
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

An Evaluation of a Haar Cascade Classifiers using

Multi-Resolution Images and Multi-Threading

Resources on a Raspberry Pi

Qussay Salih and Lab Research Team

School of Business, Department of CSIT, Kwantlen Polytechnic University, Department, Surrey, Canada

Abstract: Image processing plays a crucial role in vision-based IoT sensors, serving various applications to enhance productivity.

Researchers have highlighted computational challenges in object detection on low-cost devices like the Raspberry Pi. In today's fast-

paced technological landscape, the need for automated systems delivering accurate results is paramount to task completion. This study

introduces an effective multithreading approach for the Support Vector Machine (SVM) method. We have implemented a

multithreading algorithm for the SVM recognition processes, harnessing the power of multicore CPU utilization. Our evaluation

incorporates Memory usage, CPU Temperature, FPS, Confidence levels, and Elapsed time on the Raspberry Pi platform, with the

primary goal of addressing real-time computation challenges using the Pi camera. The experimental results demonstrate a notable

enhancement in detection confidence, affirming that multithreading significantly bolsters detection performance on Raspberry Pi

processors across various image resolutions.

Keywords: Haar Cascade Classifier, Haar-like features, Supervised Vector Machine algorithm, Real time , Raspberry Pi

1. Introduction

Face detection in simple term is detect the human face and

identify the face. Many algorithms had been successfully

managed to find and recognized the human face with verity

of success rate. Haar cascade classification algorithm was

one of them. The detecting and recognizing process starting

by capture image is analyzed to determine the portion of the

image contains a human face.

High-speed Haar Cascade Classifiers (HCC) are

competitively efficient identifiers, as a result, the Human-

Machine Interface (HMI) structure showed the ability to be

used in a stable real-time environment. For this research the,

the objective was first to learn the effective HCC face

detectors, after which they were integrated into low cost,

credit-card sized computer that plugs into a computer

monitor Raspberry Pi 3B+.

In this work, by using HCC, we decided to accept the

challenge to implement HCC on Raspberry Pi to analysis

regular vs multithreading calcification study encompasses

Time elapsed, Average Confidence, Average FPS, CPU and

Memory Usage and Temperature (Heat) generated during

recognition vs image capturing distance and resolution.

The main objective of this research is to define and present

Raspberry Pi and abilities of its usage in the development of

the next generation of inexpensive, intelligent, agile

machine. All in which to evaluate accuracy detection and

recognition. Finally, our machine produces the outcomes and

detection rates.

2. Related Work

It has been reported that numerous researchers are

experiencing problems with computation limitation in order

to detect objects in low cost devices such as Raspberry Pi

[1][2]. In this instance, the performance of the Raspberry Pi

camera detecting the object of interest is slowed down by

only being able to use one core on the Raspberry Pi. There

are four cores on the Raspberry Pi, however, only one core

can be used, resulting in the performance of the Raspberry

Pi slowing down. [3]. It is also important to note that

images that can be detected using supervised learning

algorithms such as the selected algorithm for this study

Haar Classifier may also only be able to detect images

quickly if only one core is used, resulting in poor system

performance when a single core is used.

A larger number of images stored as SVM models makes

the detection using the Pi camera slower [3] [4]. In general,

a modest type of multithreading occurs when a thread

Processed until it is jammed by an event that usually creates

a long latency [5].

A halt in processing may occur when the cache needs to

access external chip memory, a task that can take hundreds

of CPU cycles to retrieve the required data. Rather than

waiting for this halt to resolve, the threading processor

switches to another thread that is ready to run. Only when

the data for the previous thread has been retrieved does it

allow the previous data to be placed on the standby thread

list. The primary objective of multithreading is to eliminate

interruptions caused by data dependencies in the execution

pipeline [6][7].

Since each thread is independent of the others, there is a

possibility that a single instruction in the pipeline may

require output from a previous stage of processing. In

concept, this resembles the primitive multitasking seen in

operating systems, where each active thread is allocated a

CPU cycle. The most advanced form of multithreading is

found in superscalar processors. While typical superscalar

processors issue multiple instructions from one thread per

CPU cycle, simultaneous multithreading (SMT) allows the

superscalar processor to issue instructions from multiple

threads in each CPU cycle. Recognizing that any single

Paper ID: SR231026061252 DOI: 10.21275/SR231026061252 2054

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

thread has limited directive parallelism, this form of

multithreading seeks to harness the parallelism found across

various threads to minimize the inefficiencies associated

with unused execution slots. The objectives of this study are

focused on further evaluation involve Raspberry Pi 3B+ with

a multicore using multithreading, aiming to analyze CPU

and memory usages, CPU temperature, FPS, Confidence

levels, and Elapsed time.

3. Comparing multithread vs non-multithread

Haar Cascade using Raspberry Pi research

method

In contrast to automated face recognition, human face

recognition involves the identification of facts or

confirmation of personality. In essence, the technique is

based on two stages, the first being the identification of

faces, and the second being the recognition of those faces.

Raspberry Pi is a mini computer (the size of a credit card)

that can perform varied tasks, however, because it does not

have a powerful processor, it can perform these tasks with a

lower level of computation power. Despite the Raspberry Pi

being slower than a normal laptop or desktop computer, it is

still a fully-fledged Linux machine with all the capabilities

that imply, at the same time which uses a very low amount

of power.

This study is divided into four phases which contains

collection of data, Detection, training, classification. The

research study mainly focuses on evaluating Raspberry Pi

limitation in terms of resource concern when a heavy

processing power were required. The selected method was

Haar Cascade classifier that represents SVM training

algorithms. The main evaluation factors are implementing

Haar cascade classifier to evaluate resource constrain over

for none multithreaded vs multithreaded processes that to

determine the benefit of implementing Multithreading vs

none multithreaded processing in respect to CPU and

Memory usage, CPU Temperature, FPS, Confidence, Elapse

time.

a) Data Collection

Camera connected to Raspberry Pi 3B+ capture images for

the study. Camera model and specification: Raspberry Pi

Camera, Key studio 5MP 1080p Camera Module with

OV5647 Sensor Video Webcam. The sensor has a native

resolution of 5 megapixel, and has a fixed focus lens on

board. Each description contains distinct information. The

images were collected at varying resolutions, encompassing

five frame sizes: 1200x900, 900x675, 600x450, 300x225,

and 100x75. This progressive increase in resolution was

employed to assess the system's efficiency. Performance

data, obtained during benchmark detection tests, were

compiled and analyzed, considering attributes such as

resolution and image quantity. Moreover, we have

incorporated a feature involving a rotated face image with a

30-degree visible perspective

b) Haar Cascade Classifiers

The application of the HCC effectively incorporates three

variables. This framework functions by processing a

comprehensive array of features, which can be readily

visualized within a fixed timeframe, rather than focusing on

precise frame processing values. Through the utilization of a

feature-based approach, the system reduces class variability

to maximize divisional variability that to speed up the

process.

Furthermore, the integration of an enhancement algorithm

enables the compilation of a select subset of relevant features

and guidance, facilitating the identification of new data.

Within the cascade architecture, each layer of classifiers

progressively assimilates a diminishing percentage of

training data, rendering the model highly efficient.

c) Haar-like features and Adaboost Training

Haar features on the image makes it easy to find out the

edges or the lines in the image, or to pick areas where there

is a sudden change in the intensities of the pixels. Below see

Fig 1, represent A sample of Haar features used in the

Original Research Paper published by Viola and Jones.

The Haar features traversal on an image would involve a lot

of mathematical calculations. As we can see for a single

rectangle on either side, it involves 16-pixel value additions

(for a rectangle enclosing 16 pixels). Imagine doing this for

the whole image with all sizes of the Haar features. Fig 2.

shows the making of an Integral Image. Each pixel in an

Integral image is the sum of all the pixels in its left and

above.

Figure 1: A sample of Haar features used in the Original

Research Paper published by Viola and Jones.

Figure 2. shows the making of an Integral Image

This would be a hectic operation even for a high-

performance machine. Haar value calculation formula can be

applied to the determination of hair-like characteristics.

Paper ID: SR231026061252 DOI: 10.21275/SR231026061252 2055

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Pixel value=(sum of the Dark pixels/Number of Dark

pixels)–(Sum of the Light pixels/Number of Light pixels)
(1)

Next is Adaboost Training combines a set of "weak

classifiers" to generate a powerful "strong classifier" that the

object detection method can effectively employ. This

process involves the identification of valuable features and

the instruction of classifiers on how to utilize them.

To create the weak learners, a sliding window traverses the

input image, calculating Haar characteristics for each image

segment. This approach differs from a straightforward

threshold that distinguishes between objects and non-objects.

These created classifiers are considered "weak," but to

construct an accurate strong classifier, a multitude of Haar

features is required. In the final stage, the weak learners may

be combined with the strong learners.

A. Classifiers cascade

After each classifier is trained, the classifier‟s weight is

calculated based on its accuracy. More accurate classifiers

are given more weight. A classifier with 50% accuracy is

given a weight of zero, and a classifier with less than 50%

accuracy is given negative weight.

Let‟s look first at the equation for the final classifier.

 (2)

The final classifier consists of „T‟ weak classifiers. ht(x) is

the output of weak classifier „t‟ (in this paper, the outputs are

limited to-1 or +1). Alphat is the weight applied to classifier

„t‟ as determined by AdaBoost. So, the final output is just a

linear combination of all of the weak classifiers, and then we

make our final decision simply by looking at the sign of this

sum.

The classifiers are trained one at a time. After each classifier

is trained, we update the probabilities of each of the training

examples appearing in the training set for the next classifier.

The first classifier (t=1) is trained with equal probability

given to all training examples. After it‟s trained, we compute

the output weight (alpha) for that classifier.

 (3)

The output weight, Alphat, is fairly straightforward. It‟s

based on the classifier‟s error rate, „et‟. et is just the number

of misclassifications over the training set divided by the

training set size.

B. Multithreading enactment on Raspberry Pi

This study places a stronger emphasis on internal

performance, particularly focusing on the Raspberry Pi's

capabilities in executing face detection and recognition tasks

involving extensive image storage and various image

resolutions. Pre-evaluation procedures were conducted for

Haar cascade classifier processes to monitor and log the

resource-intensive computations both before and after the

implementation of multithreading on the Raspberry Pi

system.

The study involves the detection of trained faces using the

Haar cascade classifier. When the Pi camera is employed for

face detection, and a recognized image of a person's face is

detected, a visual indicator in the form of green frames

surrounds the detected image, serving as a marker for the

identified image.

In computer architecture, multithreading refers to the ability

of a Central Processing Unit (CPU) (or a single core within a

multi-core processor) to concurrently execute multiple

processes or threads, with support from the operating

system. This approach distinguishes itself from

multiprocessing. In multithreaded applications, processes

and threads share single or multiple core resources, which

encompass computing units, CPU caches, and look aside

translation buffers (TLB) [9]. In contrast, a multiprocessing

system consists of multiple complete processing units across

one or more cores. Multithreading is specifically designed to

enhance the utilization of a single core by leveraging thread-

level parallelism, as well as command-level parallelism.

Given their complementary nature, these two techniques are

sometimes combined in a multithreading CPU system,

alongside a multi-core CPU.

The integration of multithreading code into the existing

codebase is implemented during the model detection

process. During the preliminary assessment, when streaming

images from the Pi camera, we encountered issues related to

lagging. Notably, this lag was observed during image

annotation and training for the Haar cascade classifier

model. The root cause of this lag can be attributed to the

presence of our extensive SVM model files, featuring a large

number of images. These files impose a considerable load on

our computer's performance and lead to high CPU memory

usage.

From a programming perspective, the use of a single thread

for each process in the fourth code iteration results in the

overload of a single CPU core's memory, causing a decline

in tracking accuracy. It's worth noting that the Raspberry Pi

3B+ has four available cores, and distributing memory usage

and CPU load more evenly across these cores could lead to

improved tracking accuracy.

Given the limitations of using only one CPU core due to

memory constraints, the implementation of multithreading

alternatives is expected to enhance real-time tracking

performance.

4. Multipoint Recognition Procedure

The chosen face detection and recognition procedure was

notably distinctive. Its purpose was to emulate real-world

face detection scenarios. Ideally, a security face detection

camera is installed to capture human faces. However,

individuals do not always look directly at the camera with

100% precision. The true challenge in image capture is

selecting the optimal image. Meanwhile, the subject being

captured can adjust their face at various angles while the

camera attempts to capture and verify their identity for

Paper ID: SR231026061252 DOI: 10.21275/SR231026061252 2056

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

access. Hence, a multipoint procedure was implemented to

enhance the authenticity of image capture and recognition.

This procedure employed a Raspberry Pi device to assist in

the process while the individual adjusted their face in all four

directions (lookup, lookdown, look left, look right)

Nevertheless, the captured image was exclusively considered

for individuals whose faces were at least partially visible to

the camera.

1) Application was started

2) When camera first boots displaying on screen user waits

1 second directly looking at the camera

3) User looks right for one second at a 30 degrees angle

4) User looking left for one second at a 30 degrees angle

5) User then looks up at 30 degrees angle

6) User the looks down at a 30 degrees angle

7) Finally, user looks at screen and when directly looking

at camera

8) When the camera delay on screen catches up to the user

to where the user is in the final position looking back at

the screen the application is exited

9) Total elapsed time of each test is timed at 6 seconds

The illustrated procedure above demonstrates the image

recognition confidence percentage. The purpose of the time

displays waits 1 second is to inform the user capturing

started and ready for the first move. After image capturing

the HCC started for face recognition and classification. The

study focus mainly to study multithreaded vs non-

multithreaded face recognition accurate confidence, total

number captured FPS, CPU usage, Memory usage, CPU

temperature.

5. Results

Table 1: Show Avg. FPS, CPU and Memory usage results

for Multithread vs none for the listed resolution
Average FPS

Resolution None-Multithread Multithread

100 x 75 26.28 31.44

300 x 225 8.63 9.83

600 x 450 3.60 6.76

900 x 675 1.80 6.47

1200 x 900 1.11 4.63

Usage CPU
Resolution None-Multithread Multithread

100 x 75 73.80 86.95

300 x 225 154.50 123.50

600 x 450 235.50 171.50

900 x 675 260.50 160.50

1200 x 900 267.50 162.50

Usage MEM.
Resolution None-Multithread Multithread

100 x 75 8.85 9.00

300 x 225 8.95 9.10

600 x 450 9.20 9.25

900 x 675 11.75 9.75

1200 x 900 14.10 10.10

A Comparison of CPU Memory usage in Frame Per

Second

Table 1. shows the collected results CPU Temperature, CPU

and Memory usage in Frame Per Second. Currently only

two processes are running – Haar Cascade Classification

model and performance monitoring code. To interpret

Average FPS vs resolution while implementing multithread

vs none multithread results. We can recognize as the

resolution increases; the FPS generally decreases for both

Multithread and Non-Multithread processing. This is

expected because higher resolutions require more

computational power to process. For lower resolutions

(100x75 and 300x225), Multithread processing provides a

slight FPS advantage over Non-Multithread processing.

This indicates that multithreading is beneficial in these

cases. At a resolution of 600x450, the Multithread approach

exhibits a substantial performance improvement over Non-

Multithread. The difference in FPS is quite significant. At a

resolution of 900x675, the performance improvement

withMultithread is even more pronounced. It results in a

notable boost in FPS.

At the highest resolution of 1200x900, the Multithread

approach still outperforms Non-Multithread, although the

gap is not as large as at lower resolutions.

The results suggest that Multithread processing generally

provides better FPS compared to Non-Multithread

processing as well as Multithread processing is more

efficient in terms of CPU usage across various resolutions.

The advantage becomes more significant as the resolution

increases.

In regards to Memory (MEM) usage vs resolution we

recognized as the resolution increases, generally tends to

increase for both Multithread and Non-Multithread

processing. This is expected because higher resolutions

require more memory to store and process the data.

At all resolutions, Multithread generally has slightly higher

memory usage compared to Non-Multithread. However, the

differences are relatively small. Therefore, we recognize

there isn't a significant advantage for either approach in

terms of memory efficiency.

Table 2: Show Avg. recognition confidence, CPU

Temperature and Time elapsed outcome for Multithread vs

none for all listed resolution

Average Confidence

 Resolution None-Multithread Multithread

100 x 75 -85.52 59.57

300 x 225 4.83 11.63

600 x 450 44.44 49.14

900 x 675 57.79 63.94

1200 x 900 59.41 68.01

Temp C

 Resolution None-Multithread Multithread

100 x 75 54.50 55.04

300 x 225 57.73 58.00

600 x 450 60.15 59.88

900 x 675 61.22 60.15

1200 x 900 61.76 60.69

Time Elapsed

Resolution None-Multithread Multithread

100 x 75 6.64 8.47

300 x 225 7.77 8.34

600 x 450 9.86 9.57

900 x 675 13.05 9.52

1200 x 900 16.62 10.45

Paper ID: SR231026061252 DOI: 10.21275/SR231026061252 2057

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

For all resolutions, Multithread consistently yields higher

average confidence values compared to Non-Multithread.

This indicates that the Multithread approach tends to provide

better confidence in image recognition.

Both Multithread and Non-Multithread exhibit very similar

CPU temperatures across different resolutions. There isn't a

significant difference in CPU temperature between the two

approaches.

In most cases, the Non-Multithread approach has a shorter

time elapsed compared to Multithread. However, the

difference is not uniform across all resolutions, and at the

highest resolution (1200 x 900), the time elapsed is

significantly longer for both approaches.

If time elapsed is critical, Non-Multithread may be

preferable for some resolutions. While Multithread tends to

provide better average confidence in image recognition.

6. Conclusions

The development of the intelligent system aims to improve

the computing performance by optimizing the resources in a

Raspberry Pi. Experimental results show a decent

improvement achieved using multithreading in Haar-based

face detection for real-time applications processes

recognized confidence. Based on the research conducted,

there are several suggestions for further improvements, such

as less computation demand SVM algorithms or implement

deep learning should be a study candidate for future work. In

conclusion, the study intended to benefit future IoT research

utilizing Raspberry Pi as selected hardware so that they can

accommodate the computation power limitation which they

can encompass working on camera as an image sensor IoT

device for a work that sensitive to high performance.

References

[1] V. Patchava, H. B. Kandala, and P. R. Babu, “A Smart

Home Automation technique with Raspberry Pi using

IoT,” in 2015 International Conference on Smart

Sensors and Systems (IC-SSS), 2015, pp. 1–4.

[2] E. Bilgin and S. Robila, “Road sign recognition system

on Raspberry Pi,” in 2016 IEEE Long Island Systems,

Applications and Technology Conference (LISAT),

2016, pp. 1–5.

[3] N.F.A Zainal, R. Din, M.F. Nasrudin, S. Abdullah,

A.H.A Rahman, S.N.S Abdullah, K.A.Z. Ariffin, S.M.

Jaafar, N.A.A Majid. (2018). Robotic Prototype And

Module Specification For Increasing The Interest Of

Malaysian Students In Stem Education.-International

Journal Of Engineering And Technology (Uae).

[4] M. R. Rizqullah, A. R. Anom Besari, I. Kurnianto

Wibowo, R. Setiawan, and D. Agata, “Design and

Implementation of Middleware System for IoT Devices

based on Raspberry Pi,” in 2018 International

Electronics Symposium on Knowledge Creation and

Intelligent Computing (IES-KCIC), 2018, pp. 229–234.

[5] R. Rinku and M. Asha Rani, “Analysis of multi-

threading time metric on single and multi-core CPUs

with Matrix Multiplication,” in 2017 Third

International Conference on Advances in Electrical,

Electronics, Information, Communication and Bio-

Informatics (AEEICB), 2017, pp. 152–155.

[6] W. F. Abaya, J. Basa, M. Sy, A. C. Abad, and E. P.

Dadios, “Low cost smart security camera with night

vision capability using Raspberry Pi and OpenCV,” in

2014 International Conference on Humanoid,

Nanotechnology, Information Technology,

Communication and Control, Environment and

Management (HNICEM), 2014, pp. 1–6.

[7] Azmi, I., Shafei, M. S., Nasrudin, M. F., Sani, N. S., &

Abd Rahman , A. H. . ArUcoRSV: Robot localisation

using artificial marker. In J-H. Kim, H. Myung, & S-M.

Lee (Eds.), Robot Intelligence Technology and

Applications-6th International Conference, RiTA 2018,

Springer Verlag, 2019, pp. 189-198.

[8] Resource Optimisation using Multithreading in Support

Vector Machine

[9] Wong Soon Fook, Abdul Hadi Abd Rahman, Nor

Samsiah Sani, Afzan Adam, “International Journal of

Advanced Computer Science and

Applications(IJACSA)”, Volume 11 Issue 4, 2020

Paper ID: SR231026061252 DOI: 10.21275/SR231026061252 2058

