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Abstract: Image processing plays a crucial role in vision-based IoT sensors, serving various applications to enhance productivity. 

Researchers have highlighted computational challenges in object detection on low-cost devices like the Raspberry Pi. In today's fast-

paced technological landscape, the need for automated systems delivering accurate results is paramount to task completion. This study 

introduces an effective multithreading approach for the Support Vector Machine (SVM) method. We have implemented a 

multithreading algorithm for the SVM recognition processes, harnessing the power of multicore CPU utilization. Our evaluation 

incorporates Memory usage, CPU Temperature, FPS, Confidence levels, and Elapsed time on the Raspberry Pi platform, with the 

primary goal of addressing real-time computation challenges using the Pi camera. The experimental results demonstrate a notable 

enhancement in detection confidence, affirming that multithreading significantly bolsters detection performance on Raspberry Pi 

processors across various image resolutions. 
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1. Introduction 
 

Face detection in simple term is detect the human face and 

identify the face. Many algorithms had been successfully 

managed to find and recognized the human face with verity 

of success rate. Haar cascade classification algorithm was 

one of them. The detecting and recognizing process starting 

by capture image is analyzed to determine the portion of the 

image contains a human face.  

 

High-speed Haar Cascade Classifiers (HCC) are 

competitively efficient identifiers, as a result, the Human-

Machine Interface (HMI) structure showed the ability to be 

used in a stable real-time environment. For this research the, 

the objective was first to learn the effective HCC face 

detectors, after which they were integrated into low cost, 

credit-card sized computer that plugs into a computer 

monitor Raspberry Pi 3B+. 

 

In this work, by using HCC, we decided to accept the 

challenge to implement HCC on Raspberry Pi to analysis 

regular vs multithreading calcification study encompasses 

Time elapsed, Average Confidence, Average FPS, CPU and 

Memory Usage and Temperature (Heat) generated during 

recognition vs image capturing distance and resolution.   

 

The main objective of this research is to define and present 

Raspberry Pi and abilities of its usage in the development of 

the next generation of inexpensive, intelligent, agile 

machine. All in which to evaluate accuracy detection and 

recognition. Finally, our machine produces the outcomes and 

detection rates. 

 

2. Related Work 
 

It has been reported that numerous researchers are 

experiencing problems with computation limitation in order 

to detect objects in low cost devices such as Raspberry Pi 

[1][2]. In this instance, the performance of the Raspberry Pi 

camera detecting the object of interest is slowed down by 

only being able to use one core on the Raspberry Pi. There 

are four cores on the Raspberry Pi, however, only one core 

can be used, resulting in the performance of the Raspberry 

Pi slowing down. [3]. It is also important to note that 

images that can be detected using supervised learning 

algorithms such as the selected algorithm for this study 

Haar Classifier may also only be able to detect images 

quickly if only one core is used, resulting in poor system 

performance when a single core is used. 

 

A larger number of images stored as SVM models makes 

the detection using the Pi camera slower [3] [4]. In general, 

a modest type of multithreading occurs when a thread 

Processed until it is jammed by an event that usually creates 

a long latency [5].  

 

A halt in processing may occur when the cache needs to 

access external chip memory, a task that can take hundreds 

of CPU cycles to retrieve the required data. Rather than 

waiting for this halt to resolve, the threading processor 

switches to another thread that is ready to run. Only when 

the data for the previous thread has been retrieved does it 

allow the previous data to be placed on the standby thread 

list. The primary objective of multithreading is to eliminate 

interruptions caused by data dependencies in the execution 

pipeline [6][7]. 

 

Since each thread is independent of the others, there is a 

possibility that a single instruction in the pipeline may 

require output from a previous stage of processing. In 

concept, this resembles the primitive multitasking seen in 

operating systems, where each active thread is allocated a 

CPU cycle. The most advanced form of multithreading is 

found in superscalar processors. While typical superscalar 

processors issue multiple instructions from one thread per 

CPU cycle, simultaneous multithreading (SMT) allows the 

superscalar processor to issue instructions from multiple 

threads in each CPU cycle. Recognizing that any single 
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thread has limited directive parallelism, this form of 

multithreading seeks to harness the parallelism found across 

various threads to minimize the inefficiencies associated 

with unused execution slots. The objectives of this study are 

focused on further evaluation involve Raspberry Pi 3B+ with 

a multicore using multithreading, aiming to analyze CPU 

and memory usages, CPU temperature, FPS, Confidence 

levels, and Elapsed time. 

 

3. Comparing multithread vs non-multithread 

Haar Cascade using Raspberry Pi research 

method 
 

In contrast to automated face recognition, human face 

recognition involves the identification of facts or 

confirmation of personality. In essence, the technique is 

based on two stages, the first being the identification of 

faces, and the second being the recognition of those faces. 

 

Raspberry Pi is a mini computer (the size of a credit card) 

that can perform varied tasks, however, because it does not 

have a powerful processor, it can perform these tasks with a 

lower level of computation power. Despite the Raspberry Pi 

being slower than a normal laptop or desktop computer, it is 

still a fully-fledged Linux machine with all the capabilities 

that imply, at the same time which uses a very low amount 

of power. 

 

This study is divided into four phases which contains 

collection of data, Detection, training, classification. The 

research study mainly focuses on evaluating Raspberry Pi 

limitation in terms of resource concern when a heavy 

processing power were required. The selected method was 

Haar Cascade classifier that represents SVM training 

algorithms. The main evaluation factors are implementing 

Haar cascade classifier to evaluate resource constrain over 

for none multithreaded vs multithreaded processes that to 

determine the benefit of implementing Multithreading vs 

none multithreaded processing in respect to CPU and 

Memory usage, CPU Temperature, FPS, Confidence, Elapse 

time.   

 

a) Data Collection  

Camera connected to Raspberry Pi 3B+ capture images for 

the study. Camera model and specification: Raspberry Pi 

Camera, Key studio 5MP 1080p Camera Module with 

OV5647 Sensor Video Webcam. The sensor has a native 

resolution of 5 megapixel, and has a fixed focus lens on 

board. Each description contains distinct information. The 

images were collected at varying resolutions, encompassing 

five frame sizes: 1200x900, 900x675, 600x450, 300x225, 

and 100x75. This progressive increase in resolution was 

employed to assess the system's efficiency. Performance 

data, obtained during benchmark detection tests, were 

compiled and analyzed, considering attributes such as 

resolution and image quantity. Moreover, we have 

incorporated a feature involving a rotated face image with a 

30-degree visible perspective 

 

b) Haar Cascade Classifiers 

The application of the HCC effectively incorporates three 

variables. This framework functions by processing a 

comprehensive array of features, which can be readily 

visualized within a fixed timeframe, rather than focusing on 

precise frame processing values. Through the utilization of a 

feature-based approach, the system reduces class variability 

to maximize divisional variability that to speed up the 

process. 

 

Furthermore, the integration of an enhancement algorithm 

enables the compilation of a select subset of relevant features 

and guidance, facilitating the identification of new data. 

Within the cascade architecture, each layer of classifiers 

progressively assimilates a diminishing percentage of 

training data, rendering the model highly efficient. 

 

c) Haar-like features and Adaboost Training 

Haar features on the image makes it easy to find out the 

edges or the lines in the image, or to pick areas where there 

is a sudden change in the intensities of the pixels. Below see 

Fig 1, represent A sample of Haar features used in the 

Original Research Paper published by Viola and Jones. 

 

The Haar features traversal on an image would involve a lot 

of mathematical calculations. As we can see for a single 

rectangle on either side, it involves 16-pixel value additions 

(for a rectangle enclosing 16 pixels). Imagine doing this for 

the whole image with all sizes of the Haar features. Fig 2. 

shows the making of an Integral Image. Each pixel in an 

Integral image is the sum of all the pixels in its left and 

above. 

 
Figure 1: A sample of Haar features used in the Original 

Research Paper published by Viola and Jones. 
 

 
Figure 2. shows the making of an Integral Image 

 

This would be a hectic operation even for a high-

performance machine. Haar value calculation formula can be 

applied to the determination of hair-like characteristics. 
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Pixel value=(sum of the Dark pixels/Number of Dark 

pixels)–(Sum of the Light pixels/Number of Light pixels) 
(1)  

 

Next is Adaboost Training combines a set of "weak 

classifiers" to generate a powerful "strong classifier" that the 

object detection method can effectively employ. This 

process involves the identification of valuable features and 

the instruction of classifiers on how to utilize them. 

 

To create the weak learners, a sliding window traverses the 

input image, calculating Haar characteristics for each image 

segment. This approach differs from a straightforward 

threshold that distinguishes between objects and non-objects. 

These created classifiers are considered "weak," but to 

construct an accurate strong classifier, a multitude of Haar 

features is required. In the final stage, the weak learners may 

be combined with the strong learners. 

 

A. Classifiers cascade 

After each classifier is trained, the classifier‟s weight is 

calculated based on its accuracy. More accurate classifiers 

are given more weight. A classifier with 50% accuracy is 

given a weight of zero, and a classifier with less than 50% 

accuracy is given negative weight. 

 

Let‟s look first at the equation for the final classifier. 

  (2) 

The final classifier consists of „T‟ weak classifiers. ht(x) is 

the output of weak classifier „t‟ (in this paper, the outputs are 

limited to-1 or +1). Alphat is the weight applied to classifier 

„t‟ as determined by AdaBoost. So, the final output is just a 

linear combination of all of the weak classifiers, and then we 

make our final decision simply by looking at the sign of this 

sum. 

 

The classifiers are trained one at a time. After each classifier 

is trained, we update the probabilities of each of the training 

examples appearing in the training set for the next classifier. 

 

The first classifier (t=1) is trained with equal probability 

given to all training examples. After it‟s trained, we compute 

the output weight (alpha) for that classifier. 

                       (3)  

The output weight, Alphat, is fairly straightforward. It‟s 

based on the classifier‟s error rate, „et‟. et is just the number 

of misclassifications over the training set divided by the 

training set size. 

 

B. Multithreading enactment on Raspberry Pi 

This study places a stronger emphasis on internal 

performance, particularly focusing on the Raspberry Pi's 

capabilities in executing face detection and recognition tasks 

involving extensive image storage and various image 

resolutions. Pre-evaluation procedures were conducted for 

Haar cascade classifier processes to monitor and log the 

resource-intensive computations both before and after the 

implementation of multithreading on the Raspberry Pi 

system. 

 

The study involves the detection of trained faces using the 

Haar cascade classifier. When the Pi camera is employed for 

face detection, and a recognized image of a person's face is 

detected, a visual indicator in the form of green frames 

surrounds the detected image, serving as a marker for the 

identified image. 

 

In computer architecture, multithreading refers to the ability 

of a Central Processing Unit (CPU) (or a single core within a 

multi-core processor) to concurrently execute multiple 

processes or threads, with support from the operating 

system. This approach distinguishes itself from 

multiprocessing. In multithreaded applications, processes 

and threads share single or multiple core resources, which 

encompass computing units, CPU caches, and look aside 

translation buffers (TLB) [9]. In contrast, a multiprocessing 

system consists of multiple complete processing units across 

one or more cores. Multithreading is specifically designed to 

enhance the utilization of a single core by leveraging thread-

level parallelism, as well as command-level parallelism. 

Given their complementary nature, these two techniques are 

sometimes combined in a multithreading CPU system, 

alongside a multi-core CPU. 

 

The integration of multithreading code into the existing 

codebase is implemented during the model detection 

process. During the preliminary assessment, when streaming 

images from the Pi camera, we encountered issues related to 

lagging. Notably, this lag was observed during image 

annotation and training for the Haar cascade classifier 

model. The root cause of this lag can be attributed to the 

presence of our extensive SVM model files, featuring a large 

number of images. These files impose a considerable load on 

our computer's performance and lead to high CPU memory 

usage. 

 

From a programming perspective, the use of a single thread 

for each process in the fourth code iteration results in the 

overload of a single CPU core's memory, causing a decline 

in tracking accuracy. It's worth noting that the Raspberry Pi 

3B+ has four available cores, and distributing memory usage 

and CPU load more evenly across these cores could lead to 

improved tracking accuracy. 

 

Given the limitations of using only one CPU core due to 

memory constraints, the implementation of multithreading 

alternatives is expected to enhance real-time tracking 

performance. 

 

4. Multipoint Recognition Procedure 
 

The chosen face detection and recognition procedure was 

notably distinctive. Its purpose was to emulate real-world 

face detection scenarios. Ideally, a security face detection 

camera is installed to capture human faces. However, 

individuals do not always look directly at the camera with 

100% precision. The true challenge in image capture is 

selecting the optimal image. Meanwhile, the subject being 

captured can adjust their face at various angles while the 

camera attempts to capture and verify their identity for 
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access. Hence, a multipoint procedure was implemented to 

enhance the authenticity of image capture and recognition. 

This procedure employed a Raspberry Pi device to assist in 

the process while the individual adjusted their face in all four 

directions (lookup, lookdown, look left, look right) 

Nevertheless, the captured image was exclusively considered 

for individuals whose faces were at least partially visible to 

the camera. 

1) Application was started 

2) When camera first boots displaying on screen user waits 

1 second directly looking at the camera 

3) User looks right for one second at a 30 degrees angle 

4) User looking left for one second at a 30 degrees angle 

5) User then looks up at 30 degrees angle 

6) User the looks down at a 30 degrees angle 

7) Finally, user looks at screen and when directly looking 

at camera 

8) When the camera delay on screen catches up to the user 

to where the user is in the final position looking back at 

the screen the application is exited 

9) Total elapsed time of each test is timed at 6 seconds 

 

The illustrated procedure above demonstrates the image 

recognition confidence percentage. The purpose of the time 

displays waits 1 second is to inform the user capturing 

started and ready for the first move. After image capturing 

the HCC started for face recognition and classification. The 

study focus mainly to study multithreaded vs non-

multithreaded face recognition accurate confidence, total 

number captured FPS, CPU usage, Memory usage, CPU 

temperature.  

 

5. Results 
 

Table 1: Show Avg. FPS, CPU and Memory usage results 

for Multithread vs none for the listed resolution 
Average FPS 

Resolution None-Multithread Multithread 

100 x 75 26.28 31.44 

300 x 225 8.63 9.83 

600 x 450 3.60 6.76 

900 x 675 1.80 6.47 

1200 x 900 1.11 4.63 

Usage CPU 
Resolution None-Multithread Multithread 

100 x 75 73.80 86.95 

300 x 225 154.50 123.50 

600 x 450 235.50 171.50 

900 x 675 260.50 160.50 

1200 x 900 267.50 162.50 

Usage MEM. 
Resolution None-Multithread Multithread 

100 x 75 8.85 9.00 

300 x 225 8.95 9.10 

600 x 450 9.20 9.25 

900 x 675 11.75 9.75 

1200 x 900 14.10 10.10 

 

A Comparison of CPU Memory usage in Frame Per 

Second 

Table 1. shows the collected results CPU Temperature, CPU 

and Memory usage in Frame Per Second. Currently only 

two processes are running – Haar Cascade Classification 

model and performance monitoring code. To interpret 

Average FPS vs resolution while implementing multithread 

vs none multithread results. We can recognize as the 

resolution increases; the FPS generally decreases for both 

Multithread and Non-Multithread processing. This is 

expected because higher resolutions require more 

computational power to process. For lower resolutions 

(100x75 and 300x225), Multithread processing provides a 

slight FPS advantage over Non-Multithread processing. 

This indicates that multithreading is beneficial in these 

cases. At a resolution of 600x450, the Multithread approach 

exhibits a substantial performance improvement over Non-

Multithread. The difference in FPS is quite significant. At a 

resolution of 900x675, the performance improvement 

withMultithread is even more pronounced. It results in a 

notable boost in FPS. 

 

At the highest resolution of 1200x900, the Multithread 

approach still outperforms Non-Multithread, although the 

gap is not as large as at lower resolutions. 

 

The results suggest that Multithread processing generally 

provides better FPS compared to Non-Multithread 

processing as well as Multithread processing is more 

efficient in terms of CPU usage across various resolutions.  

The advantage becomes more significant as the resolution 

increases.  

 

In regards to Memory (MEM) usage vs resolution we 

recognized as the resolution increases, generally tends to 

increase for both Multithread and Non-Multithread 

processing. This is expected because higher resolutions 

require more memory to store and process the data. 

 

At all resolutions, Multithread generally has slightly higher 

memory usage compared to Non-Multithread. However, the 

differences are relatively small. Therefore, we recognize 

there isn't a significant advantage for either approach in 

terms of memory efficiency. 

 

Table 2: Show Avg. recognition confidence, CPU 

Temperature and Time elapsed outcome for Multithread vs 

none for all listed resolution 

Average Confidence 

 Resolution None-Multithread Multithread 

100 x 75 -85.52 59.57 

300 x 225 4.83 11.63 

600 x 450 44.44 49.14 

900 x 675 57.79 63.94 

1200 x 900 59.41 68.01 

Temp C 

  Resolution None-Multithread Multithread 

100 x 75 54.50 55.04 

300 x 225 57.73 58.00 

600 x 450 60.15 59.88 

900 x 675 61.22 60.15 

1200 x 900 61.76 60.69 

Time Elapsed 

Resolution None-Multithread Multithread 

100 x 75 6.64 8.47 

300 x 225 7.77 8.34 

600 x 450 9.86 9.57 

900 x 675 13.05 9.52 

1200 x 900 16.62 10.45 
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For all resolutions, Multithread consistently yields higher 

average confidence values compared to Non-Multithread. 

This indicates that the Multithread approach tends to provide 

better confidence in image recognition. 

 

Both Multithread and Non-Multithread exhibit very similar 

CPU temperatures across different resolutions. There isn't a 

significant difference in CPU temperature between the two 

approaches. 

 

In most cases, the Non-Multithread approach has a shorter 

time elapsed compared to Multithread. However, the 

difference is not uniform across all resolutions, and at the 

highest resolution (1200 x 900), the time elapsed is 

significantly longer for both approaches.  

 

If time elapsed is critical, Non-Multithread may be 

preferable for some resolutions. While Multithread tends to 

provide better average confidence in image recognition. 

 

6. Conclusions 
 

The development of the intelligent system aims to improve 

the computing performance by optimizing the resources in a 

Raspberry Pi. Experimental results show a decent 

improvement achieved using multithreading in Haar-based 

face detection for real-time applications processes 

recognized confidence. Based on the research conducted, 

there are several suggestions for further improvements, such 

as less computation demand SVM algorithms or implement 

deep learning should be a study candidate for future work. In 

conclusion, the study intended to benefit future IoT research 

utilizing Raspberry Pi as selected hardware so that they can 

accommodate the computation power limitation which they 

can encompass working on camera as an image sensor IoT 

device for a work that sensitive to high performance. 
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