International Journal of Science and Research (IJSR)
 ISSN: 23197064
 SJIF (2022): 7.942

MINIMUM DEGREE ENERGY FOR SOME CLASSES OF GRAPHS

Shivakumar Swamy C. S.
Department of Mathematics
Government College for Women(Autonomous)
Mandya 571401
INDIA
cskswamy@gmail.com

Abstract

In this paper we find minimum degree energy for graphs like $C_{n} \times P_{2}$, Totalgraph of C_{n}, Totalgraph of regular graph of degree r and Cocktail party graph

Keywords and Phrases : Minimum degree matrix, minimum degree eigenvalues, minimum degree energy of a graph.

2000 AMS Subject Classification : 05C50.

1 Introduction

Let G be a simple graph and let its vertex set be $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $A(G)$ of the graph G is a square matrix of order n whose (i, j)-entry is equal to unity if the vertices v_{i} and v_{j} are adjacent, and is equal to zero otherwise. The eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of $A(G)$, assumed in non increasing order, are the eigenvalues of the graph G.

The energy of G was first defined by I.Gutman[4] in 1978 as the sum of the absolute values of its eigenvalues:

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| .
$$

Ever since the graph energy $E(G)$ of a simple graph G was introduced by I.Gutman [4], there is a constant stream of papers devoted to this topic. Survey of development before 2001 can be found in [5]. For recent developments one can consult [3]. The energy of a graph has close links to chemistry(see for instance [6]. Let G be a simple graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and let d_{i} be the degree of $v_{i}, i=1,2,3, \ldots, n$. Define

$$
d_{i j}=\left\{\begin{array}{lc}
\min \left\{d_{i}, d_{j}\right\} & \text { if } v_{i} \text { and } v_{j} \text { are adjacent }, \\
0 & \text { otherwise }
\end{array}\right.
$$

Then the $n \times n$ matrix $m(G)=\left(d_{i j}\right)$ is called the minimum degree matrix of G. This was introduced and studied in $[1,2]$. The characteristic polynomial of the minimum degree matrix $m(G)$ is defined by

$$
\phi(G ; \mu)=\operatorname{det}(\mu I-m(G))
$$

International Journal of Science and Research (IJSR)
 ISSN: 23197064
 SJIF (2022): 7.942

$$
=\mu^{n}+c_{1} \mu^{n} 1^{1}+c_{2} \mu^{n}{ }^{2}+\ldots+c_{n}{ }_{1} \mu+c_{n},
$$

where I is the unit matrix of order n . The minimum degree eigenvalues $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ of the graph G, assumed in the non increasing order, are the eigenvalues of its minimum degree matrix $m(G)$.

The minimum degree energy of a graph G is defined as

$$
E_{m}(G)=\sum_{i=1}^{n}\left|\mu_{i}\right| .
$$

Since $m(G)$ is real symmetric matrix with zero trace, these minimum degree eigenvalues are all real with sum equal to zero. In this paper, we compute the minimum degree Energy $E_{m}(G)$ of some classes of graphs like $C_{n} \times P_{2}$, Totalgraph of C_{n}, Totalgraph of regular graph of degree r and Cocktail party graph.

2 MIMINIMUM DEGREE ENERGY

In this section we find minimum degree energy of some classes of graphs.

Definition 2.1 If $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are two graphs then the cartesian product of G_{1} and G_{2} denoted by $G_{1} \times G_{2}=G(V, E)$ consists a vertex set $V=V_{1} \times V_{2}$ and $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in V_{1} \times V_{2}$ are adjacent if $x_{1} x_{2} \in E_{1}$ and $y_{1}=y_{2}$ or $y_{1} y_{2} \in E_{2}$ and $x_{1}=x_{2}$.

Theorem 2.1 The minimum degree energy of $C_{n} \times P_{2}$ is

$$
E_{m}\left(C_{n} \times P_{2}\right)=\sum_{i=1}^{n}\left|1+4 \cos \frac{2 \pi i}{n}\right|+\sum_{i=1}^{n}\left|1+4 \cos \frac{2 \pi i}{n}\right| .
$$

Proof. The minimum degree characteristic polynomial of C_{n} is

$$
P_{C_{n}}(\mu)=-2^{n+1}+2^{n} \sum_{k=0}^{\left[\begin{array}{l}
n \\
2
\end{array}\right]}(-1)^{k} \frac{n}{n-k}\binom{n}{k}\left(\frac{\mu}{2}\right)^{n} 2 k .
$$

The minimum degree eigenvalues of cycle C_{n} are the numbers $4 \cos \frac{2 \pi i}{n}$, for $i=1,2,3, \ldots, n$. The minimum degree characteristic polynomial of P_{2} is

$$
P_{P_{2}}(\mu)=\mu^{2}-1
$$

the minimum degree eigenvalues os P_{2} are 1 and 1 . The eigenvalues of $C_{n} \times P_{2}$ are $1+4 \cos \frac{2 \pi i}{n}$

International Journal of Science and Research (IJSR)

and $1+4 \cos \frac{2 \pi i}{n} \quad(i=1,2,3, \ldots, n)$. Thus

$$
E_{m}\left(C_{n} \times P_{2}\right)=\sum_{i=1}^{n}\left|-1+4 \cos \frac{2 \pi i}{n}\right|+\sum_{i=1}^{n}\left|1+4 \cos \frac{2 \pi i}{n}\right| .
$$

Also the minimum degree energy of $C_{n} \times P_{3}$ is

$$
E_{m}\left(C_{n} \times P_{3}\right)=\sum_{i=1}^{n}\left|4 \cos \frac{2 \pi i}{n}\right|+\sum_{i=1}^{n}\left|2+4 \cos \frac{2 \pi i}{n}+\sum_{i=1}^{n} 2+4 \cos \frac{2 \pi i}{n}\right|
$$

Definition 2.2 The total graph $T(G)$ of graph G is that graph whose set of vertices is the union of the set of vertices and of the set of edges of G, with two vertices of $T(G)$ being adjacent if and only if the corresponding elements of G are adjacent or incident.

Let G be regular graph of degree r, having n vertices and m edges, then the minimum degree matrix $m(T(G))$ of total graph $T(G)$ with vertex set $\left(v_{1}, v_{2}, \ldots, v_{n}, e_{n+1}, e_{n+1}, \ldots, e_{m+n}\right)$ can be written in the form,

$$
m(T(G))=\left(\begin{array}{cc}
A & R \\
R^{T} & B
\end{array}\right)
$$

where $A=\left[a_{i j}\right]$,

$$
a_{i j}=\left\{\begin{array}{lc}
2 r & \text { if } v_{i} \text { and } v_{j} \text { are adjacent } \\
0 & \text { otherwise }
\end{array}\right.
$$

$B=\left[b_{i j}\right]$,

$$
b_{i j}=\left\{\begin{array}{cc}
2 r & \text { if } e_{n+1} \text { and } e_{n+j} \text { are adjacent } \\
0 & \text { otherwise },
\end{array}\right.
$$

and $R=\left[r_{i j}\right]$,

$$
r_{i j}=\left\{\begin{array}{cc}
2 r & \text { if } v_{i} \text { and } e_{n+j} \text { are adjacent } \\
0 & \text { otherwise }
\end{array}\right.
$$

Hence the characteristic polynomial $\phi(T(G) ; \mu)$ of $m(T(G))$ is obtained as follows,

$$
P_{T(G)}(\mu)=(2 r)^{m+n}\left|\begin{array}{ccc}
\frac{\mu}{2 r} I+r I & R R^{T} & R \\
-R^{T} & \frac{\mu}{2 r} I+2 I-R^{T} R
\end{array}\right| .
$$

International Journal of Science and Research (IJSR)

where $\rho=\frac{\mu}{2 r}$.

$$
\begin{aligned}
P_{T(G)}(\mu)= & (2 r)^{m+n}\left|\begin{array}{cc}
(\rho+r) I-R R^{T}+\frac{R}{\rho+2}\left(-(\rho+r+1) R^{T}+R^{T} R R^{T}\right) & 0 \\
-(\rho+r+1) R^{T}+R^{T} R R^{T} & (\rho+2) I
\end{array}\right| \\
P_{T(G)}(\mu) & =(2 r)^{m+n}(\rho+2)^{m} \mid \\
& =(2 r)^{m+n}(\rho+2)^{m-n}\left|(m(G))^{2}-(2 \rho-r+3) m(G)+\left(\rho^{2}-(r-2) \rho-r\right) I\right| \\
& =(2 r)^{m+n}(\rho+2)^{m-n} \prod_{i=1}^{n}\left(\rho_{i}^{2}-(2 \rho-r+3) \rho_{i}+\rho^{2}-(r-2) \rho-r\right) \\
& =(2 r)^{m+n}(\rho+2)^{m-n} \prod_{i=1}^{n}\left(\rho^{2}-\left(2 \rho_{i}+r-2\right) \rho+\rho_{i}^{2}+(r-3) \rho_{i}-r\right)
\end{aligned}
$$

where $\rho_{i},(i=1,2,3, \ldots, n)$ are minimum degree eigenvalues of A. Now we prove the following theorems.

Theorem 2.2 If G is a regular graph of degree r, with n vertices and m edges, then

$$
\begin{aligned}
E_{m}(T(G))= & |4 r(m-n)|+n \sum_{i=1}^{n}\left|\left(2 r \rho_{i}+r^{2}-2 r+r \sqrt{r^{2}+4+4 \rho_{i}}\right)\right| \\
& +n \sum_{i=1}^{n}\left|\left(2 r \rho_{i}+r^{2}-2 r-r \sqrt{r^{2}+4+4 \rho_{i}}\right)\right|
\end{aligned}
$$

Proof. The minimum degree characteristic polynomial of $T(G)$ is

$$
\phi(T(G) ; \mu)=(2 r)^{m+n}\left(\frac{\mu}{2 r}+2\right)^{m-n} \prod_{i=1}^{n}\left(\frac{\mu^{2}}{4 r^{2}}-\left(2 \rho_{i}+r-2\right) \frac{\mu}{2 r}+\rho_{i}^{2}+(r-3) \rho_{i}-r\right) .
$$

Hence minimum degree eigenvalues of $T(G)$ are $-4 r[(m-n)$ times $]$ and $2 \rho_{i} r+r^{2}-2 r \pm$ $r \sqrt{r^{2}+4+4 \rho_{i}}[n$ times]. Thus

$$
\begin{aligned}
E_{m}(T(G))= & 4 r(m-n)+n \sum_{i=1}^{n}\left|\left(2 r \rho_{i}+r^{2}-2 r+r \sqrt{r^{2}+4+4 \rho_{i}}\right)\right| \\
& +n \sum_{i=1}^{n}\left(2 r \rho_{i}+r^{2}-2 r-r \sqrt{r^{2}+4+4 \rho_{i}}\right) \mid
\end{aligned}
$$

Theorem 2.3 For all $n \geq 3$, the minimum degree of $T\left(C_{n}\right)$ is,

$$
E_{m}\left(T\left(C_{n}\right)\right)=8(m-n) \left\lvert\,+n \sum_{i=1}^{n}\left(16 \cos \frac{2 \pi i}{n}+4 \sqrt{2+4 \cos \frac{2 \pi i}{n}}\right)\right.
$$

International Journal of Science and Research (IJSR)

$$
\left.+n \sum_{i=1}^{n}\left(16 \cos \frac{2 \pi i}{n}-4 \sqrt{2+4 \cos \frac{2 \pi i}{n}}\right) \right\rvert\, .
$$

Proof. Since C_{n} is a regular graph of degree 2, the minimum degree characteristic polynomial of $T\left(C_{n}\right)$ is

$$
\phi\left(T\left(C_{n}\right) ; \mu\right)=(4)^{m+n}\left(\frac{\mu}{4}+2\right)^{m-n} \prod_{i=1}^{n}\left(\frac{\mu^{2}}{16}-2 \cos \frac{2 \pi i}{n} \mu+16 \cos ^{2} \frac{2 \pi i}{n}-4 \cos \frac{2 \pi i}{n}-2\right)
$$

Hence the minimum degree eigenvalues of $T\left(C_{n}\right)$ is $8\left[\left(\begin{array}{ll}m & n) \text { times }] \text { and } 16 \cos \frac{2 \pi i}{n} \pm\end{array}\right.\right.$ $4 \sqrt{2+4 \cos \frac{2 \pi i}{n}}[n$ times $]$. Thus

$$
\begin{aligned}
E_{m}\left(T\left(C_{n}\right)\right) & =|8(m-n)|+n \sum_{i=1}^{n}\left|\left(16 \cos \frac{2 \pi i}{n}+4 \sqrt{2+4 \cos \frac{2 \pi i}{n}}\right)\right| \\
& +n \sum_{i=1}^{n}\left|\left(16 \cos \frac{2 \pi i}{n}-4 \sqrt{2+4 \cos \frac{2 \pi i}{n}}\right)\right|
\end{aligned}
$$

Theorem 2.4 If G is a cocktail party graph with $n=2 k$ vertices, then

$$
E_{m}(G)=2(n-2)^{2}
$$

Proof. Since G is a cocktail party graph with $n=2 k$, it is regular graph of degree $n-2$. Then minimum degree characteristic polynomial of G is

$$
\phi(G ; \mu)=(\mu-2(k-1)(2 k-2)) \mu^{k}(\mu+2(2 k-2))^{k-1} .
$$

Therefore, the minimum degree eigenvalues of G are $2(k-1)(2 k-2), 0,-2(2 k-2)$ with multiplicity $1, \mathrm{k}$ and $(k-1)$. Hence

$$
\begin{aligned}
E_{m}(G) & =|2(k-1)(2 k-2)|+|0| k+|-2(2 k-2)|(k-1) \\
& =4(k-1)(2 k-2) \\
& =2(n-2)^{2} .
\end{aligned}
$$

Theorem 2.5 For $n \geq 2$, the minimum degree energy of the crown S_{n}^{0} is equal to

$$
E_{m}\left(S_{n}^{0}\right)=4(n-1)^{2} .
$$

International Journal of Science and Research (IJSR)

Proof. The minimum degree characteristic polynomial of S_{n}^{0} is

$$
\phi\left(S_{n}^{0}: \mu\right)=\left(\begin{array}{ll}
\mu^{2} & \left.\left(\begin{array}{ll}
n & 1
\end{array}\right)^{2}\right)^{n}{ }^{1}\left(\mu^{2} \quad\left(\begin{array}{ll}
n & 1
\end{array}\right)^{2}\right), ~
\end{array}\right.
$$

hence minimum degree eigenvalues of S_{n}^{0} are $(n-1)((n-1)$ times $),-(n-1)((n-1)$ times $)$, $(n-$ $1)^{2}(1$ time $)$ and $-(n-1)^{2}(1$ time $)$, thus, minimum degree energy of S_{n}^{0} is

$$
\begin{aligned}
& E_{m}\left(S_{n}^{0}\right)=|n-1|(n-1)+|-(n-1)|(n-1)+\left|-(n-1)^{2}\right|+\left|(n-1)^{2}\right| \\
& E_{m}\left(S_{n}^{0}\right)=4(n-1)^{2} .
\end{aligned}
$$

Acknowledgements:The author is thankful to Prof.Chandrashekara Adiga for his encouragement and suggestions.

References

[1] C. Adiga and C. S. Shivakumar Swamy, Bounds on the largest of minimum degree eigenvalues of graphs, International Mathematical Forum, 5 (37) (2010), 1823-1831.
[2] C. Adiga and C. S. Shivakumar Swamy, Bounds on the largest of minimum degree laplacian eigenvalues of graphs, International Math. Combin., 2 (2011), 130-136.
[3] D.Cvetkovic, M.Doob, H.Sachs, Spectra of graphs. Theory and application,third ed., Johann Ambrosius Barth Verlag, Heidelberg, Leipzig,1995.
[4] I.Gutman, The energy of a graph, Ber.math.stat.Sekt. Forschungsz.Graz 103(1978), 1-22.
[5] I.Gutman, The energy of a graph: old and new results,Algebraic Combinatorics and Applications, A.Betten, A.Khoner, R.Laue, and A.Wassermann,eds., Springer, Berlin (2001), 196-211.
[6] I.Gutman and Polanski, Mathematical Concepts in Organic Chemistry, Springer-verlag, Berlin, 1986.

