
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Challenges and Solutions in Implementing

Continuous Integration and Continuous Testing for

Agile Quality Assurance

Amit Bhanushali

Quality Assurance Manager, West Virginia University, Independent Researcher, West Virginia, United States of America

Email: akbhanushali[at]mail.wvu.edu

Abstract: As software development undergoes a transformation, it necessitates a corresponding adaptation on the part of quality

specialists. The fundamental feature of agile approach is quality, which is assessed by both developers and customers in order to

enhance the system's overall quality. This approach has the potential to enhance the quality of output, but at the expense of less

involvement from the quality assurance team. The Agile methodology places emphasis on expediting the software development process

while also reducing costs. Additionally, within the framework of Agile Quality Assurance (QA) and software development, Continuous

Integration (CI) and Continuous Testing are key methodologies. The programmers ensure that changes to the code are regularly

applied, examined, and verified throughout the whole development cycle. Within the Agile Quality Assurance (QA) paradigm,

continuous integration and continuous testing are important approaches that offer routine code integration, automated testing, and

quick feedback. They play a key role in the swift and iterative delivery of software of the highest calibre in Agile development setups.

This study's major goal is to address the Problems and Solutions of Putting Continuous Integration and Continuous Testing into

Practise for Agile Quality Assurance. Agile techniques, agile software quality assurance, continuous integration practices of agile

software development, difficulties, and solutions for these practises have all been covered in this review article. Additionally, the

practises for continuous testing in agile quality assurance, difficulties, and solutions have been studied in the following part.

Keywords: Agile, Software Testing, Quality Assurance, Continuous Integration, Continuous Testing, challenges, solution

1. Introduction

The quality factor may be a key element and a sign of the

development and success of agile in the software

development process or it may be a sign of the failure of

software production. To attain a greater degree of quality, it

is crucial to keep an eye on the success component. [1].

Today, many businesses are looking at various quality

assurance procedures in an effort to find a solution that will

allow them to overcome the difficulties associated with

maintaining quality in agile environments [2], despite the

fact that it was shown to be effective in the past, it is not

suitable for the Agile setting any more. A review of what

can be accomplished at each stage of the software

development life cycle (SDLC) is one area where emphasis

needs to be placed in order to maintain the required level of

quality, for instance. More formal and thorough technical

evaluations, such design reviews and so on, should be

included in this review. This evaluation guarantees that

defects and other issues are detected and fixed early on,

improving the quality of the final output. But the official

review that is being undertaken at the moment has taken the

place of this formal review process.

The newest programming techniques can be thought of as

evolutionary, iterative, and incremental. This includes

techniques like the Enterprise Unified Process (EUP), Rapid

Application Advancement (RAD), Extreme Programming

(XP), and Rational Unified Process (RUP), for instance [3].

A lot of contemporary processes are also quick. Quality

experts must adjust when the underlying nature of

programming development changes. This study explains

common agile software development techniques and shows

how implementing them produces software that is

considerably higher quality than what traditional software

teams generally generate.

As Ampler reported, [4], The creation of test-driven may

help agile approaches achieve the goal of producing high-

quality software. According to Ampler, "quality is an

inherent factor of agile," which seems reasonable," due to

the significant amount of pressure that is placed on agile

improvement teams to write test cases before creating code

[4]. Testing and quality go hand in hand since finding

defects in a product before it is sent to customers is the

primary objective of testing. This provides the opportunity

for the product's developer to improve the product's quality

by addressing any issues that were discovered [5]. McBreen

has highlighted quality as an agile value [6] as well as the

flexibility to adapt to changes in development software. This

suggests that a key challenge for agile quality assurance is to

deliver tested, functional, and client-certified software at the

conclusion of each new release.

The necessity for a wide variety of software products is

growing along with the complexity of software on a daily

basis. This necessitates the provision of a potent instrument

that can balance output and quality. The practise of applying

software metrics to the software development process and to

a software product is a crucial task that necessitates study

and discipline and that provides knowledge of the status of

the software development process and/or product in relation

to the goals to be achieved. This discipline is known as

quality assurance, and it is the primary driver of success for

every software engineering project. The quality assurance

activities are what result in the qual because it enables the

development of software with a minimal set of requirements

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1626

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and facilitates frequent changes in those needs, agile

methodology is currently one of the main approaches

employed by the majority of software industries. Even

though the procedure might create the product rapidly, we

cannot ensure its quality until we incorporate SQA activities

into the process. [7]

McBreen (2003) [8] presents his perspective. The process of

creating software that can adjust and respond to changes in

accordance with the changing requirements of the client may

be referred to as agile quality assurance. This shows that a

key element of quality assurance in the agile methodology is

the regular delivery of software that has been evaluated,

verified as functioning, and approved by the client at the end

of each iteration. The agile approach to quality assurance

surpasses conventional software quality assurance methods

by addressing quality concerns in a more advanced manner.

2. Theory of Ongoing Integration and

Ongoing Testing

2.1 Permanent integration

The practise of continuous integration has previously

received a lot of attention, and it is now well established and

understood. Numerous more SCM-related operations need

continual integration, and we anticipate seeing them develop

in accordance with our expectations now that the foundation

has been established. This will result in the creation of new

bestpractises, some of which might have specific SCM-

related sub practises to clarify the best practises. Asklund,

Bendix, and Ekman (2004) [9] offer a first attempt to

identify SCM sub practises appropriate for an agile setting in

this paper. We also hope that these sub practises will evolve

into more developed sub practises.

Kent Beck first introduced continuous integration as a

software development technique in his book Extreme

Programming Explained. This technique is frequently

referred to by the acronym CI. [10] and on accelerating the

speed at which developers may collaborate. The program is

often modified by different developers, and each integration

makes sure the product is functional by running automated

tests and taking other precautions. The usage of continuous

integration has been shown to improve software quality,

testing effort and speed, software release frequency, and

other factors, according to literature on software engineering

and example cases.

A continuous integration (CI) server is often used to carry

out continuous integration. When a developer publishes a

change, CI servers immediately run a continuous integration

build, show the results, and, if desired, inform the author of

the results. This helps developers practice continuous

integration. Although the majority of software projects that

perform continuous integration do so using CI servers, the

activity may also be carried out manually, as author in [11]

represented.

The developer makes several changes to the source code,

and these modifications often take place several times each

week or on a daily basis. The code integration step is

considered to be the most important part of the whole

DevOps lifecycle. The process of continuously integrating

new code into an old one involves the construction of new

codes that enable the addition of new capabilities. Bugs are

found quite early in the source code during this round of

testing. Tools for unit testing, code review, integration

testing, compilation, and packaging will be used by

developers when writing new code for the programme. The

functionality of the programme will increase thanks to this

additional code. Continuous integration of this new code

into the existing source code helps to portray any changes

that end users may experience as a result of the upgraded

code. Jenkins is a trusted DevOps tool that is frequently used

for obtaining the most recent source code and transforming

builds into executable forms. These transitions go place

without a hitch, and the modified code is packed before

being sent on to the next step, which is either the server used

for production or the server used for testing. [12]

2.2 Continuous Testing

It is common practice for developers to do the continuous

testing step before the continuous integration phase.

Depending on the modifications made to the application

code during the DevOps lifecycle, this phase may be shifted

so that it follows the continuous integration phase. Now that

the program has been constructed, it is being tested on an

ongoing basis to find any issues. Docker containers are used

in order to perform the simulation of a testing setting.

Automated testing is a time and labor-saving tool for

developers. The test evaluation process benefits from the

reports generated by automated testing. It is now much

simpler to analyse the test cases that were unsuccessful. The

final test suite does not include any errors once the User

Acceptance Testing (UAT) procedure has been finished.

Utilizing these tools, one is able to schedule the running of

test cases within a certain amount of time. In order for the

source code to be updated, the tested code is ultimately

delivered back to the continuous integration phase. This is

carried out to ensure that the code runs without errors. The

two crucial procedures that must be carried out to ensure that

the application code will undergo continuous upgrades are

continuous testing and integration. During the Continuous

feedback phase, these improvements are evaluated. [13]

3. Agile Methodologies

From the beginning, when requirements are obtained, to the

very end, when the software product is delivered, tested, and

user input is gathered, the agile methodology follows the

software development life cycle. The less documentation

that is provided in the project and the greater emphasis on

coding are what set agile techniques apart from other

methodologies [14].

Scrum, extreme programming (XP), and other agile

methodologies are founded on the application of tried-and-

true techniques that are widely recognised to raise the

calibre of software development. One may argue that

employing best practises is done so as to make it easier to

integrate software quality assurance (SQA) into the project.

A key support structure for the project is provided by the

quality assurance (QA) activities that take place during the

software development process [15]. Since the 1990s, the

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1627

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

agile methodology has received substantial discussion in a

variety of academic publications, including books, essays,

and journals. However, there hasn't been much research

done on the subject of quality control in agile software

development methodologies.

In a nutshell, it is a framework for developing software that

is predicated on a high frequency and rapidity of iterations in

order to both provide the program and accommodate

modifications requested by the customer [16]. Agile

practices are becoming more popular in the modern day as a

means of coping with the dynamics of corporate expansion.

This is due to the fact that agile enables a rapid reaction to

ever-evolving requirements and delivers a product of higher

quality and greater speed [17]. Because of their capacity to

manage changing needs, emphasis on client and developer

collaboration, and early software delivery, agile

methodologies have gained traction in the commercial world

since the late 1990s. The software development industry has

mostly utilized agile approaches, which offer certain

advantages in managing time and system user needs [18].

Numerous advantages of agile approaches include increased

client happiness, increased project success, and higher

development quality. Agile development approaches

improve coordination between teams. These techniques

promote quick market entry; however, the delivery process

is slowed by a lack of coordination between developers and

the operating team. Agile companies carry out development,

testing, and deployments independently. These tasks take a

lot of time, which caused the release process to be delayed

[19]. The operation and testing teams are not given a

significant amount of attention in agile techniques. The

processes of testing, delivery, and deployment are each the

responsibility of these teams. The product is developed by

the development teams at a significantly quicker speed,

which causes other teams to lag behind, which might cause

the delivery process to be delayed. As a result, problems and

errors manifest themselves early in the process of producing

a product.

The DevOps methodology enhances communication,

delivery, performance, and integration between operational

staff members, testers, and developers.[20] The objective of

DevOps is to enhance customer satisfaction by means of

enhanced quality and uninterrupted delivery. The use of

DevOps by several European banks resulted in a noteworthy

25 percent enhancement in their provision of online services

[21]. The implementation of DevOps relies on the use of an

automated deployment pipeline, hence reducing the

repetitive manual tasks associated with continuous

integration [22]. Development and operations are simply two

parts of the DevOps process [23]. However, other

stakeholders, including developers, testers, analysts, as well

as personnel responsible for database management and

security, actively participate in the implementation of

DevOps practices [24].

DevOps can assist in overcoming the difficulty of

continuous delivery. Digital behemoths like Amazon and

Netflix already employ DevOps to deliver precisely crafted,

customer-focused software solutions to the market [25]. The

application of DevOps concepts to implement continuous

delivery eliminates traditional testing, monitoring, and code

integration, hastening the release of the user's product. By

utilising reusable items and promoting the widespread use of

software management systems, the DevOps paradigm aids in

continuous delivery [26]. Continuous delivery principles are

the foundation of DevOps practises. Fast release reduces the

time it takes to develop an application and deliver high-

quality software [27]. Testing on a more general level is

performed in software companies to assess the aim and

establish the quality of the program. On the other hand, a

quick quality check should not be provided for continuous

integration. Testing is done manually and there is no

automation of any of the test cases, hence the rate at which

errors are found will gradually increase. Because of the

amount of work and time that is required for this procedure,

the delivery of the goods will be delayed. Continuous testing

is one strategy that may be used to help address these

difficulties. Continuous testing enables the delivery of

timely feedback with no involvement from humans.

Automated testing is a component of continuous testing.

This monitoring and improvement of test case quality is

accomplished via automation [28]. Continuous testing

strategies are used in testing activities that are a part of a

DevOps strategy. This helps to identify flaws and errors

within a variety of software components. Testing is

approached in a manner that is distinct from that of

traditional testing thanks to the DevOps principles, which

may be thought of as a set. Testing was one of the stages of

the software development life cycle process prior to the

emergence of DevOps. However, testing is not carried out

during the project's whole phase, which lasts from beginning

to completion. With DevOps, testing should be implemented

from the start to guarantee that the software is of a high

quality and to share responsibility for that quality between

the development team and the operations team. [29].

3.1 Process Improvement for Agile Software

A thorough study of agile processes leads to the conclusion

that agile approaches are a collection of procedures and

activities that reduce the time needed to create software

programmes and offer cutting-edge techniques for

accommodating swiftly altering business requirements.

These relatively new QA methodologies should eventually

grow into established software engineering standards.

Enabling Reusability in Agile Software Development,

however, has shown [30] 2.8) Agile Practises: 2.9) is what

makes it possible to complete the software development

process more quickly.

3.2 The Framework for Evaluating Agile Methodologies

All agile approaches have remarkably similar processes

across their numerous iterations since they are predicated on

the same set of four agile ideals and 12 agile principles. It is

interesting to note that even the developers of agile

methodologies now accept the use of techniques from other

agile methodologies as long as they are suitable for the

particular situation at hand [31]. In reality, Kent Beck

discusses the shortcomings of extremism in both the first

version of his book on extreme programming (XP) and in his

XP masterclasses. An in-depth examination of agile

methodologies reveals that these methods employ a number

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1628

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

of different models based on real-world scenarios to address

the same issues. When thinking about the process of

software development, lean development (LD) adopts a

manufacturing and product development metaphor, as

shown by the approach for evaluating everything that is

discussed in this article. Through the lens of control

engineering, the Scrum framework tackles the software

development process.

Extreme programming is a paradigm that views the software

development process as a group activity where developers

collaborate. The methodology of adaptive systems

development, also referred to as ASD, is used to approach

software development projects from the perspective of

complex self-adaptive systems [32]. A small number of the

available agile methodologies were used to show the

assessment process. There is a lot of subjectivity involved in

the choice of methodological elements. The goal of this

work is not to provide an exhaustive taxonomy of

approaches. for a more thorough taxonomy. As a result, the

objects included here were chosen to show the similarities

among different agile methodologies. By revealing these

similarities, developers who are unsure on which agile

technique to choose will be better equipped. While

employing the right technique in your software development

project may not instantly result in project success or the

production of a high-quality product, doing so can lead to

project failure. Thus, there is in knowing.

4. Agile Software Quality Assurance

Quality was described by Ambler (2005) [4] as being a

direct result of the agile methodologies themselves from the

perspective of agile development. Due to these

characteristics of agile quality, comprehensive

documentation is no longer necessary; yet, this results in the

word agile quality becoming somewhat vague and becoming

more challenging to define [33]. Since the bulk of agile

methods only offer a small number of suggestions on how

various quality attributes should be checked and maintained,

integrating testing approaches with agile operations can be

difficult. This is true even though the most common SQA

activity nowadays is assessing numerous quality attributes.

According to Itkonen et al. (2005, p. 202) [34], the main

challenges that agile principles present for testing from a

traditional point of view were highlighted. They emphasised

the necessity to conduct testing in brief cycles of time while

avoiding exceeding the permitted testing duration as one of

the issues that must be solved in order to satisfy the criteria

of the agile concept of continuous delivery of useful

software. The most challenging part of "responding to

change even late in the development" is that testing cannot

be done on realised needs. This poses a problem. Due to the

agile method's reliance on face-to-face interaction, it is

feasible for engineers and business participants in the testing

process to experience communication breakdowns that could

result in disagreements. Additionally, they asserted that the

most crucial sign of success is having software that works,

therefore information on quality is necessary both early in

the development process and throughout. Itkonen et al.

(2005) concluded that the "simplicity-for-sake" approach

makes the testing technique easily debunked.

Itkonen et al. (2005) observed conflicts in agile testing while

taking such concepts into account when it comes to the basic

testing principles. One of the core characteristics of testing,

for instance, is independence. However, with agile

approaches, developers create the tests for their apps, and

testers either swap roles with developers or become

developers themselves. It is a sign that testers are not

sufficiently independent because they are integrated into the

development team. Additionally, they should refrain from

testing their own code because it is challenging to find errors

and testing does not determine whether the final product

satisfies or comprehends the needs of the customer.

Additionally, testing requires individuals that have a specific

set of skills and knowledge in order to be successful and

effective. On the other side, consumer testing is viable to

attain quality if they have unique experiences to handle or

conduct testing, which is regrettably not always the case.

Customers might test products, nevertheless, to ensure

quality. Finding the correct test result and locating

programme non-conformances are processes referred to as

the "oracle problem" This presents still another difficulty.

Agile approaches use a large percentage of automated tests,

which raises the question of whether these tests are

sufficient to find defects in the code. The destructive

approach, which focuses on investigating and identifying

problems, is one of the most well-known methods of

software testing. According to [35], conformity testing is

carried out to make sure that an entity complies with a

specific requirement and/or legal requirement. This study's

goal is to assess a software system's effectiveness in

fulfilling the required specifications and to gauge how faulty

it is [36]. Agile techniques may lead to system faults despite

passing unit tests because they place a higher priority on the

description of product qualities than on the investigation of

fundamental causes. However, the testing procedure not

only looks for flaws but also collects data that could be

utilised to improve the product's quality. Although it does

not reveal the level of product quality reached or make it

easier to evaluate the attained quality, the agile method

heavily relies on following established protocols and

checking their adherence.

4.1 Agile Development Processes are Produced by

Testing Practices

It is possible to argue that the implementation of extra

testing techniques ultimately results in the adoption of agile

development procedures. In the following chapter, the work

of Itkonen et al. (2005) will be examined in order to provide

a more thorough explanation and clarity regarding these

shortcomings and challenges. Based on the "heartbeat,

iteration, and release time horizons" in their research report,

Itkonen et al. (2005) used a temporal pacing model to

identify quality assurance techniques in current agile

approaches. The Cycles of Control (CoC) structure, which

was established by Rautianen (2004) [37], in the context of

an agile development approach.

4.2 Control Framework Cycle

The CoC framework is a general example of a frame that

may be used to portray incremental and iterative

development of software. Because of this, the CoC

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1629

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

framework can be used to illustrate agile development. The

design is based on the idea of time pacing, in which a

predetermined period of time is divided into several time

periods of varying lengths, each of which has a budget and a

deadline. [38]. A control point is located at the conclusion of

each individual segment and is used to conduct an analysis

of the process. Alterations to the plans may also be made if

it is determined that they are required. Since adjustments can

only be made at specific control points, persistence and the

creation of flexibility are both made possible, allowing for

simultaneous plan changes and responses to the

environment's changing conditions at predetermined time

intervals.The flow of product development is determined by

these intervals, also referred to as time frames. A time box's

schedule (due date) is determined in accordance with the

idea of time pacing, but its scope (creating functionality) is

not. [39]. In the event that it is not feasible to meet all of the

product criteria by the end date that has been set, the scope

of the project will be reduced in order to ensure that it will

be ready by the end date that has been set. As a result,

"Therefore, demands need to be ranked in order for the team

to be able to make scope suiting on their own." An

illustration of the cycles of control building pieces may be

seen in Figure 1.

Figure 1: Cycles of Control building blocks [37]

"The creation of long-term strategies for a company's

product and project portfolios is included in strategic release

management. It acts as a vital link between the actual

process of product creation and strategic decision-making

[39]. Each product release is managed successfully inside

the release project cycle as a "time-boxed project" that is

carried out. Each project is organised into time-boxed

iterations, wherein a portion of the eventual product release

is created [39]. Heartbeats serve as a timer and a regulator

for daily activities [37]. Figure 2 illustrates this by showing

the cycles as a timeline. This shows how the strategic release

management time horizon spans two distinct release

projects, incorporates three distinct interactions, and

synchronises the work with daily heartbeats.

Figure 2: Timeline of Cycles of Control [37]

a) Quality Assurance Heartbeat

No additional testing phase is used to postpone the Heartbeat

QA operations. Instead, these tasks are completed as part of

the design and coding responsibilities during the

implementation phase. This is true regardless of whether a

developer or a tester is in charge of carrying out these

activities. These activities provide the developers with

immediate feedback, allowing them to lead the development

process in the right directions. Heartbeat quality assurance

practises include methods that "put quality into a piece of

functionality during its implementation," which means that

the implementation chores are not deemed complete until

these QA procedures have been completed. These

procedures are incorporated into the design and coding

duties [34]. They serve as a solid foundation for the agile

development process and make it their objective to

guarantee that each and every development task is

effectively accomplished because these practises give the

developers immediate feedback. Automated unit testing acts

as the benchmark and the heartbeat of quality assurance.

Each and every piece of code that is written by the

developers must be subjected to unit tests, and advancement

is only given consideration once the tests have been

completed and passed. "Rhythm is the key," and "heartbeat

activities are managed and monitored according to the

heartbeat rhythm." The secret is rhythm [34]. Each heartbeat

must also be successful for the many functions to interact

with one another and coordinate their actions. When it

comes to agile approaches on the pulse time horizon, QA is

a highly potent discipline. The "heartbeat time horizon"

provides the foundation for the majority of quality assurance

strategies, as indicated in Table 1. This is due to the

emphasis on unit testing, frequent builds, code and design

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1630

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

inspections, and quick integration cycles in the methodologies that have been presented.

Table 1: QA procedures for agile approaches on time horizons [34]

 ―Extreme

Programming‖

―Feature Driven

Development‖

―Crystal Clear‖ ―DSDM‖

Release

Iteration

Evaluating the

acceptance test results

―Separate system

testing‖

-  ―Integration, system and acceptance

testing inside each timebox‖

 ―User testing‖

 ―Evolutionary prototyping‖

 Reviews of documents

Heartbeat  ―Test-driven

development‖

 ―Continuous

integration‖

 ―Pair-programming‖

 ―Acceptance testing‖

 ―Collective code

ownership‖

 ―Coding standards‖

 ―Simple design and

continuous

refactoring‖

 ―On-site customer‖

 ―Unit testing‖ –

 ―Regular builds‖ –

 ―Design

inspection‖ –

 ―Code inspection‖

–

 ―Individual code

ownership‖

 ―Automated tests and

frequent integration‖

 ―Side-by-side

programming‖

 ―Osmotic

communication‖

 ―Easy access to expert

users‖

 Unit testing

 Reversible changes

 Active user involvement

On the iteration time horizon, quality assurance covers

procedures that are focused on accomplishing the iteration's

goals. This encompasses all implementation, testing, and

review phases that don't apply to every single cardiac

rhythm feature. Iteration time horizons are responsible for a

large number of jobs that are performed by professional

testers. These duties include evaluating the system's

dependability, performance, and other quality

characteristics. Functional testing is just one kind of testing

that may be performed on a system. In general, the activities

that professional testers engage in are ones that are only

tangentially related to the development process. These

experts are responsible for writing and carrying out testing

for the whole of the iteration, and they must coordinate their

efforts with the developers. It is essential to keep track of the

work's growth, progress, and continuous communication of

high-quality information since iteration tasks are time-

boxed. One way to do this would be via heartbeat meetings.

As indicated in Table 1, there are much fewer quality

assurance practises on the iteration time horizon of agile

methodologies than there are on the heartbeat time horizon.

At this level, there are not many processes or activities that

are specified specifically for the purpose of quality

assurance. For instance, Extreme Programming (XP) is

reliant on robust pulse methods, and the iteration time

horizon is solely responsible for measuring progress [40, 41,

42].

"Ensuring the product's quality on the time horizon of the

release is the primary objective of the release quality

assurance process." [34]. Examples of tasks include testing

that cannot be finished within the allotted time for an

iteration, assignments given to a different testing group, and

testing in various environments. A good general strategy for

engaging quality assurance releases is to have distinct

stabilisation iterations. Since the stabilisationiteration

assesses the quality of the work produced in earlier iterations

at the end of the release project, this stabilisation phase is

not considered to be iteration quality assurance.

Additionally, it implies that some quality problems are not

discovered until the process' very last iteration.

According to Itkonen et al. (2005) [34], Table 1 shows that it

is challenging to locate any quality assurance processes in

agile approaches on the release time horizon. The dynamic

systems development method (DSDM) states that there may

be times outside of iterations when separate/split acceptance

testing processes are necessary, for as on the precise release

time horizon, in huge projects, or because of contractual

limits [43]. Even in DSDM, these circumstances are thought

to be unusual.

b) Quality Assurance Iteration

Quality assurance is concerned with tasks and activities that

are not performed for each implemented feature individually

at a heartbeat rhythm on the iteration time horizon. Instead,

with a goal-focused approach, these actions are controlled

and tracked over an iterational time horizon. This includes

all practises for implementation, testing, and review

necessary to ensure that the iteration's end product is of

sufficient calibre. Iteration tasks are time-boxed since each

iteration has a predetermined length. Throughout the

iteration, the testers must prioritise their tasks. As a result,

it's crucial to keep an eye on the task's development and

consistently share reliable information, for instance through

heartbeat meetings. Without current knowledge, it is

challenging to decide on the scope of the iteration QA tasks

to complete in order to achieve the desired product quality

by the end of the iteration. There are far fewer QA

procedures in agile methodologies on the iteration time

horizon than there are on the heartbeat time horizon. Table 1

demonstrates that there are only a few well-established

methods for assuring and evaluating the quality of the

software increment produced during each iteration. Less

defined than those on the heartbeat time horizon are the

procedures on the iteration time horizon. Some

methodologies, such as XP, almost entirely rely on sound

heartbeat practises and only view progress monitoring as

important throughout the iteration time horizon [41]. The

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1631

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

other methodologies, which have less strict heartbeat

practises, acknowledge the necessity of using system testing

to evaluate the quality that has been attained over the course

of iteration, but they do not give any specific instructions on

how to go about doing so. For instance, the FDD's single

recommendation on how to accomplish this goal is to decide

which builds and how frequently to submit to independent

system testing. [44].

c) Quality Assurance Release

Release quality assurance is used to ensure that a product's

quality will be upheld over the duration of the release time

horizon. This includes reviewing test findings and any other

high-quality data gathered from the various iterations, as

well as ways to direct the development project based on the

knowledge acquired (for instance, planning upcoming

iterations). On the release time horizon are the

responsibilities of a distinct testing group, testing in

numerous settings, and testing that cannot be finished within

the iteration timetable. These are some of the types of

testing. Having a separate stabilization iteration at the

conclusion of the release project is a typical practice that is

used to include release quality assurance. Because the

stabilization iteration analyses the quality of the work done

in the iterations that came before it, this is not the quality

assurance for the iteration. Because of this, some quality

hazards are not uncovered until the very final iteration of the

process. It is quite difficult to identify any quality assurance

processes in agile methodologies on the release time

horizon. For instance, we were unable to locate any quality

assurance procedures among the sample techniques shown

in Table 1 that would be appropriate for the release time

horizon. In some cases, independent (acceptance) testing

procedures outside of iterations, i.e., outside the release time

horizon, may be necessary, according to DSDM. These

circumstances may arise as a result of contractual limitations

or in the case of extremely large projects [43]. However,

even according to the DSDM, such instances are regarded as

uncommon.

4.3 Agile Testing Improvements for QA

Agile techniques are dependent on the involvement of users,

but they do not include a significant amount of experience in

destructive testing. Only user acceptance tests are used for

testing in some approaches, like XP, which offers a set of

effective development activities with the aim of producing

outstanding software. Some approaches, on the other hand,

do not provide such a list of tasks and, as a result,

acknowledge the need for specific testing methods not just at

the integration level but also at the system level and

acceptance level. This leads to the conclusion that heartbeat

quality assurance procedures have the potential to be

enhanced, for example, by adding the role of an independent

tester who tests each completed feature alongside the

developer [34].

Agile testing is well-represented by the session-based

exploratory testing (ET) example on the iteration time

horizon. "Exploratory Testing (ET) is an informal approach

to test design where the tester actively shapes test designs

while running tests," according to Veenendaal (2018) [45].

The tester uses the knowledge gathered from the testing

process to continuously improve and upgrade test cases.

[45]. It is a novel approach built on experiences where test

design, learning, and execution are carried out concurrently,

and the outputs from these processes are immediately

applied to the process of building more tests. As a result, it

does not depend on test cases that have been predesigned.

Testers use their knowledge in two different ways, according

to Itkonen et al. (2012) [46]: for test design and as a test

oracle for spotting failures. This indicates how well testers'

knowledge works during exploratory testing sessions. The

use of session-based exploratory testing enables the efficient

management of testing within concise time frames, making

it suitable for brief iterations. Furthermore, as previously

stated, the essence of exploratory testing facilitates the

cultivation of the requisite negative mindset essential for

effective testing. In some scenarios, there is a need for

testing during the release time frame. However, it is often

more advantageous to include several quality assurance

(QA) methods throughout the iteration time frame and the

heartbeat phase. This approach ensures the availability of

quality information at an earlier stage and mitigates the risks

associated with poor quality during the first stages of

development.

Agile methodologies place significant emphasis on customer

or user participation and tend to exclude a number of

damaging testing procedures. With the exception of user

acceptance tests, which fall under the client's purview,

certain approaches, like XP, offer a thorough set of

development practises that prioritise the production of

software of a satisfactory quality without relying on

significant testing. It should be highlighted, however, that

other agile approaches lack a thorough set of standards and

do not take into account the requirement for specialised

testing practises at the integration, system, and acceptance

test levels. The Dynamic Systems Development Method

(DSDM), a well-known illustration, requires the

implementation of testing at several levels throughout each

iteration. Based on the existing body of literature, it is

evident that there is a lack of comprehensive advice about

the effective integration of destructive and independent

testing procedures into agile development processes. Our

study demonstrated that using time horizons to describe the

development process and the procedures used facilitates the

identification of areas where testing processes may be

improved. Gaining comprehension of the temporal scope of

heartbeat and its associated methodologies provides the

necessary alignment for the actions of developers and

testers. There is potential for improvement in the quality

assurance (QA) methods related to heartbeat. One such

enhancement is the incorporation of an independent tester

who collaborates with the developer to test each completed

feature. By relying on independent destructive tests rather

than solely the developer's constructive methods, this feature

provides instant feedback on the quality achieved. Session-

based exploratory testing is an example of agile testing that

takes place within an iteration time horizon [47].

Exploratory testing is a testing technique that appears to

embody the agile ethos because it doesn't rely on specified

test cases. It is best to use session-based exploratory testing

in conjunction with brief iterations since it enables testing to

be managed in condensed time limits. With the exploratory

method, you can assess the entire system or, for instance, the

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1632

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

interactions between several distinct pieces. Our initial

research demonstrates the value of exploratory testing for

testing apps from the end-user's perspective and quickly

discovering critical flaws. The exploratory nature of testing

makes it easier to develop the disruptive mentality required

for effective testing. Exploratory testing may also be used to

persuade employees of businesses or others with deep

subject knowledge to participate in testing. In some

circumstances, testing tasks may be necessary on the release

time horizon. Agile methodologies for the release time

frame have not yet been found. In many cases, it may be

beneficial to incorporate as many QA procedures as possible

on the iteration and pulse time frames in order to offer

quality information early and help avoid quality risks.

5. Agile Software Development Practices with

Continual Integration

5.1 Continuous and Software integration

Software integration is the process of linking various

software subsystems or components to form a coherent and

cohesive system [48]. The inclusion of a software

development lifecycle is an important component within the

realm of software engineering, since the development

process often encompasses many stages and involves

collaboration among a group of engineers. Software

integration is often performed as a distinct stage inside the

conventional software development lifecycle, occurring

subsequent to the completion of software

implementation.One of the twelve guiding principles of

Extreme Programming (XP), Continuous Integration (CI) is

a software development methodology that was initially

introduced in 1997 [49, 50] which is,

 40-hours week

 Coding standards

 Collective ownership

 Continuous integration

 Metaphor

 On-site customer

 Pair programming

 Refactoring

 Simple design

 Small release

 Testing

 The planning games

It simply indicates that every developer combines their work

on a regular basis—at least once every day. This approach

guarantees that minor components are incorporated as soon

as they are finished and ready to be a part of the system,

preventing the emergence of complexity [51]. It is important

to automatically create and add test cases for the entire

system, including the recently introduced components, in

order to execute the Continuous Integration strategy.

Additionally, the programme must be built and tested

automatically, and the developer must receive quick

feedback on new codes before adding them [52,53,54]. Any

comments at this time will be considered by the developer as

soon as they are received. When a programmer is still

getting to know his or her programmes, this helps in the

process of identifying flaws and issues. To reap the rewards

of adopting CI, developers must modify their typical daily

practises of software development. People frequently need to

refrain from contributing code, fix problematic builds

immediately away, create automated tests, make sure that all

written tests and inspections pass, do private builds, and

avoid getting code that is broken. [55].

5.2 The Role of Continuous Integration in Software

Quality and Testing Lifecycle

Code modifications made by different developers are often

merged once per day while using continuous integration

since it is so frequent. Because the program is produced and

at least unit tested on every integration, it is possible to

guarantee a fundamentally adequate level of quality. Also,

since developers constantly obtain the most recent

modifications from other developers, it is more probable that

they would encounter difficulties with those changes, which

can then be eliminated faster in comparison to when the

changes would only be accessible for other developers after

a period of days or weeks [10].

Continuous integration is one method that may be used to

enhance manual software testing, particularly the duration of

the testing cycle. When there is not continuous integration,

testers have to wait for the program to be produced before

they can test it, then they have to deploy the product into

their testing environment, run the software, and finally get to

the section of the software that needs to be tested. All of

these phases have the potential to fail, forcing testers to wait

for developers to address the problems, which in turn

increases the amount of time required before software

modifications can be tested and approved. Testers simply

need to deploy the most current software build, and they

may have a greater level of confidence that the program will

work up to the point when it reaches a section that has to be

tested since continuous integration ensures that the software

is always in a generally functional condition. If the program

is also automatically delivered to the testing environment as

part of a continuous integration build, then the manual

deployment phase may also be skipped by the testers.

Continual integration builds are a kind of build that is

performed continuously. Testers are able to concentrate their

efforts on the sorts of tests that are most effectively carried

out manually by humans, such as non-functional testing and

exploratory tests. If it is known that the program is

functioning properly as a whole as a result of a continuous

integration build that includes an extensive set of tests, then

the software may be tested [10].In addition to testing for

non-functional requirements like capacity and security,

testers can also confirm the program's usability.

Comprehensive automated testing combined with manual

testing of the programmeas a whole has the potential to

produce better software quality than just performing manual

tests.

5.3 Continuous integration techniques used by

developers

The basic steps in continuous integration will be dissected in

this section, along with each step's individual components.

The company is now considered to be adopting continuous

integration in the software development process as a result

of putting these concepts into practise.

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1633

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Committing code frequently: The focal point of the

continuous integration process. When it comes to

committing their work to the common code repository,

developers shouldn't wait more than one day before

doing so. The following are some of the options available

to developers for simplifying this process: 1- Instead of

making sweeping modifications to a number of

components all at once, make just little adjustments. 2-

Make a commitment after finishing each individual

activity, supposing that the chores can be completed in a

matter of a few hours apiece.

 Don't commit broken code - Programming that causes

errors of any kind when it is incorporated into a

continuous integration build is referred to as "broken

code" [56]. Developers should first build and test their

code locally on their own PCs before making changes to

the common code repository. They should wait until all

tests and inspections have passed before committing any

code.

 Fix faulty builds right away:A problem with

deployment, the database, or compilation could lead to a

flawed build. Anything that prevents the construct from

proclaiming success is acceptable [57]. The project's top

priority should be fixing a flawed build, and the relevant

developer should respond to such concerns very away.

 Write developer tests that are automated: Tests must

be automated in order for them to run effectively in a CI

environment. It should cover the entire source code as

well.

 All automated tests and inspections must pass in

order for a build to be successful: The most important

CI requirement for software quality is this. The

integration build includes coverage tools that are used to

help identify source code that lacks a corresponding test

case. To run automated inspections and check general

design and coding standards, additional tools are also

employed.

 Run private builds: Thanks to CI technologies,

programmers can keep a local copy of their workstations'

local copy of the software from the shared code

repository. In order to make sure it doesn't fail, they can

use a recent integration build locally first before merging

it to the main integration build server.

 Avoid receiving broken code by using CI technologies

to help you report cade failures: One of the most

important features of CI is its capacity to give developers

quick feedback. The condition of the code is

continuously updated, and if it is broken, no developer

should check it out from the shared code repository. The

person in charge should start developing a fix as soon as

feedback reveals that the code is flawed. If not, the

immediate input offered by CI is lost. [54]

5.4 CI Factors Influencing Test Cycle Time & Software

Quality

The degree to which continuous integration is implemented

varies widely amongst software projects. A continuous

integration build may involve just a few processes, such as

an automated software build and automated unit tests, but it

can also include many extra phases, such as automated

acceptance testing, automated deployment, or software

metric computation. Other variables, such as the time it

takes to complete a continuous integration build or the

frequency with which software changes are integrated, may

also have an influence on a continuous integration

implementation and its impact on software quality and test

cycle time. The following measures are intended to provide

excellent internal and external software quality as well as a

quick test cycle time. The frequency with which software

updates are integrated is the first critical element. When

modifications are incorporated more often, flaws in those

changes are discovered and remedied sooner. Furthermore,

when integrating more regularly, the size of changes is

lower, which decreases the risk of each integration and aids

in the effective detection of problems. Developers are more

inclined to integrate their modifications less often if the

length of the continuous integration build is long [57]. As a

result, it is also crucial that continuous integration builds

complete quickly. For providing high software quality and

quick test cycle times, the execution of automated tests as a

component of a continuous integration build and their

volume are also crucial. Software testers may concentrate on

specialized testing tasks like exploratory testing instead of

repetitive testing activities like regression testing by

employing automated tests [10]. Continuously computing

software metrics, often known as automated inspection,

helps improve the internal quality of software. Metrics like

code coverage or the quantity of duplicate code may reveal

problems with the source code's quality and make that

quality obvious [57]. It is also simpler to take corrective

action if the origins of the code's issues have already been

identified via automated examination. Automated software

deployment into testing environments may help ensure

excellent software quality by offering a tried-and-true

method of program deployment. The likelihood that the

software deployment will be carried out differently each

time or for various environments if it is done manually is

quite high. The risk of deployment into a production

environment is decreased by offering an automated

deployment mechanism and testing it by running it as part of

a continuous integration build.

5.5 Quality elements in the development process

Which quality characteristics are impacted by the continuous

integration of software was determined using the ISO

standard definition of characteristics. [58] categorised

quality criteria according to how they related to various

stages of the software development lifecycle. Since

continuous integration is a well-known development

methodology, this study largely focuses on the quality

features that fall under its umbrella. A thorough list of traits

and their accompanying measurements are shown in the

following table:

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1634

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 2: Quality elements in the development process and their measures
Attribute Measure

Time to develop Time to complete a feature's implementation and get it ready for testing

Introduced bugs The total number of bugs found in either the newly written code or the impacted older portions of the code.

Time to deliver
Time to complete the process of implementing and testing a feature, and then make it available for usage by

customers.

Test quality The tests need to cover all of the features and find the majority (if not all) of the issues.

Documentation It is necessary for the document to include all of the work that was done by the developers.

Change management Alterations to the specifications have to be acceptable and shouldn't demand an excessive amount of time and labor.

Cost model
It is calculated by comparing the costs of preparing the new setup to the amount of money that will be saved as a

result of putting the new adjustments into effect.

The following table presents a comprehensive overview of

the many quality aspects associated with software

frameworks, highlighting the distinctions between

conventional integration approaches and continuous

integration methodologies.

Table 3: Quality before to and after using continuous integration
Comparison criteria Before continuous integration After continuous integration

Time to develop
The requirements for the whole release are worked on by

the developers.

The work of the developers is focused on a particular

need.

Introduced bugs

When testing is done only after completing a substantial

portion of the code, the number of problems is much

higher than when testing is done after merely

implementing tiny portions of the code.

It is not necessary to wait until the whole release is

ready in order for each feature to be tested and

corrected when it is finished being developed.

Time to deliver
After completing the release and putting it through its

paces

After completing a single prerequisite and checking

if it's been met,

Test quality

 All of the releases as a whole are put through testing.

 The environment used for testing is not the same as the

one used in production.

Once a feature has been incorporated, testing is

performed on its separate components, and the results

of the testing are sent back to the developers as soon

as they are available.

The testing environment and the production

environment are almost indistinguishable from one

another.

Documentation

 The testing process encompasses each

 Every one of the releases in their entirety.

 The environment that is used during testing is not

identical to the one that is utilized during production.

 There is documentation of the needs,

 The quantity of documents produced by the

developers is low.

 The automated tools create statistics and data on

the developed features based on the requirements,

the testing results, and the generated defects, etc.

Change management

 Change is only acceptable after going through a

lengthy procedure and receiving permissions

 Modifications are implemented by means of a whole

new patch or release.

Any change may be implemented at any moment, but

the owner must first communicate newly outlined

needs to the business analysis and software

development teams.

Cost model

The amount of time and effort that would be required to

manually perform the software development and

integration

The expense involved in acquiring a server and tools

for continuous integration

6. Challenges and Solution of Continuous

Integration Practices of Agile Software

Development

In the Agile methodology, testers assume distinct duties that

vary from those in older methods. In this context, the tester

actively engages with all stakeholders. In a distributed

context, the management of test cases becomes a challenge

when the number of sprints rises, leading to a proportional

growth in the size of the test suite. An examination of the

existing scholarly works [59, 60, 61, 62] evident that the

aforementioned concerns need attention with regards to

testing practices within an Agile setting.

6.1 Testing activities in an agile testing lifecycle

Challenge - The issue at hand pertains to the ability of an

Agile tester to engage in other tasks concurrently with their

testing responsibilities. The available literature lacks a

comprehensive depiction of the sequence of activities,

including regression testing, within the Agile testing life

cycle [63, 64].

Solution: A suggested Agile testing life cycle involves

active engagement between the tester and other relevant

stakeholders. The tester position is defined by its focus on

conducting testing operations aimed at ensuring the delivery

of a high-quality product to the client. Moreover, the

significant impact of regression testing has been recognized.

6.2 In a distributed context, use agile testing

Challenge - The technique of pair programming is used in

the implementation of agile testing in order to get a high-

quality result. The matter at hand pertains to the

methodology of conducting testing in situations when team

members or customers are not physically situated in the

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1635

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

same place. Another concern is to the process of forming

pairs for the purposes of pair programming or testing [65].

Solution: A conceptual structure for a distributed

environment [66] has been put out that includes answers for

problems experienced by customers and dispersed team

members. Particularly, refactoring [67] has been advised for

managing dispersed obstacles by adhering to basic design

principles. Furthermore, the issue of related difficulties in

dispersed environments may be solved using a pattern that

has an evolved solution from several best current solutions.

Additionally, a self-centric strategy (common team member

traits) has been suggested for pair programming and pair

testing to help team members create a pair.

6.3 Testing for regression in an Agile setting

Challenge - Agile often involves adapting to change,

therefore this might have a significant impact on the

dependent modules [68, 69] and the quantity of test cases

rises as a result. Regression testing is therefore more

necessary. Therefore, in order to manage the larger number

of test cases, a regression testing approach is needed.

Solution: A methodology for selecting regression tests [70]

a model that is based on the user narrative graph and that

includes links between user stories has been presented. In

addition, two metrics known as average path value and

average path length have been used in order to discover an

ideal way out of all the paths that are included in the user

narrative graph, including paths that do not already exist and

paths that do currently exist. In addition to this, a tool for the

suggested regression test selection approach has been

developed and made available in Microsoft Excel.

6.4 Prioritization of test cases in a distributed

environment

Challenge - The challenge is in managing test cases for a

sprint in a distributed environment when there is a frequent

need to react to change and when current user stories are

impacted as a result of that change [67].

Solution: A linguistic strategy [71] which is based on the

number of pauses detected in user stories for narrative

priority and the number of nouns and verbs identified in user

stories for test case prioritization, has been suggested for test

case prioritization. In addition, a risk-based approach that is

based on the identification of high hazardous stories has

been suggested as a method for the prioritizing of test cases.

Additionally, a tool for the suggested test case prioritizing

approach has been developed and implemented in Microsoft

Excel.

7. Continuous Testing Practices for Agile Quality

Assurance

Saff and Ernst [72] introduced and popularised the idea of

Continuous Testing (CT) as a way to reduce the amount of

time that is spent when running tests. Additionally, Gamma

and Beck were responsible for the idea. (2003) Gamma and

Beck They listed running all of a project's tests

automatically each time the project was built (a feature

known as "auto-testing") as one of the advantages of a

plugin. Running tests frequently is one of TDD's goals.

However, the developer frequently has to leave his work in

order to physically carry out the tests. You can continue to

develop the codebase using contemporary IDEs like Eclipse

or Visual Studio. Continuous compilation (also known as

automated compilation or automated build) is a common

term for this. By enabling the IDE to perform the build in

the background while the developer is writing and/or saving

the file, this method eliminates the waste of manually

compiling the code after writing some source code. By doing

tests as the developer is working, CT advances this

approach. Running the tests doesn't require stopping what

you're doing. The developer obtains prompt feedback as the

tests run automatically in the background. Saff estimates that

the amount of waste removed to be between 92 and 98%,

and that this has a significant effect on the efficiency of

programming job completion [74]. In [75], a practical

approach to CT is shown. The practise of continuous testing

(CT) is made easier by the broad variety of plug-ins that are

readily accessible on the market and adapt to various

integrated development environments (IDEs) and other

tools. The majority of the tools are provided as extensions

for modern integrated development environments (IDEs).

The earliest tools were made especially for the Java

programming language and the Eclipse Integrated

Development Environment (IDE). For the platforms of

Visual Studio and.NET, comparable utilities were

developed. Tools are additionally available for programming

languages like Ruby. Several organisations and individuals

have created different Continuous Testing (CT) tools. These

tools include Contester, an Eclipse plug-in developed by

students of the Software Engineering Society at Wroclaw

University of Technology, JUnit Max, an Eclipse CT plug-

in, NCrunch, a commercial Visual Studio plug-in, Autotest,

a Ruby continuous testing tool, Continuous Testing for VS,

a commercial Visual Studio plug-in, AutoTest.NET, and

Mighty Moose, a packaged version of AutoTest. The

creators of integrated development environments (IDEs)

today are more and more aware of CT's importance.

Microsoft Visual Studio 2012, the most recent version,

includes a continuous testing functionality. Only the two

most expensive editions of Visual Studio 2012—Premium

and Ultimate—allow access to this feature. As a result, the

industry is aware of how important the CT practise is. Our

goal is to build on this understanding and take use of any

potential synergy that can arise from the combination of

TDD and CT ideas in the context of agile software

development. Additionally, we want to acquire empirical

evidence to support the usefulness of applying this suggested

practise in industrial settings.

In the field of software development, testing is incredibly

important. There are major costs associated with the

software testing process. To build and run the tests, the

testing process necessitates a sizable time and effort

investment. The cost of development is typically halved

while engaging in testing activities. In order to address these

issues, the use of continuous testing might be employed. The

concept of continuous testing was first developed by Saff

and Ernst in the year 2002. An experiment was undertaken

to demonstrate that the use of continuous testing may lead to

a reduction in the overall development time by around 15

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1636

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

percent. The experiment conducted demonstrates that the use

of continuous testing may effectively reduce waste in the

development process, particularly in terms of minimizing

waiting time. Continuous testing involves the use of

automation techniques and the strategic prioritizing of the

testing process. Continuous testing is a more efficient and

effective approach for the identification and detection of

faults, requiring a reduced amount of time and effort. The

author [76] define continuous testing as a quick approach for

automatically and without human involvement detecting

faults in test cases. It continuously runs tests to make sure

the code is of a good calibre. These tests run automatically

as programmers create new code. Continuous testing may

offer continuous feedback by running tests in the

background without involving engineers. Extreme

programming and continuous compilation may be seen as

extensions of continuous testing [77]. Continuous

compilation provides quick feedback regarding compilation

errors. Continuous testing, according to Siegel [78], is a

practise in which a team of developers conducts tests

manually and often throughout the testing process.

Continuous testing is the practise of conducting tests

frequently and early in the development process. Continuous

delivery is dependent on continuous testing in order to

improve product quality and ensure that it is mistake free.

8. Challenges and Solutions for Continuous

Testing in Agile Quality Assurance

8.1 Challenges

Testing on a more general level is performed in software

companies to assess the aim and establish the quality of the

program. On the other hand, a quick quality check should

not be provided for continuous integration. Testing is done

manually and there is no automation of any of the test cases,

hence the rate at which errors are found will gradually

increase. The process will take longer than expected, which

will create a delay in the delivery of the items. Continuous

testing is one strategy that may be used to help address these

difficulties. Continuous testing enables the delivery of

timely feedback with no involvement from humans.

Automated testing is a component of continuous testing.

This monitoring and improvement of test case quality is

accomplished via automation. Continuous testing strategies

are used in testing activities that are a part of a DevOps

strategy. This helps to identify flaws and errors within a

variety of software components. Testing is approached in a

manner that is distinct from that of traditional testing due to

the fact that DevOps may be thought of as a set of principles

[79].Prior to DevOps, testing was one of the stages of the

software development life cycle process, but it is not

performed for the entirety of the project. But with DevOps,

testing should be present from the beginning and ensures the

product's quality through shared responsibilities between

development and operations teams.

Many studieslike [80] highlighted the obstacles that an IT

company confronts while implementing DevOps methods.

Claps et al. [81] The organization's CD adoption difficulties

have been identified as plugins and CI. They also observed

that the requisite skills and expertise for implementing

DevOps principles might provide a barrier to enterprises.

The researcher [82] Inappropriate architecture, manual

testing, and aversion to change were found to be barriers to

adopting continuous delivery. Because to tool constraints,

continuous distribution has been suspended. Current

technologies pose security risks during deployment and

provide inadequate feedback during testing.

Adoption of DevOps approaches such as continuous

delivery necessitates changes in company culture, position,

and release-related duties [19].Many businesses find it

challenging to create procedures that work, thus interviews

should be conducted to determine the benefits and issues.

System architecture, testing, and integration tools were

found to be the key barriers to the adoption of continuous

delivery under DevOps principles by Laukkanen et al. [83]

after conducting an SLR. They argue that companies'

strategies must change when they make the switch to

DevOps and CD. According to a subsequent study by

Laukkanen et al. [84], switching to continuous delivery may

be challenging given complex design. Ullah et al. [85]

executed a semi-structured method and identified a

continuous delivery pipeline's security risk. Due to hacking

and data theft from the CD pipeline, they draw attention to

the internet danger. They suggested leveraging container

technologies like Docker to solve this problem. Software

testing and speedy delivery were the subjects of a case study

and a semi-systematic literature review by Mäntylä et al.

[86]. They asserted that hurdles to CD and testing include

low test coverage performance, time restraints, and customer

satisfaction. The author [87] a study was done with

developers, and the results showed that the majority of

developers are unaware of the significant business-related

dangers that are posed by continuous delivery pipelines to

development. The continuous delivery process is made more

difficult by the large number of infrastructures and external

dependencies involved.

Roche [79]explains the value of open channels of

communication and close working relationships between the

development and operations teams in the context of software

quality assurance. He discovered that DevOps provides the

finest solutions for testing and delivery. When it comes to

testing, DevOps principles and features employ a number of

methods that are different from those used in regular testing.

It is guaranteed that there will not be any delivery delays by

using metrics and prioritizing the test cases. The issue of

adopting DevOps may be mitigated with the assistance of

testing teams in a business. In order to facilitate automated

deployments, releases, and monitoring, continuous testing

infrastructures may be divided into testing groups. This

makes it easier to quickly get feedback on the software's

quality. [88].

Testing is not only conducted continuously during the agile

development process, but it is also an integral part of the

DevOps workflow. It provides the teams with an accurate

and transparent outcome of the test [89]. As per the Angara

et al. [90], Testing efforts for DevOps should include doing

more thorough research in scientific and academic literature.

Testing may be seen in a variety of different ways thanks to

DevOps [91].DevOps can help the development and

operations teams become closely bonded. The author has

explored a number of test technique DevOps organisation

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1637

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

approaches, such as feature toggles, infrastructure testing,

paring, destructive testing, etc. According to her, the

business development and operations teams may decide to

use these strategies depending on their needs. Testing in

production under DevOps gives the development team

ongoing input or feedback. The author's three fundamental

methods are A/B testing, monitoring as testing, and beta

testing for production testing. Benefits of DevOps include

real-time monitoring of the production environment and

management of anomalies as soon as they appear. Testing

tools employed in a DevOps methodology help in the

development of effective test generation methodologies, as

shown by Yuan et al. [92].

DevOps professionals have trouble locating precise tools for

continuous practise tasks. They also lose time and energy

trying to select the appropriate testing tool [93]. Many

businesses employ DevOps processes for testing services

such unit testing, development-driven testing, and

behavioural testing. The testing pipeline receives code right

away for further quality improvement. Testing should be a

part of DevOps from the very start of the development

process. Testing towards the project's conclusion has an

effect on its quality. Furthermore, discontinuing continuous

delivery without project testing is an option.

Mohammad, Sikender Mohsienuddin [94] Achieved

greater performance during DevOps continuous testing by

choosing the appropriate tools and technology. The tools

save time and effort by automatically detecting issues during

testing. A case study on the implementation of DevOps at a

New Zealand company was conducted by Mali Senapathi et

al. [95]. The authors contend that improving tester

performance requires learning new tools and technologies.

They found that collaboration between the development and

testing teams increases effectiveness. Additionally, the

adoption of DevOps closes knowledge gaps and enhances

code quality. As part of a multi-perspective research

methodology, Wiedemann [96] conducted a case study,

interviews, and a workshop with IT specialists. For effective

DevOps teams, they highlighted a number of competencies.

Automation was given top priority while testing. Knowledge

of automation is essential because manually writing and

running test cases takes longer to identify and fix the root of

an issue.

The author described how testing teams might overcome

challenges in a DevOps transformation. The development

team may provide rapid feedback if they establish a structure

for continuous testing. The infrastructure for continuous

testing and cooperation between development and operation

enable a quick release and increased test coverage. Blogs

cover topics like test environment management and

performance testing as a code. On measures, however, that

help teams improve their testing work, there isn't a lot of

information available [97]. All services, from development

to release, are impacted by or covered by DevOps testing.

DevOps promotes security and performance testing. The

author suggests that monitoring may be helpful in testing to

get immediate feedback on technical services. To solve the

issues of agile development, DevOps testing was created.

DevOps testing refines quality and improves communication

among all stakeholders. In academic or scientific papers,

including case studies, there isn't much systematic research

on DevOps testing.

Architecture that is strong and dependable enables testability

and deployability. It facilitates getting quick feedback from

the operation and development teams. Despite this, there is

little study on how DevOp affects software architecture.

DevOps methodologies work to quickly implement change

in production in order to achieve high quality [98]. These

techniques get rid of the structural obstacles to

transformation. According to many software professionals,

monolithic and other architectural styles/types are

inapplicable to DevOps and CD [99]. DevOps, according to

their argument [100], is not a suitable fit for highly

connected design.

In order to pinpoint a number of concerns, the researcher

[101] spoke with software vendors. They found that obsolete

or legacy architecture can have an impact on the adoption of

DevOps. Data collection from various technologies is

difficult because of integration problems in these antiquated

infrastructures. A case study on the IT group was conducted

by Silva et al. [102]. They claimed that reference design

makes it easier for employees to work together and solve

business-related issues in a DevOps environment. The

amount of operational effort was lowered by 50%, they

discovered, thanks to the development and operations teams'

interaction. When new modules are added to the production

pipeline, DevOps reduces failures by 3%. According to the

author, teams are driven to develop new apps by less errors

rather than by focusing on defect rectification. To determine

the approaches that may be employed for continuous

architecture and DevOps, Taibi et al. [103] conducted a

rigorous mapping analysis. They claim that the testing and

deployment cycle is slowed considerably in microservice

systems by continuous code reworking.

Due to its capacity to facilitate quick delivery and offer

useful feedback, a sizable number of businesses are adopting

the DevOps strategy. On the subject of DevOps

transformation, numerous research studies have been

conducted. Although this study focuses on continuous

testing and how architecture affects the move to DevOps, it

does not go beyond these two areas. In respect to

Continuous Testing (CT) and Continuous Delivery (CD),

there is a dearth of research that precisely studies the impact

of architecture on production settings. There are few

thorough studies that give an in-depth understanding of

continuous testing and delivery within the context of the

DevOps ecosystem. The researcher [104] Please provide a

comprehensive compilation of the advantages and

difficulties associated with the implementation of DevOps,

as well as the specific obstacles encountered by DevOps

teams in their pursuit of continuous testing. Nevertheless,

the aforementioned study failed to address the resolution of

difficulties pertaining to the adoption of continuous delivery,

as well as the influence of architecture on DevOps settings.

Further study is required to examine the influence of major

corporations on these subject matters.

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1638

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

8.2 Solution

This study aims to identify the potential procedures or

methods that might be used to address the issues associated

with continuous testing and DevOps.

Table 3: Challenges’ Solution
Solution References

Participation of the customer in confirming the

objective and requirement
[29]

Gathering of relevant needs [97]

Using particular/specific tools [105] [106] [107]

Use only non-commercial tools [108]

Early and ongoing testing [97]

Sprints are constantly being developed. [109]

Communication and collaboration [94] [96] [106]

Automation [90]

Processes and protocols [110] [111]

Understanding of responsibilities and duties [112]

Cross-functional environment [113]

Proper test case execution and clear results [114]

There is no fear of failure or change. [115]

Program for team exchange to share knowledge [97]

Seminars, training, and workshop [116]

Jenkins, Selenium, and version control tools are

used.
[108]

Full-stack development and decision-making

abilities are required.
[107]

Management and group members' assistance [109]

Infrastructure development [108]

Verification tests Execution [90]

Utilization of cloud services [108]

In [29], the author focuses on testing practises in a DevOps

environment. Testing guarantees the quality of the services

and software in DevOps. Customers increasingly demand

quick responses and excellent apps. Additionally,

automation is the most crucial stage to guarantee constant

feedback. Teams strive to automate as much as they can

under DevOps principles. Automated testing provides quick

feedback by pointing software flaws. For instance, testing is

required for each incremental release of a product under the

new agile manner of working. To minimize labor and human

error, automate as many tests as you can, including unit,

integration, and acceptance tests. Continuous testing and

monitoring were necessary for the creation of sprints and

their release to customers. Additionally, continuous testing

checks and confirms that the program is bug-free and that

the objective is meeting client requirements.

In [105], the authors noted that a communication issue arises

as a result of the geographic separation between the testing

and development groups. They indicated that a skill-

exchange program would enhance knowledge of testing and

DevOps. Adopting DevOps involves using specific testing

tools and improved communication channels. In [115], The

inventor of DevOps emphasised the necessity of testing

teams having a cross-functional ecosystem. When testers

and developers work together, the effectiveness of unit and

UI tests may be improved. Jenkins, for instance, automates

code testing using a continuous integration server to save a

considerable amount of time and work. [113] The authors

claimed that their research could aid IT professionals in

understanding the concept of DevOps. They said that

cooperation between testing and development teams, as well

as automation, are essential for applying DevOps concepts.

In [109], The researcher noted that less resistance to change

and stable management structures may facilitate the

adoption of DevOps. The development operations team had

previously operated independently and with different

management structures. Contrarily, DevOps demands that

each of these stakeholders strengthen the management

structure. They found that DevOps and continuous testing

face a serious challenge in maintaining outdated

infrastructure. Because maintaining legacy systems is time-

and money-consuming, organisations should adopt new

tools and technologies. The author enhances the test

automation procedure for continuous testing and

development activities at [112], a Finnish software

company. They discovered that the testing cycle can be

shortened by utilising the most recent tools and services. In

[97], the authors identified Norwegian DevOps companies'

testers as the source of the issues. They contrasted DevOps

characteristics with the frequency of tester challenges. They

found that resources for collaboration, monitoring, and

testing needed to be improved. Collaboration improves test

coverage, which raises the quality of DevOps. In cross-

functional teams, accountability encourages excellence.

Developers and testers may switch roles and share technical

information to bridge the knowledge gap and improve

understanding of the testing process.

8.3 Other challenges and solution [117]

There are several challenges to overcome while trying to

incorporate continuous testing in DevOps, including the

following:

8.3.1 Management of Test data

Challenges - The management and upkeep of pertinent test

data that effectively simulates real-world situations may be

difficult.

Solution - The data may be made more relevant and

reflective of real-world situations by using synthetic test

data.

Challenges - It might be difficult to create and manage test

data that accounts for a variety of conditions.

Solution -Techniques such as data masking, data

anonymization, and the development of synthetic data may

be used to provide test data that is both realistic and

consistent with privacy regulations. In this respect,

technologies such as Delphix and other TDM (Test Data

Management) tools might be of use.

8.3.2 Management of Test environment

Challenges - Particularly difficult is the task, when dealing

with applications of a complex nature, of ensuring that the

testing environment is trustworthy and consistent.

Solution - Utilizing containerization technologies such as

Docker is one way to help guarantee a dependable and

consistent testing environment.

Challenges -It may be difficult and time-consuming to set

up and maintain test environments that are accurate

representations of production.

Solution - Automation of environment provisioning and

configuration may be achieved via the use of infrastructure

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1639

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

as code (IaC) and containerization technologies (such as

Docker). Kubernetes and other tools may assist in the

management of containerized environments.

8.3.3 Maintenance of Test automation

Challenges - Scripts for test automation may easily become

complicated and difficult to maintain, particularly if the

application continues to be updated.

Solution - Keeping test automation scripts up-to-date and

relevant requires doing routine maintenance and reworking

on a consistent basis

Challenges -As the size of the application increases, it may

become more challenging to maintain and scale the

automated test suites.

Solution - The use of modular test design and the utilization

of frameworks such as Selenium, Appium, or TestNG may

enhance the maintainability and scalability of test

automation scripts. Additionally, it is advisable to take into

consideration cloud-based testing solutions as a means to

enhance scalability.

8.3.4 Integration Testing

Challenges -The complexity of testing relationships across

different components and systems might provide challenges

in Agile contexts.

Solution -For the validation of API and microservices

interactions, contract testing and consumer-driven contract

(CDC) testing are advised. Tools such as Pact and Spring

Cloud Contract have the potential to assist in the

achievement of desired outcomes.

9. Conclusion

Even while some of the agile practices have been around for

a while, the agile methodologies themselves are relatively

new and have gained a lot of traction in the business world.

There is a huge knowledge gap among developers on the

calibre of the software being produced. Developers must be

knowledgeable about how their agile approaches may be

updated or adapted in order to provide the highest quality

work feasible. Continuous integration has been shown to

significantly enhance software quality as a whole, prompting

software manufacturers to adapt their development

techniques in that direction. A large number of the hazards

related to the process of integrating software were decreased

as a result of integrating parts of the developed software

continuously as soon as they are accessible.

The goal of this study was to investigate the level of QA

coverage offered by the leans for agile software

development that Itkonen et al. (2005) presented. This group

of authors looked at the parallels and discrepancies between

the agile and plan-driven methodologies' technical

approaches. The theoretical foundations of software quality

have been developed with a focus on the ISO 9126 quality

perspective and the fundamentals of quality assurance, with

the conventional viewpoint of quality being used as a

starting point in order to move closer to this goal. Then, by

contrasting the agile concepts with their corresponding

challenges and by contrasting the fundamental testing

principles with inconsistent practises in ASWD, it has been

possible to identify the challenges and weaknesses of

ASWD in connection to SQA. To ascertain whether ASWD

complies with SQA, both of these comparisons were made.

For instance, it has been noted that agile methodologies

don't apply explicit quality measures when it comes to their

guiding principles. This lack of direct quality metrics was

acknowledged as a potential weakness in the method.

Additionally, it was determined that certain skills, the oracle

problem, a destructive approach, and the independence of

testing were in opposition to how agile approaches are now

used. By including extra testing techniques that are not

initially addressed in the agile methodologies itself, ASWD

operations could be improved. This is possible by relying on

the difficulties and drawbacks mentioned in the previous

line. For the iteration time horizon, an independent tester

position has been proposed, and for the heartbeat time

horizon, session-based exploratory testing is being

examined. It has been determined, after great consideration,

that testing techniques must be covered during the course of

these two times. This article lists the following challenges

that come with agile testing. In order to determine whether

or not improvement is actually essential, taking into account

the differences between the single methods that more or less

involve explicit testing activities in their agenda, it is first

necessary to provide evidence of the sufficiency of existing

SQA practisesutilised for existing ASWD. This is done to

assess if improvement is genuinely required or not. Second,

more investigation is needed to ascertain whether testing

practises are efficient in agile development while also being

able to meet the quality requirements that are imposed by

traditional ways of doing business. For instance, two

potential approaches to consider are behaviour driven

development (BDD) and acceptance test driven development

(ATDD).

In this day and age of DevOps, continuous testing is very

essential to assuring product quality. It makes it possible to

deliver software more quickly, it lowers the likelihood of

problems occurring during production, and it improves the

program's overall quality. Continuous testing in DevOps

entails selecting the appropriate test automation tools,

developing an efficient test automation framework,

integrating testing into the DevOps pipeline, and adhering to

DevOps best practices. These are the steps that must be

taken in order to implement continuous testing.

10. Future Scope

In this particular piece of study, the continuous integration

and testing methods of agile software development were the

only topic of attention. In order to go on with this study in

the future, further agile methods such as pair programming

and combining the impacted quality criteria into a single

quality framework may be investigated as potential options.

References

[1] Javed Iqbal, Mazni Omar, Azman Yasin, "Empirical

Study of Agile Methodologies and Quality

Management Success Factors in Pakistani Software

Companies", 9th Knowledge Management

International Conference (KMICe) At: Miri

SarwakMalaysia , July 2018

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1640

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[2] Rafaela Mantovani Fontana, Victor Meyer, Sheila

Reinehr, and Andreia Malucelli. 2015. Progressive

Outcomes. J. Syst. Softw. 102, C (April 2015), 88-

108

[3] Kruchten, P. 2004. The rational unified process, 3rd

edition. Reading, Mass.: Addison-Wesley Longman,

Inc

[4] Ambler, S., (2005), Quality in an Agile World,

Software Quality Professional, Vol. 7, No. 4, pp. 34-

40

[5] Parvez Mahmood Khan , M.M. Sufyan,‖

BegMeasuring Cost of Quality (CoQ) on SDLC

Projects is Indispensible for Effective Software

Quality Assurance‖, International Journal of Soft

Computing And Software Engineering (JSCSE) e-

ISSN: 2251- 7545,2012.

[6] McBreen, P., Quality Assurance and Testing in Agile

Projects, McBreen Consulting, [online]. Available

from: http://www.mcbreen.ab.ca/talks/CAMUG.pdf

[Accessed 2017].

[7] Almustapha Abdullahi Wakili (2020). QUALITY

ASSURANCE PRACTICES IN AGILE

METHODOLOGY. International Journal of advance

research in science and engineering, Vol no. 9, Issue

no. 10

[8] McBreen, P. (2003). Quality assurance and testing in

agile projects. McBreen Consulting. Retrieved

January 12, 2006, from http://www.mcbreen.

ab.ca/talks/CAMUG.pdf

[9] Ekman, T., & Asklund, U. (2004). Refactoring aware

versioning in eclipse. Electronic Notes in Theoretical

Computer Science, 107, 57-69.

[10] Humble, J., & Farley, D. (2011). Continuous

Delivery. Reliable Software Releases Through Build,

Test, and Deployment Automation. Addison-Wesley

[11] Shore, J. (2006). James Shore: Continuous Integration

on a Dollar a Day. Retrieved April 17, 2019, from

jamesshore.com:

https://www.jamesshore.com/Blog/ContinuousIntegra

tion-on-a-Dollar-a-Day.html

[12] Poornalinga, K. S., & Rajkumar, P. (2016). Survey on

Continuous Integration, Deployment and Delivery in

Agile and DevOps Practices. International Journal of

Computer Sciences and Engineering, 4(4), 213-216.

[13] Lai, S. T., & Leu, F. Y. (2016, July). A Version

Control-based Continuous Testing Frame for

Improving the IID Process Efficiency and Quality. In

2016 10th International Conference on Innovative

Mobile and Internet Services in Ubiquitous

Computing (IMIS) (pp. 464-469). IEEE

[14] Sharma, S., Sarkar, D., & Gupta, D. (2012). Agile

processes and methodologies: A conceptual study.

International journal on computer science and

Engineering, 4(5), 892.

[15] Sagheer Maria, Zafar Tehreem, Sirshar Mehreen.

(2015). A Framework For Software Quality

Assurance Using Agile Methodology.

INTERNATIONAL JOURNAL OF SCIENTIFIC &

TECHNOLOGY RESEARCH VOLUME 4, ISSUE

02,

[16] Iqra Zafar, Aiman Nazir, Muhammed Abbas, "The

Impact of Agile Methodology (DSDM) on Software

Project Management". International Conference on

Engineering, Computing & Information Technology

(ICECIT 2017 At: Kuala Lumpur, Malaysia, March

2018

[17] B. Boehm and R. Turner, "Using risk to balance agile

and plan driven methods," Computer, vol. 36, pp. 57-

66, 2003

[18] Deki Satria, Dana Sensuse, HandrieNoprisson, "A

Systematic Literature Review of the Improved Agile

Software Development", 2017 International

Conference on Information Technology Systems and

Innovation (ICITSI), September 2017.

[19] Gokul Patil, Nisha Magar, Vaishnavi Gangurde,

Zarka Khan, Srushti Magar. "Enhancing software

automation using DevOps", International Journal of

Research in Advent Technology, Special Issue,

ICATESM 2019

[20] G. Hackett, ―Survey research methods.,‖ Personnel

Guidance Journal, vol. 59, no. 9, 1981

[21] Gregory, J., and Crispin, L., 2015―, More Agile

Testing: Learning Journeys for the Whole Team,

Addison-Wesley, Upper Saddle River, N.J

[22] Ali, Nauman Bin, Kai Petersen, and Mika V.

Mäntylä. - Testing highly complex system of systems:

an industrial case study. Proceedings of the 2012

ACM-IEEE International Symposium on Empirical

Software Engineering and Measurement. IEEE, 2012

[23] A. Dyck, R. Penners, and H. Lichter - Towards

definitions for release engineering and devops. In

Release Engineering (RELENG), 2015 IEEE/ACM

3rd International Workshop on, pages 3–3, May 2015

[24] S. K. Bang, S. Chung, Y. Choh, and M. Dupuis. - - A

grounded theory analysis of modern web applications:

Knowledge, skills, and abilities for devops In

Proceedings of the 2Nd Annual Conference on

Research in Information Technology, RIIT ’13, pages

61,62, New York, NY, USA, 2013. ACM

[25] Zhu L. Bass L. and Champlin-Schar;G:

"DevOpsandItsPractices: (EEESoftware;Vol :33No:3

; pp:32 34 :)" 2016

[26] J. Wettinger, V. Andrikopoulos, and F. Leymann,

"Enabling DevOps Collaboration and Continuous

Delivery Using Diverse Application Environments,‖

Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol.

9416, pp. 107–116, 2015

[27] Toh, M. Zulfahmi, Shamsul Sahibuddin, and Mohd

Naz’riMahrin. Adoption Issues in DevOps from the

Perspective of Continuous Delivery Pipeline."

Proceedings of the 2019 8th International Conference

on Software and Computer Applications. 2019.

[28] B. Fitzgerald and K.-J. Stol. Continuous software

engineering and beyond: Trends and challenges. In

Proceedings of the 1st International Workshop on

Rapid Continuous Software Engineering, RCoSE

2014, pages 1–9, New York, NY, USA, 2014. ACM

[29] Faber, Frank. Testing in DevOps." The Future of

Software Quality Assurance. Springer, Cham, 2020.

27-38.

[30] S. Sukhpal and C. Inderveer. (2012). Enabling

Reusability in Agile Software Development.

[31] Beck, K. et al. (2004). Manifesto for agile software

development. Retrieved from agilemanifesto:

http://agilemanifesto.org/

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1641

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[32] E. Mnkandla, .B. Dwolatzky. (n.d.). Defining Agile

Software Quality Assurance

[33] Mnkandla, E. &Dwolatzky, B. (2007). Agile software

methods: State-of-the-art. In I. Stamelos& P. Sfetsos

(Eds.), Agile software development quality assurance

(pp. 1-23). Hershey, PA: Information Science

Reference

[34] Itkonen, J., Rautiainen, K. &Lassenius, C. (2005).

Towards understanding quality assurance in agile

software development. In H.E. Andersin, E. Niemi &

V. Hirvonen (Ed.), ICAM 2005. Proceedings of the

International Conference on Agility (pp. 201-207).

Helsinki, Finnland

[35] Zhou, X., Govindaraju, K., & Jones, G. (2019).

Fractional nonconformance based conformity testing.

Computers & Industrial Engineering, 135, 402-411

[36] Hasan, S. M., Islam, M. S., Ashaduzzaman, M., &

Rahaman, M. A. (2019, December). Automated

Software Testing Cases Generation Framework to

Ensure the Efficiency of the Gesture Recognition

Systems. In 2019 22nd International Conference on

Computer and Information Technology (ICCIT) (pp.

1-6). IEEE

[37] Rautiainen, K. (2004). Cycles of Control: A temporal

pacing framework for software product development

management (Licentiate thesis). Helsinki University

of Technology, Helsinki, Finland

[38] Eisenhardt, K.M. & Brown, S. L. (1998). Time

pacing: Competing in markets that won't stand still.

Harvard Business Review, 76(2), 59-69.

[39] Rautiainen, K. &Lassenius, C. (eds) (2004). Pacing

software product development: a framework and

practical implementation guidelines. Helsinki

University of Technology Software Business and

Engineering Institute Technical Reports 3

[40] Beck, K. 1999. Embracing change with extreme

programming. Computer, 32(10), 70-77.

[41] Beck, K. 2000. Extreme programming explained (2nd

ed.). Stoughton, MA: Addison-Wesley

[42] Jeffries, R., Anderson, A & Hendrickson, C. (2001).

Extreme programming installed. Boston, MA:

Addison-Wesley

[43] Stapleton, J. (1997). Dynamic systems development

method. Harlow, England: Addison-Wesley

[44] Palmer, S.R., J.M. Felsing 2002. A Practical Guide to

FeatureDriven Development. Upper Saddle River:

Prentice-Hall.

[45] Veenendaal, E. (2018). Test techniques for the test

analyst [e-book]. Retrieved from

http://www.erikvanveenendaal.nl/site/wp-

content/uploads/Test-Techniques-for-the-Test-

AnalysteBook.pdf

[46] Itkonen, J., Mäntylä, M. V. &Lessenius, C. (2012).

The role of the tester’s knowledge in exploratory

software testing. IEEE Transactions on Software

Engineering, 39(5).

[47] Bach, J. 2000. "Session-Based Test Management,"

STQE, 2 (6).

[48] Northrop, L., Clements, P., Bachmann, F., Bergey, J.,

Chastek, G., Cohen, S., ... & O’Brien, L. (2007). A

framework for software product line practice, version

5.0. SEI.–2007–http://www. sei. cmu.

edu/productlines/index. html.

[49] Campos, J., Arcuri, A., Fraser, G., & Abreu, R.

(2014). Continuous test generation: enhancing

continuous integration with automated test

generation. In Proceedings of the 29th ACM/IEEE

international conference on Automated software

engineering, 55-66

[50] Xu, B. (2009, September). Towards high quality

software development with extreme programming

methodology: practices from real software projects.

InManagement and Service Science, 2009. MASS'09.

International Conference on (pp. 1-4). IEEE

[51] Fowler, M., &Foemmel, M. (2006). Continuous

integration. Thought-Works) http://www.

thoughtworks. com/Continuous Integration. pdf

[52] Beaumont, O., Bonichon, N., Courtès, L., Hanin, X.,

&Dolstra, E. (2012, May). Mixed data-parallel

scheduling for distributed continuous integration. In

Parallel and Distributed Processing Symposium

Workshops & PhD Forum (IPDPSW), 2012 IEEE

26th International (pp. 91- 98). IEEE

[53] Bhatti, S. N. (2005). Why quality?: ISO 9126

software quality metrics (Functionality) support by

UML suite. ACM SIGSOFT Software Engineering

Notes, 30(2), 1-5

[54] Brandtner, M., Giger, E., & Gall, H. (2014). SQA-

Mashup: A mashup framework for continuous

integration. Information and Software Technology

[55] Jennifer Althouse, Martin Bakal, Paridhi Verma.,

(2012, August 14) ―Continuous Integration in Agile

Development.‖ developerWorks., IBM. [Accessed:

March 2014.]

[56] Miller, A. (2008, August). A hundred days of

continuous integration. In Agile, 2008. AGILE'08.

Conference (pp. 289-293). IEEE

[57] Duvall, P. M., Matyas, S., & Glover, A. (2007).

Continuous integration: improving software quality

and reducing risk. Pearson Education.

[58] Jaakkola, H., &Thalheim, B. (2005). Software

Quality and Life Cycles. InADBIS Research

Communications

[59] Emelie Engstrom, Per Runeson and Greger

Wikstrand, ―An empirical evaluation of Regression

testing based on fix cache recommendations,‖ 978-0-

7695-3990- 4/10 © 2010 IEEE DOI

10.1109/ICST.2010.40

[60] Hendrickson, E., ―Agility for Testers‖, Pacific

Northwest Software Quality Conference 2004

[61] L. Crispin and J. Gregory, ―Agile Testing: A Practical

Guide for Testers and Agile Teams‖, ISBN-13: 978-

0321534460, Edition 1.

[62] Pettichord, B., ―Agile Testing Challenges‖, Pacific

Northwest Software Quality Conference 2004.

[63] Amit Juyal, Umesh Kumar Tiwari, Lata Nautiyal,

Shashidhar G. Koolagudi, ―Agile Plus

Comprehensive model for Software Development‖, In

International Journal Computer Technology&

Applications, Volume 3 (4), 1378-1383

[64] Bhalerao, S., D. Puntambekar and Ingle,

M.,‖Generalizing Agile Software Development Life

Cycle‖, In International Journal on Computer Science

and Engineering Vol.1(3), 2009, 222-226.

[65] Kohl, J., ―Pair Testing. Better Software‖, Jan 2004

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1642

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[66] Anita, Naresh Chauhan, ―A Framework for Quality

Improvement in Distributed Agile Environment‖,

IEEE International Conference On Research And

Development Prospects On Engineering And

Technology, March 2013, E. G. S. Pillay Engineering

College, Tamilnadu, India

[67] Anita, Naresh Chauhan, ―An Object Oriented Design

Approach For Modification of Rotten Code Using

Regression Testing & Refactoring‖, ―An Object

Oriented Design Approach For Modification of

Rotten Code Using Regression Testing &

Refactoring‖ Volume 4, Number 7, 2014, pp, 681-

686

[68] Adipat Larprattanakul and TaratipSuwannasart, ―An

approach for regression test selection using object

dependency graph,‖ 978-0-7695-4988-0/13 © 2013

IEEE DOI 10.1109/INCoS.2013.115

[69] Gerard Meszaros, ―Agile regression testing using

record and play,‖ OOPSLA 2003, Oct 26-30, 2003,

Anaheim, California. ACM 1-58113-751-6/03/0010

[70] Anita, Naresh Chauhan, ―A Regression Test Selection

Technique by Optimizing User Stories in an Agile

Environment‖, 4 th IEEE International Advanced

Computing Conference, IACC 2014 (21st -22nd Feb

2014), in ITM University, Gurgaon, India

[71] Anita, Naresh Chauhan, ―A Linguistic approach for

TCP in an Agile Environment‖, 13th Annual

International Software Testing Conference (4th - 5 th

Dec 2013), Crossing The Chasm: From Assurance To

Confirmation, Bangalore, India.

[72] Saff, D. and Ernst, M. D. (2003). Reducing wasted

development time via continuous testing. In

Fourteenth International Symposium on Software

Reliability Engineering, pages 281–292, Denver, CO

[73] Gamma, E. and Beck, K. (2003). Contributing to

Eclipse: Principles, Patterns, and Plugins. Addison

Wesley Longman Publishing Co., Inc., Redwood

City, CA, USA

[74] Saff, D. and Ernst, M. D. (2004). An experimental

evaluation of continuous testing during development.

In ISSTA 2004, Proceedings of the 2004 International

Symposium on Software Testing and Analysis, pages

76–85, Boston, MA, USA

[75] Rady, B. and Coffin, R. (2011). Continuous Testing:

with Ruby, Rails, and JavaScript. Pragmatic

Bookshelf, 1st edition

[76] M. Virmani. -Understanding devops bridging the gap

from continuous integration to continuous delivery. In

Innovative Computing Technology (INTECH),2015

Fifth International Conference on, pages 7882, May

2015

[77] Bucchiarone, A., et al. (2018) From Monolithic to

Microservices: An Experience Report from the

Banking Domain. IEEE Software, 35(3): p. 50-55.

[78] S. Siegel. Object-Oriented Software Testing: A

Hierarchical Approach. John Wiley And Sons, 1996

[79] J. Roche. - Adopting devops practices in quality

assurance. Commun. ACM, 56(11):38–43, Nov.

2013.

[80] Chen, L. 2015. Towards Architecting for Continuous

Delivery. In Proceedings of 12th Working IEEE/IFIP

Conference on Software Architecture (WICSA), 131-

134

[81] Claps, G. G., Svensson, R. B., Aurum, A. (2015). On

the journey to continuous deployment: Technical and

social challenges along the way. Information and

Software Technology, 57, 21-31.

doi:10.1016/j.infsof.2014.07.009

[82] S. Neely, and S. Stolt, ―Continuous Delivery? Easy!

Just Change Everything (Well, Maybe It Is Not That

Easy),‖ in Agile Conference (AGILE), 2013, pp. 121-

128

[83] E. Laukkanen, J. Itkonen, and C. Lassenius,

"Problems, causes and solutions when adopting

continuous delivery—A systematic literature review,‖

Inf. Softw. Technol., vol. 82, pp. 55–79, 2017

[84] Laukkanen, Eero, Timo OA Lehtinen, Juha Itkonen,

Maria Paasivaara, and Casper Lassenius. "Bottom-up

adoption of continuous delivery in a stage-gate

managed software organization." In Proceedings of

the 10th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement,

pp. 1-10. 2016

[85] Faheem Ullah, Adam Johannes Raft, Mojtaba Shahin,

Mansooreh Zahedi, and Muhammad Ali Babar. 2017.

Security Support in Continuous Deployment Pipeline.

In Proc. 12th International

[86] M.V. Mäntylä, B. Adams, F. Khomh, E. Engström, K.

Petersen, On rapid releases and software testing: a

case study and a semi-systematic litera- ture review,

Empirical Softw. Eng. 20 (5) (2015) 1384–1425, doi:

10.1007/ s10664- 014- 9338- 4

[87] Düllmann, Thomas F., Christina Paule, and André

van Hoorn. "Exploiting devops practices for

dependable and secure continuous delivery pipelines."

In 2018 IEEE/ACM 4th International Workshop on

Rapid Continuous Software Engineering (RCoSE),

pp. 27-30. IEEE, 2018

[88] F. Shull, J. Singer, and D. I. Sjøberg "Guide to

Advanced Empirical Software Engineering."

Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2007.

[89] Kassab, M., DeFranco, J.F., Laplante, P.A.: Software

Testing: The State of the Practice. IEEE Software

34(5): 46-52 (2017)

[90] Angara, J.; Prasad, S.; Sridevi, G.. The Factors

Driving Testing in DevOps Setting- A Systematic

Literature Survey. IJST, Jan. 2017. ISSN 0974 -5645

[91] Clokie, Katrina. "A Practical Guide to Testing in

DevOps." (2017).

[92] S. A. I. B. S. Arachchi and I. Perera, ―Continuous

Integration and Continuous Delivery Pipeline

Automation for Agile Software Project

Management,‖ no. May, 2018

[93] L. Lwakatare, T. Karvonen, T. Sauvola, P. Kuvaja, H.

Olsson, J. Bosch and M. Oivo, ―Towards DevOps in

the Embedded Systems Domain: Why is It so Hard?,‖

2016 49th Hawaii International Conference on

System Sciences, 2016.

[94] Mohammad, SikenderMohsienuddin. ―Improve

Software Quality through practicing DevOps

Automation.‖ SikenderMohsienuddin Mohammad,"

IMPROVE SOFTWARE QUALITY THROUGH

PRACTICING DEVOPS AUTOMATION",

International Journal of Creative Research Thoughts

(IJCRT), ISSN (2018): 2320-2882

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1643

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 12 Issue 10, October 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[95] M. Senapathi, J. Buchan and H. Osman, ―DevOps

Capabilities, Practices, and Challenges: Insights from

a Case,‖ EASE’18 Proceedings of the 22nd

International Conference on Evaluation and

Assessment in Software Engineering, pp. 57-67, 2018

[96] Wiedemann, Anna, and Manuel Wiesche. ―Are you

ready for Devops? Required skill set for Devops

teams.‖ (2018)

[97] Cruzes, D.S., Melsnes, K. and Marczak, S., 2019,

July. Testing in a DevOps Era: Perceptions of Testers

in Norwegian Organisations. In International

Conference on Computational Science and Its

Applications (pp. 442-455). Springer, Cham

[98] L. Bass, I. Weber, and Z. Liming, DevOps: A

Software Architect’s Perspective, Addison-Wesley,

2015

[99] Garousi, V., Felderer, M., Mäntylä, M.V. (2019)

Guidelines for including grey literature and

conducting multivocal literature reviews in software

engineering. Information Software Technology 106:

101-121

[100] Sturtevant, D. (2017) Modular Architectures Make

You Agile in the Long Run. IEEE Software, 35(1): p.

104-108

[101] Hasselbring, Wilhelm. ―Software architecture: Past,

present, future.‖ In The Essence of Software

Engineering, pp. 169-184. Springer, Cham, 2018

[102] Silva, M. A., Faustino, J., Pereira, R. And Silva, M.

M. (2018). Productivity gains of DevOps adoption in

an IT team: a case study. In 27th International

Conference on Information Systems Development

Lund

[103] Taibi, Davide, Valentina Lenarduzzi, and Claus Pahl.

―Continuous architecting with microservices and

DevOps: a systematic mapping study.‖ In

International Conference on Cloud Computing and

Services Science, pp. 126-151. Springer, Cham, 2018

[104] A. S. Amaradri and S. B. Nutalapati, Continuous

Integration, Deployment and Testing in DevOps

Environment. 2016.A. S. Amaradri and S. B

[105] E. Diel, S. Marczak, and D. S.

Cruzes,―Communication Challenges and Strategies in

Distributed DevOps‖ 2016 IEEE 11th Int. Conf.

Glob. Softw. Eng., pp. 24-28, 2016

[106] Nybom, Kristian, Jens Smeds, and Ivan Porres. ―On

the impact of mixing responsibilities between devs

and ops.‖ In International Conference on Agile

Software Development, pp. 131-143. Springer, Cham,

2016

[107] Lwakatare, Lucy Ellen, Terhi Kilamo, Teemu

Karvonen, Tanja Sauvola, Ville Heikkilä, Juha

Itkonen, Pasi Kuvaja, Tommi Mikkonen, Markku

Oivo, and Casper Lassenius. ―DevOps in practice: A

multiple case study of five companies.‖ Information

and Software Technology 114 (2019): 217-230

[108] Sujay Honnamane . Rameshkumar Bar Jumpstarting

DevOps with Continuous Testing 2015

[109] Jones, S., Noppen, J. and Lettice, F., 2016, July.

Management challenges for DevOps adoption within

UK SMEs. In Proceedings of the 2nd International

Workshop on quality-aware devops (pp. 7-11)

[110] Chen, Lianping. ―Continuous delivery: Overcoming

adoption challenges.‖ Journal of Systems and

Software 128 (2017): 72-86

[111] Ibrahim, Mahmoud Mohammad Ahmad, Sharifah

Mashita Syed-Mohamad, and Mohd Heikal Husin.

―Managing quality assurance challenges of DevOps

through analytics.‖ In Proceedings of the 2019 8th

International Conference on Software and Computer

Applications, pp. 194-198. 2019

[112] Wang, Y., Pyhäjärvi, M. and Mäntylä, M.V., 2020.

Test Automation Process Improvement in a

DevOpsTeam: Experience Report. arXiv preprint

arXiv:2004.06381

[113] Leite, Leonardo, Carla Rocha, Fabio Kon, Dejan

Milojicic, and Paulo Meirelles. ―A survey of DevOps

concepts and challenges.‖ ACM Computing Surveys

(CSUR) 52, no. 6 (2019): 1-35

[114] Mascheroni, Maximiliano A., and Emanuel Irrazábal.

―Continuous testing and solutions for testing

problems in continuous delivery: A systematic

literature review.‖ Computación y Sistemas 22, no. 3

(2018): 1009-1038

[115] Surendra Naidu Mullaguru ―Changing Scenario of

Testing Paradigms Using DevOps–A Comparative

Study with Classical Models‖, Global Journal of

Computer Science and Technology. 2015

[116] Virmani, M., 2015, May. Understanding DevOps and

bridging the gap from continuous integration to

continuous delivery. In Fifth International Conference

on the Innovative Computing Technology (INTECH

2015) (pp. 78-82). IEEE

[117] Hemant Madaan, (2023).Continuous Testing: The

Key to Quality Assurance in the DevOps

Era.https://devops.com/continuous-testing-the-key-to-

quality-assurance-in-the-devops-era/

Author Profile

Amit Bhanushali is a highly accomplished software

quality assurance professional with over 22 years of

experience in the IT industry. He earned his Master's

in Business Data Analytics from West Virginia

University in 2017. Based in West Virginia, USA, Mr.

Bhanushali is a Senior IEEE Member and has significantly

contributed to software testing research and practice. His expertise

spans automation testing, performance testing, DevOps, and CI/CD

implementation. He has also led testing efforts in complex cloud

environments. In addition to testing, Mr. Bhanushali has authored

several articles exploring cutting-edge topics like artificial

intelligence and machine learning. His published research

demonstrates his thought leadership and impact on software quality

engineering. Mr. Bhanushali's accomplishments have been

recognized through prestigious appointments. He serves as a

reviewer for the Elsevier journal and has been a hackathon judge.

His contributions were further honored in 2023 when he received

the International Achievers' Award. With his sustained record of

excellence across software development, testing, and research, Mr.

Bhanushali continues to be an influential leader in his field. OCR

ID0009-0005-3358-1299

Paper ID: SR231021114758 DOI: 10.21275/SR231021114758 1644

