𝑛
𝑁𝐸 − 𝑓 𝑟

𝑣  = 𝑜   
𝑤(𝑡)

𝑡𝑣(𝑡)
 𝑑𝑡

𝜋

1
𝑛+1

  

Where 𝜔 𝑡  𝑎𝑛𝑑 𝑣 𝑡  denotes the Zygmund modulai of 

continuity such that 
𝑤(𝑡)

𝑣(𝑡)
 is positive and increasing . 

 

4. Lemma  
 
To prove the theorem we need the following lemma. 

 

Lemma 4(a) - For 0 ≤ 𝑡 ≤
𝜋

𝑛+1
 we have sin 𝑛𝑡 = 𝑛 𝑠𝑖𝑛𝑡  

  𝐾𝑛 (𝑡) = 𝑜(𝑛) ….…(4.1) 

Proof - For 0 ≤ 𝑡 ≤
𝜋

𝑛+1
 and sin 𝑛𝑡 = 𝑛 𝑠𝑖𝑛𝑡 then 

   𝐾𝑛 𝑡  =  
1

2𝜋𝑃𝑛
 

𝑝𝑛−𝑘

(2)𝑘    𝑘
𝑣
  

sin (𝑣+
1

2
)𝑡

sin (
𝑡

2
)

𝑘
𝑣=0  𝑛

𝑘=𝑜    

  

 ≤  
1

2𝜋𝑃𝑛
  

𝑝𝑛−𝑘

(2)𝑘    𝑘
𝑣
  

(2v+1)sin (
𝑡

2
)

sin (
𝑡

2
)

𝑘
𝑣=0  𝑛

𝑘=𝑜   
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 ≤  
1

2𝜋𝑃𝑛
  

𝑝𝑛−𝑘

 2 𝑘
  2𝑘 + 1    𝑘

𝑣
 𝑘

𝑣=0  𝑛
𝑘=𝑜   

 ≤  
1

2𝜋𝑃𝑛
  𝑝𝑛−𝑘  (2𝑘 + 1)𝑛

𝑘=𝑜   

 =  
(2𝑛+1)

2𝜋𝑃𝑛
  𝑝𝑛−𝑘  

𝑛
𝑘=𝑜   

 = 𝑜(𝑛) 

 

Lemma 4(b) - For 
𝜋

𝑛+1
≤ 𝑡 ≤ 𝜋 , 𝑠𝑖𝑛

𝑡

2
≥

𝑡

𝜋
 𝑎𝑛𝑑 𝑠𝑖𝑛 𝑛𝑡 ≤ 1 

we have  

   𝐾𝑛 𝑡  = 𝑜  
1

𝑡
  ……….(4.2) 

Proof - For 
𝜋

𝑛
≤ 𝑡 ≤ 𝜋 , 𝑠𝑖𝑛

𝑡

2
≥

𝑡

𝜋
 𝑎𝑛𝑑 𝑠𝑖𝑛 𝑛𝑡 ≤ 1 

  𝐾𝑛 𝑡  =  
1

2𝜋𝑃𝑛
 

𝑝𝑛−𝑘

(2)𝑘    𝑘
𝑣
  

sin (𝑣+
1

2
)𝑡

sin (
𝑡

2
)

𝑘
𝑣=0  𝑛

𝑘=𝑜    

 

≤   
1

2𝜋𝑃𝑛

  
𝑝𝑛−𝑘

(2)𝑘
   

𝑘

𝑣
  

𝜋

𝑡

𝑘

𝑣=0

 

𝑛

𝑘=𝑜

  

≤   
1

2𝑡𝑃𝑛

  𝑝𝑛−𝑘  

𝑛

𝑘=𝑜

  

= 𝑜  
1

𝑡
  

 

Lemma 4(c) – Let    𝑓 ∈ 𝑍𝑝
(𝑤)

   then for  0 < 𝑡 ≤ 𝜋 

(i)      𝜙(. , 𝑡) 𝑝 = 𝑜(𝑤 𝑡 ) 

(ii)        𝜙 . +𝑦, 𝑡 + 𝜙 . −𝑦, 𝑡 − 2𝜙(. , 𝑡) 𝑝 =  
𝑜(𝑤 𝑡 

𝑜(𝑤 𝑦 
  

(iii)     If   𝜔(𝑡)  and  𝑣(𝑡)  are  defined  as  in theorem  then 

 𝜙 . +𝑦, 𝑡 + 𝜙 . −𝑦, 𝑡 − 2𝜙(. , 𝑡) 𝑝 =  𝑣(𝑦)
𝜔(𝑡)

𝑣(𝑡)
  

 

Where 𝜙 𝑥, 𝑡 = 𝑓 𝑥 + 𝑡 + 𝑓 𝑥 − 𝑡 − 2𝑓 𝑥 . 
 

5. Proof of  Theorem 3 
 

Let   𝑆𝑛(𝑥)  denotes the partial sum of Fourier series given 

in  (2.1) then we have 

𝑆𝑛 𝑥 − 𝑓 𝑥 =
1

2𝜋
 ∅(𝑡)

sin (𝑛+
1

2
)𝑡

𝑠𝑖𝑛
𝑡

2

𝑑𝑡
𝜋

0
 ….(5.1) 

The (E, q) transform 𝐸𝑛
𝑞
  of 𝑆𝑛  is given by  

  𝐸𝑛
1 − 𝑓 𝑥 =

1

2𝜋(2)𝑛  ∅(𝑡)    𝑛
𝑘
  

𝑠𝑖𝑛  𝑘+
1

2
 𝑡

sin  
𝑡

2
 

𝑛
𝑘=0  𝑑𝑡

𝜋

0
     

 ……(5.2) 

 

The (N, Pn) (E,q) transform of   𝑆𝑛 (𝑥) is given by 

𝑡𝑛
𝑁𝐸(𝑓) − 𝑓 𝑥 =

1

2𝜋𝑃𝑛
  

𝑝𝑛−𝑘

 2 𝑘
 ∅(𝑡)    𝑘

𝑣
  

𝑠𝑖𝑛  𝑣+
1

2
 𝑡

sin  
𝑡

2
 

𝑘
𝑣=0  𝑑𝑡

𝜋

0
 𝑛

𝑘=0   

 ……(5.3) 

=  ∅ 𝑡   𝑘𝑛(𝑡)
𝜋

0
     .........(5.4) 

 

Let       𝑙𝑛 𝑥 = 𝑡𝑛
𝑁𝐸 − 𝑓 𝑥 =  ∅ 𝑥, 𝑡   𝑘𝑛 𝑡 𝑑𝑡

𝜋

0
    then 

𝑙𝑛 𝑥 + 𝑦 + 𝑙𝑛 𝑥 − 𝑦 − 2 𝑙𝑛 𝑥 

=   𝜙 𝑥 + 𝑦, 𝑡 + 𝜙 𝑥 − 𝑦, 𝑡 

𝜋

0

− 2𝜙 𝑥, 𝑡    𝑘𝑛 𝑡  𝑑𝑡  
Using  the  generalized  Minkowaski’s  inequality  we  get   

 𝜙 . +𝑦, 𝑡 + 𝜙 . −𝑦, 𝑡 − 2𝜙(. , 𝑡) 𝑝

=  
1

2𝜋
  𝑙𝑛 𝑥 + 𝑦 +  𝑙𝑛 𝑥 − 𝑦 

2𝜋

0

− 2 𝑙𝑛 𝑥  𝑝  𝑑𝑥 

1
𝑝

 

        =  
1

2𝜋
    𝜙 𝑥 + 𝑦, 𝑡 + 𝜙 𝑥 − 𝑦, 𝑡 

𝜋

0

2𝜋

0

− 2𝜙 𝑥, 𝑡    𝑘𝑛 𝑡  𝑑𝑡  

𝑝

𝑑𝑥  

1
𝑝

 

≤   
1

2𝜋
   𝜙 𝑥 + 𝑦, 𝑡 + 𝜙 𝑥 − 𝑦, 𝑡 

2𝜋

0

𝜋

0

− 2𝜙 𝑥, 𝑡    𝑘𝑛 𝑡  𝑝  𝑑𝑥 

1
𝑝

𝑑𝑡 

=      𝑘𝑛 𝑡  𝑝 
1
𝑝  

1

2𝜋
   𝜙 𝑥 + 𝑦, 𝑡 + 𝜙 𝑥 − 𝑦, 𝑡 

2𝜋

0

𝜋

0

− 2𝜙 𝑥, 𝑡   𝑝  𝑑𝑥 

1
𝑝

𝑑𝑡 

=   𝜙 . +𝑦, 𝑡 + 𝜙 . −𝑦, 𝑡 − 2𝜙(. , 𝑡) 𝑝    𝑘𝑛 𝑡   𝑑𝑡

𝜋

0

 

=   𝜙 . +𝑦, 𝑡 + 𝜙 . −𝑦, 𝑡 − 2𝜙(. , 𝑡) 𝑝    𝑘𝑛 𝑡   𝑑𝑡

1
𝑛+1

0

 +

=   𝜙 . +𝑦, 𝑡 + 𝜙 . −𝑦, 𝑡 

𝜋

1
𝑛+1

− 2𝜙(. , 𝑡) 𝑝    𝑘𝑛 𝑡   𝑑𝑡 

         

                       =  𝐼1 + 𝐼2    𝑠𝑎𝑦              ..............(5.5) 

 

Using  lemma 4(a)  and  4(c)  and the  monotonically of    
𝜔(𝑡)

𝑣(𝑡)
  with respect  to  t  we  have 

𝐼1 =   𝜙 . +𝑦, 𝑡 + 𝜙 . −𝑦, 𝑡 − 2𝜙(. , 𝑡) 𝑝    𝑘𝑛 𝑡   𝑑𝑡

1
𝑛+1

0

 

 

=  𝑜  𝑣 𝑦 
𝜔 𝑡 

𝑣 𝑡 
 𝑜(𝑛) 𝑑𝑡

1
𝑛+1

0

 

 

= 𝑜

 

 
 

𝑛𝑣(𝑦)  
𝜔 𝑡 

𝑣 𝑡 
 𝑑𝑡

1
𝑛+1

0

 

 
 

 

Using  second  mean  value  theorem of integral we have 
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𝐼1 ≤ 𝑜

 

 
 

𝑛𝑣(𝑦)  
𝜔 𝑡 

𝑣 𝑡 
 𝑑𝑡

1
𝑛+1

0

 

 
 

 

= 𝑜  
𝑛

𝑛 + 1
 𝑣 𝑦  

𝜔  
1

𝑛 + 1
 

𝑣  
1

𝑛 + 1
 

)  

= 𝑜   𝑣 𝑦  
𝜔  

1
𝑛 + 1

 

𝑣  
1

𝑛 + 1
 

)  

 ..............(5.6) 

 

 

For 𝐼2 using lemma 4(b) and 4(c) we have  

𝐼2 =   𝜙 . +𝑦, 𝑡 + 𝜙 . −𝑦, 𝑡 − 2𝜙(. , 𝑡) 𝑝   𝑘𝑛 𝑡   𝑑𝑡

𝜋

1
𝑛+1

 

 

= 𝑜    𝑣 𝑦 
𝜔 𝑡 

𝑣 𝑡 
  

1

𝑡
 𝑑𝑡

𝜋

1
𝑛+1

  

= 𝑜  𝑣 𝑦   
𝜔 𝑡 

𝑡 𝑣 𝑡 
  𝑑𝑡

𝜋

1
𝑛+1

  

 ..............(5.7) 

 

From (5.5) (5.6) and (5.7) we get 

  𝑙𝑛 . +𝑦 + 𝑙𝑛 . −𝑦 − 2𝑙𝑛 (. ) 𝑝 =  𝑜   𝑣 𝑦  
𝜔 

1

𝑛 +1
 

𝑣 
1

𝑛 +1
 
) +

 𝑜  𝑣 𝑦   
𝜔 𝑡 

𝑡  𝑣 𝑡 
  𝑑𝑡

𝜋
1

𝑛+1

  

 
𝑠𝑢𝑝

𝑦 ≠ 0
 𝑙𝑛  .+𝑦 +𝑙𝑛  .−𝑦 −2𝑙𝑛 (.) 𝑝

𝑣(𝑦)
 =

𝑜  
𝜔 

1

𝑛 +1
 

𝑣 
1

𝑛 +1
 
 + 𝑜    

𝜔 𝑡 

𝑡  𝑣 𝑡 
  

𝜋
1

𝑛+1

  . .........(5.8) 

 

 

Again using lemma we have  

 𝑙𝑛 (. ) 𝑝 ≤

 

 
 

 +  .

𝜋

1
𝑛+1

1
𝑛+1

0

 

 
 

 𝜙(. , 𝑡)  𝐾𝑛 (𝑡)  𝑑𝑡 

= 𝑜

 

 
 

𝑛  𝜔 𝑡 𝑑𝑡

1
𝑛+1

0

 

 
 

+ 𝑜   
𝜔 𝑡 

𝑡
 𝑑𝑡

𝜋

1
𝑛+1

  

= 𝑜  
𝑛

𝑛 + 1
 𝜔  

1

𝑛 + 1
  + 𝑜   

𝜔 𝑡 

𝑡
 𝑑𝑡

𝜋

1
𝑛+1

  

= 𝑜   𝜔  
1

𝑛+1
  + 𝑜   

𝜔 𝑡 

𝑡
 𝑑𝑡

𝜋
1

𝑛+1

  .............. (5.9) 

From (5.8) and (5.9) we have  

 𝑙𝑛 (. ) 𝑝
𝑣 =  𝑙𝑛(. ) 𝑝

+  
𝑠𝑢𝑝

𝑦 ≠ 0

 𝑙𝑛 . +𝑦 + 𝑙𝑛 . −𝑦 − 2𝑙𝑛 (. ) 𝑝

𝑣(𝑦)
  

= 𝑜   𝜔  
1

𝑛 + 1
  + 𝑜   

𝜔 𝑡 

𝑡
 𝑑𝑡

𝜋

1
𝑛+1

 + 𝑜  
𝜔  

1
𝑛 + 1

 

𝑣  
1

𝑛 + 1
 
 

+ 𝑜    
𝜔 𝑡 

𝑡 𝑣 𝑡 
  

𝜋

1
𝑛+1

   

 

=  𝐽𝑖

4

𝑖=1

  

 

Now we write 𝐽1  in terms of 𝐽3  𝑎𝑛𝑑 𝐽2 , 𝐽3 𝑖𝑛 term of 𝐽4.  

 

In view of the monotonicity of v(t) we have  

𝜔 𝑡 =  
𝜔 𝑡 

 𝑣 𝑡 
 , 𝑣 𝑡 ≤  𝑣 𝜋  

𝜔 𝑡 

 𝑣 𝑡 
 = 𝑜  

𝜔 𝑡 

 𝑣 𝑡 
  𝑓𝑜𝑟 0

< 𝑡 ≤ 𝜋  
 

Therefore we can write  

𝐽1 = 𝑜( 𝐽3) 
 

Again using monotonicity of  v(t) 

𝐽2 =  
𝜔 𝑡 

𝑡
 𝑑𝑡

𝜋

1
𝑛+1

=   
𝜔 𝑡 

𝑡 𝑣 𝑡 
  𝑑𝑡 

𝜋

1
𝑛+1

≤  𝑣 𝜋   
𝜔 𝑡 

𝑡 𝑣 𝑡 
  𝑑𝑡 

𝜋

1
𝑛+1

= 𝑜 𝐽4  

      

    ............ (5.10) 

Using the fact   
𝜔 𝑡 

 𝑣 𝑡 
  is positive and non decreasing, we have  

𝐽4 =   
𝜔 𝑡 

𝑡 𝑣 𝑡 
  𝑑𝑡 

𝜋

1
𝑛+1

=
𝜔  

1
𝑛 + 1

 

 𝑣  
1

𝑛 + 1
 

  
1

𝑡 
  𝑑𝑡  ≥  

𝜔  
1

𝑛 + 1
 

 𝑣  
1

𝑛 + 1
 

 

𝜋

1
𝑛+1

 

Therefore we can  write  

𝐽3 = 𝑜 𝐽4  

So we  have   

 𝑙𝑛 (. ) 𝑝
𝑣 =  𝑜 𝐽4 = 𝑜    

𝜔 𝑡 

𝑡 𝑣 𝑡 
  𝑑𝑡 

𝜋

1
𝑛+1

  

Hence  

𝐸𝑛 𝑓 = inf    𝑙𝑛(. ) 𝑝
𝑣 =  𝑜    

𝜔 𝑡 

𝑡 𝑣 𝑡 
  𝑑𝑡 

𝜋

1
𝑛+1

  

This complete the proof. 
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