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Abstract

In this paper, the dispersion of a chemically active solute in a sparsely
packed porous medium is studied. The aim of this work is to study the
effects permeability of the porous medium and a homogeneous chemi-
cal reaction on the dispersion coefficient. A mathematical model is ob-
tained using the Gill – Sankarasubramanian(1970) approach for the three-
dimensional flow of a Newtonian liquid. The velocity profile is obtained
using Darcy – Brinkmann momentum equation. The effect of the chem-
ical reaction rate parameter on the convection coefficient and dispersion
coefficient is discussed. The mean concentration distribution is also com-
puted for various values of the Darcy number and reaction rate parameter
and the results are represented graphically. This problem finds its appli-
cations in the fields of waste water management, chemical engineering,
and biomechanical problems.

Keywords: Dispersion, Newtonian liquid, Chemical reaction, Porous Medium,
Darcy number, Brinkman number.

Introduction

The topic of fluid flow in porous medium has drawn the interest of fluid mechan-
ics community for a long time. This due to the availability of porous materials
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in most of the useful phenomena such as filtering and storage of water, cogen-
eration systems etc. Further, Dispersion in porous medium is one of the very
useful studies in this respect. Early literature in this field have been found in
the works of Taylor (1953) who studied small time dispersion, and Aris (1956)
who studied long time dispersion. But a more generalized approach was later
proposed by Gill and Sanakarasubramanian (1970). Soundalgekar and Gupta
(1977) extended Taylor’s approach to electrically conducting walls. Shivakumar
et al. (1987) studied dispersion porous channel flows to obtain the closed form
solution. Later, Pal (1998) extended the same approach to study the effect
of first order chemical reaction on such a flow. Recently, Madie et al, (2022)
studied dispersion in porous medium with varying dispersion coeffcients.

The above mentioned works have considered two - dimensional flow of fluids.
One can note that, an abundant literature is available with respect to three -
dimensional flows in this regard too. It was Doshi et al (1978) who initially
conducted such a research for studying the effect of the walls on the three -
dimensional flow of the Newtonian liquids. Recently, Manjunath and Siddhesh-
war (2011) considered the couple stress effect on the three - dimensional laminar
dispersion in the rectangular channel flows. In the present work, the unsteady
dispersion is studied for a fully developed flow of the Newtonian liquid through
the rectangular Darcy - Brinkman porous channel, and thereby the effects of
the first order homogeneous chemical reaction on the dispersion coefficient and
on the mean concentration profile are discussed.

1 Mathematical Formulation of the Problem

Figure 1 shows a physical system consisting of an infinitely sparsely packed
porous medium with a cross section of breadth 2b and height 2l. It is assumed
that the flow is unidirectional and influenced by the porous matrix. The drag
force is neglected. Under these conditions a fully developed flow can be governed
by the following momentum equation.

µ
′
(
∂2w

∂x2
+

∂2w

∂y2
)− µ

k
w =

dp

dz
(1.1)

The equation (1.1) is called the Darcy – Brinkmann momentum equation. In
this equation, ρ is the density of the fluid, w represents the filter velocity, µ
is dynamic viscosity, µ

′
is the effective viscosity, k is the permeability of the

porous medium.
The no - slip boundary condition to solve the equation (1.1) is as follows:

w = 0 at x = ±b and w = 0 at y = ±h (1.2)

In the equation (1.2), we have assumed the no-slip boundary condition at both
horizontal and vertical walls. In order to obtain the dimensionless form of the
equation (1.1), we apply the following definitions:

X =
x

b
, Y =

y

h
,W =

w

w∗(−dp
dz )

, P =
p

p∗
, Z =

z

hPe
(1.3)
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where w∗ and p∗ are some reference velocity and reference pressure respectively,
Pe = (w∗h)/D and D is the solutal diffusivity. Using (1.3), the equation (1.1)
takes the form:

1

α2

∂2W

∂X2
+

∂2W

∂Y 2
−AW = −Λ (1.4)

where a = b
h is the aspect ratio, Da = h√

K
, Re = ρuh

µ (−dp
dz ), A = ΛDa2,Λ = µ

µ′ .

Here, Λ is is the Brinkman number, Da is the Darcy number and Re is the
Reynolds number.

The equation (1.2) in non - dimensional form is given by

W = 0 at X = ±1, −1 < Y < 1

W = 0 at Y = ±1, −1 < X < 1
(1.5)

Due to the symmetry of W about X and Y, the equation (1.5) can be replaced
by:

W (X, 1) = 0, 0 ≤ X ≤ 1

W (1, Y ) = 0, 0 ≤ Y ≤ 1
(1.6)

∂W

∂Y
(X, 0) = 0 (1.7)

∂W

∂X
(0, Y ) = 0 (1.8)

We also consider centre-line distribution along the X and Y directions as:

W (X, 0) = η(1−X2), W (0, Y ) = η(1− Y 2) (1.9)

where η to be determined later. Let us assume the Maclaurin series solution of
the equation (1.4) in the following form:

W (X,Y ) =
∞∑
k=0

∞∑
h=0

S(k, h)XkY h (1.10)

On using the equation (1.10) in the equation (1.4) we get,

1

η2
(k + 1)(k + 2)S(k + 2, h) + (h+ 1)(h+ 2)S(k, h+ 2)−A.S(k, h)

= −Λδ(k − 0, h− 0)

(1.11)

along with certain specific coefficients as follows:

S(k, 1) = 0, S(1, h) = 0 (1.12)

A four - term solution of this equation is given by

W (X,Y ) = η − ηX2 − ηY 2 −BX2Y 2 (1.13)

where

B =
a2

2
[Aη + Λ]
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For a fully developed flow which satisfies the above equation, an initial con-
centration is introduced to the source at z = 0 and assuming the solute un-
dergoes first order homogeneous chemical reaction, the corresponding mass -
balance equation is given by

∂C

∂t
+ w

∂c

∂z
= D(

∂2c

∂x2
+

∂2c

∂y2
+

∂2c

∂z2
)−R1C (1.14)

where D is the solutal diffusion coefficient and R1 is the reaction rate constant.
To solve the equation (1.15), we use the following initial and boundary con-

ditions:
C(x, y, z, 0) = ϕ(x, y).δ(z) (1.15)

(
∂C

∂x
)x=0,b = 0 (1.16)

(
∂C

∂y
)y=0,h = 0 (1.17)

lim
z→∞

C = lim
z→∞

(
∂C

∂z
) = 0 (1.18)

In the equation (1.16), δ(z) is the Dirac delta function. The strength of the
initial slug input is given by the following equation.

ϕ(x, y) =

{
C0, for −ys

2 ≤ y ≤ ys

2 , −xs

2 ≤ y ≤ xs

2 .

0, otherwise.
(1.19)

2 The Solute Dispersion Model

A dispersion model for the concentration involving the cross – sectional varia-
tions in terms the derivatives of concentraion was proposed by Taylor (1953).
Aris (1956), then introduced the model in which the dispersion is asymptoti-
cally valid for small values of time. But, at large times after the release of the
slug input, we have C−Cm directly proportional to (∂Cm

∂z ). From such a postu-
late, Gill – Sankarasubramanian (1970) proposed a generalised dispersion model
given by C − Cm =

∑∞
n=1 fn(x, y, t)

∂nCm

∂zn . Hence, let us assume the dispersion
model to be

C(x, y, z, t) = Cmf0(x, y, t) +

∞∑
n=1

fn(x, y, t)
∂nCm

∂zn
(2.1)

where

Cm =
1

bh

∫ h

0

∫ b

0

Cdxdy (2.2)

Equation (2.2) represents the mean concentration.
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Integrating the equation (1.14) with respect to x and y as required by the
equation (2.2) and applying the boundary conditions (1.16) and (1.17), we get

∂Cm

∂t
+

1

bh

∂

∂z

∫ h

0

∫ b

0

wCdxdy = D
∂2Cm

∂z2
−R1Cm. (2.3)

By using the equation (2.1) in the equation (2.3) we get,

∂Cm

∂t
= K1(t)

∂Cm

∂z
+K2(t)

∂2Cm

∂z2
+K3(t)

∂3Cm

∂z3
+ ...−R1Cm (2.4)

where

Kn(t) = − 1

bh

∫ h

0

∫ b

0

wfn−1dxdy + δn2D (2.5)

and δn2 is Kronecker delta.
By substituting the equation (2.1) in the equation (1.14) and by equating

the coefficients of each of (∂
nz

∂zn ) terms to zero and by simplifying we get the
following equations for fn

∂f0
∂t

= D∇2f0 −R1f0 (2.6)

∂f1
∂t

= D∇2f1 − (w +K1)f0 −R1f1 (2.7)

∂fn
∂t

= D∇2fn − wfn−1 +Dfn−2 −
∞∑
i=1

Kifn−i −R1fn (2.8)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 .

On solving the equation (2.4) with suitable boundary conditions and ex-
pressing it in its dimensionless form we get,

f0 =

∞∑
m=0

∞∑
n=0

Amncos(mπY )cos(nπX)exp[−(m2 +
n2

a2
)π2τ ]exp[−α2τ ] (2.9)

where τ = tD
h2 , w∗ = µPe

hρ , α2 = h2R1

D and Amn are given by

Amn =
16

π2mnYsXs
sin(

πmYs

2
)sin(

πmXs

2
). (2.10)

Similarly on solving the equation (2.5) we get its solution in dimensionless
form as follows:

f1(X,Y, τ) =

∞∑
m=0

∞∑
n=0

B
′

mncos(mπY )cos(nπX)[1− exp[−(m2 +
n2

a2
)π2τ − α2τ ]]

(2.11)
Here, B

′

mn are given by the following equation:

B
′

mn =
(−1)m+na2

(a2m2 + n4)
[

16a2

n2m2π6
(ΛDa2η + 2Fη2 + Λ],∀m,n ∈ N. (2.12)
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Now, by putting n = 1 in the equation (2.5) and non dimensionalizing it with
suitable dimensionless ratios we get

K1(τ) =

∫ 1

0

∫ 1

0

Wf0(X,Y, τ)dXdY (2.13)

where K1(τ) = −K1(t)
w∗ .

Now using the equations (1.13) and (2.9) in the equation (2.13) we obtain
the expression for the dimensionless convection coefficient as follows:

K1(τ) =
2a2

m2n2π2
[Λ(Da)2η + Λ]

×
∞∑

m=0

∞∑
n=0

Amncos(mπ)cos(nπ)exp[−(m2 +
n2

a2
)π2 − α2]τ.

(2.14)

Similarly by putting n = 2 in the equation (2.5) and simplifying it to express
in its dimensionless form we obtain the following equation:

K2(τ) = −
∫ 1

0

∫ 1

0

Wf1(X,Y, τ)dXdY +
1

Pe2
, (2.15)

where

K2(τ) = − K2(t)

w∗.h.Pe

On using the equation (2.11) in the equation (2.15) and simplifying, we get

K2(τ) =
4B

π4

∞∑
m=0

∞∑
n=0

B
′

mn

m2n2
cos(mπ)cos(nπ)[1−exp[−(m2+

n2

a2
)π2τ−α2τ ]]+

1

Pe2

(2.16)
where B

′

mn’s are given by the equation (2.12).

To find the mean concentration

We observe thatK3,K4... have numerically too small magnitude to be neglected.
Hence the truncated form of the equation (2.4) is given by:

∂Cm

∂t
= K1(t)

∂Cm

∂z
+K2(t)

∂2Cm

∂z2
−R1Cm (2.17)

Equation (2.17) can be further reduced to get the unsteady diffusion equation
by using the following transformations.

z1 = z + tK1(t), (2.18)

t1 =
tK2(t)

D
, (2.19)
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where

Ki(t) =
1

t

∫ t

0

Ki(γ)dγ (i = 1, 2, 3, ...) (2.20)

By solving the equation (2.17) using the method of infinite Fourier transforms
and by applying the suitable initial and boundary conditions we obtained the
solution in its simplified, dimensionless form as follows:

θm =
e−α2τ√
4πτK2(τ)

exp[
−(Z + τK1(τ))

2

4τK2(τ)
] (2.21)

3 Results and Discussions

In the present research, we have studied the three – dimensional unsteady con-
vective diffusion of a solute that undergoes a first - order homogeneous chemical
reaction in a porous medium using the generalized miscible theory of dispersion
of Gill – Sankarasubramanian (1970) and Doshi et al. (1978).

From the figure 2, we note that the filter velocity is symmetric about the
two axes of X and Y. To see the symmetry more clearly, we have plotted the
figures 3 and 4. From this, it is evident that the velocity does have symmetry
about y axis. Similarly, one can see its symmetry about the x axis. We also
observe that as there is an increase in Brinkman number there is an increase in
the velocity. This is due to the increase in the viscous dissipation causing the
rise in the temperature. However, increase is in the Darcy number is creating
a quite opposite effect. This is due to an increse in the permeability of porous
medium.

Figures 5 - 7 shows that the dimensionless convection co efficient grows
exponentially with the value of the aspect ratio a. We have taken three different
values of the Darcy number, Da = 3, 4, 5... in the figure. As there is a decrease
in the value of Da, there is an increase in the value of K1(τ). Similarly, we note
that the value of K1(τ) increases in the same fashion with the increase in the
value of a for the chemical reaction rate, α = 0.4, 0.8, 1.2. The increase of K1(τ)
with a is steep for large values of both α and Da. This shows that the chemical
reaction reduces the convection coefficient. This result holds true for a uniform
source and when the reaction at the sidewalls is ignored.

Figures 8 and 9 shows that the dispersion coefficient increases with increase
in dimensionless time for small values of time and levels off later. On this
occasion too, we observe that the Darcy number and Brinkman number are
creating opposite effects on the dispersion. we also observed from calculations
that the difference in chemical reaction rate does not make a huge difference in
the values of the dispersion coefficient.

Figure 10 clearly indicates that the increase in the chemical reaction causes
the increase in the dispersion and hence resulting in the decrease in the mean
concentration. Figure 11 shows that the differences in Darcy number causes
no huge difference in attaining the peak of the mean concentration. Figure
12, obviously indicate the same effect as in figure 10, but the value of the
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concentration is more as the point close to the axis. Figures 13 and 14 shows
the Gaussian nature of the mean concentration against the axial distance which
clearly indicates that the concentration distribution on either sides of the axis
is similar. Apart from that, the effects of other parameters remains the same.

Figures

Figure 1: Representation of the rectangular duct and the slug input
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Figure 2: Three - Dimensional plots of the filter velocity distribution, W (X,Y )
for various values of the Darcy number Da, with the Brinkmann number Λ = 2,
and the Aspect ratio a = 1.

Figure 3: Plots of the mid-plane filter velocity, W (X, 0), for various values of Λ
with Da = 3, a = 1.
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Figure 4: Plots of the dimensionless convection coefficient, K1(τ) vs a, for var-
ious values of Da with Λ = 2, a = 1. and the chemical reaction rate parameter,
α = 0.8.

Figure 5: Plots of K1(τ) vs a, for various values of α with Λ = 2, a = 1 and
Da = 3
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Figure 6: Plots of K1(τ) vs a, for various values of λ with α = 0.8, a = 1 and
Da = 3.

Figure 7: Plots of K1(τ) vs a, for various values of Da with Λ = 2, a = 1 and
α = 0.8
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Figure 8: Plots of the scaled dispersion coefficient, (K2(τ)− 1
Pe2 )× 106, vs the

dimensionless time, τ , for various values of Da with α = 0.8, Λ = 2, a = 1.

Figure 9: Plots of (K2(τ)− 1
Pe2 )×106, vs τ for various values of Λ, Da = 3, a = 1

and α = 0.8.
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Figure 10: Plots of mean concentration θm vs τ at axial distance Z = 0.2 for
various values of α with Λ = 2, F = 2, a = 1 and Da = 3

Figure 11: Plots of θm vs τ at Z = 0.05 for various values of Da with Λ = 2, a =
1 and α = 0.8.
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Figure 12: Plots of θm vs τ at Z = 0.05 for various values of α with Λ = 2, a = 1
and Da = 3.

Figure 13: Plots of θm vs Z, for various values of Da with Λ = 2, τ = 1, a = 1
and α = 0.8
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Figure 14: Plots of θm vs Z, for various values of α with Λ = 2, τ = 1a = 1 and
Da = 3

Nomenclature

w(x, y) - Axial Filter Velocity
µ - Dynamic Viscosity
µ

′
- Effective Viscosity

w - Average Fluid Velocity
Λ = µ

µ2 - Brinkman number

Da = h√
K

- Darcy number

Re - Reynolds number
W - Dimensionless filter velocity
Z - Dimensionless axial distance
τ - Dimensionless time
ϕ(x, y) - Strength and location of slug input
C - Local concentration
Cm - Mean Concentration
θm - Dimensionless mean concentration
a - Aspect Ratio
α - Chemical reaction rate coefficient
Pe - Peclet number
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