International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2022): 7.942

A Clinicopathological Study of Cervical Lymphadenopathy

Ryali Jaya Madhuri¹, K. Ramesh Reddy²

¹Resident of General Surgery Mail ID: ryali.jayamadhuri[at]gmail.com

²Assistant Professor, Department of General Surgery

Abstract: The prime function of lymph node is to deal with antigen, whether this be in the form of organisms or other particulate material, or even soluble antigen. Lymph nodes are strategically placed along the drainage of tissue and body fluids; they are most numerous in those areas which are in direct contact with the exterior of the individual. The analysis of lymph node enlargement in the neck and predicting their clinical behaviour is not an easy task. There can often be diagnostic dilemmas as the diseases that affect the cervical lymph nodes mostly resemble each other. These diseases also include neoplastic lesions, where accurate diagnosis is the key to appropriate management. The study intends to find out systematically the various pathological conditions presenting with enlarged lymph nodes in the neck, also the various modes of clinical presentation and behaviour of these conditions. Relevant investigations have also been studied.

Keywords: Cervical lymphadenopathy, FNAC, histopathological examination, Lymph nodes

1. Introduction

Enlargement of cervical lymph nodes is a common clinical condition encountered by the clinicians. As the enlargement of the lymph nodes more than 1cm indicates a clinical manifestation of regional or systemic disease and serves as an excellent clue to the underlying disease.

Persistent enlargement of the lymph node necessitates detailed investigations to reveal an underlying pathology. Although reasonably accurate diagnosis can be made clinically, histopathological examinations are mandatory to establish and confirm the diagnosis. These can be overcome by doing FNAC, as it is obtained easily and quickly which is simple and cheap and requires only a specialist input (cytologist).

The commonest causes for cervical lymphadenopathy are tuberculous lymphadenitis which is a common manifestation of extra pulmonary tuberculosis, secondaries in the cervical lymph nodes, lymphomas and nonspecific lymphadenitis.

In India, tuberculosis is a major health problem due to enormous social and economic constraints. The human

Levels of Cervical Lymph Nodes

immunodeficiency virus (HIV) epidemic has been associated with an increase in the total incidence of TB and an increased proportion of military, disseminated, and extra pulmonary TB cases including lymphadenitis.

The gold standard biopsy modality in the workup of a neck mass is fine needle aspiration (FNAC). This procedure should always be done before the consideration of any open procedures. FNA can be used for both cytology and culture (in cases in which a suspected infectious neck mass does not respond to conventional antibiotic therapy).

2. Literature Survey

Anatomy of Cervical Lymph Nodes

The human body contains approximately 800 lymph nodes out of which 300 lymph nodes are present in the neck. The various lymph nodes in the neck are organised into levels based on the triangles of the neck. The various triangles help in the localisation of mass lesions and in defining the drainage patterns of lymph nodes as well.

 Surgical Landmarks

 Level I - Submental and submandibular triangles

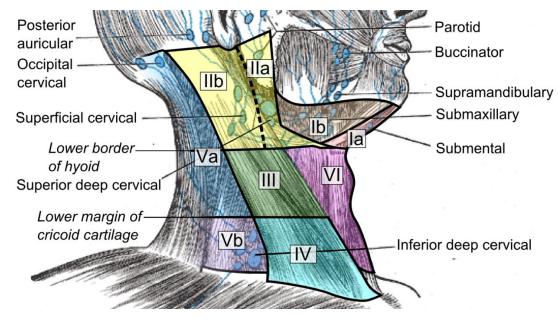
 Relations:
 Superior-lower border of the body of the mandible

 Posterior-posterior belly of digastric

Inferior-hyoid bone

Level II- Upper jugular lymph nodes Relations: S

Superior-base of skull Posterior-posterior border of sternocleidomastoid muscle Anterior-lateral limit of sternohyoid Inferior-hyoid bone


Volume 12 Issue 1, January 2023

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY DOI: 10.21275/SR221230101242

Level III- Middle jugular lymph No	odes
Relations:	Superior-hyoid bone
	Posterior-posterior border of sternocleidomastoid muscle
	Anterior-lateral limit of sternohyoid
	Inferior-cricothyroid membrane ¹⁸
Level IV- Lower jugular lymph noc	les
Relations:	Superior-cricothyroid membrane
	Posterior-posterior border of sternocleidomastoid muscle
	Anterior-lateral limit of sternohyoid
	Inferior-clavicle
Level V- Posterior triangle lymph n	odes
Relations:	Posterior-anterior border of trapezius muscle
	Anterior-posterior border of sternocleidomastoid muscle
	Inferior-clavicle
Level VI- Anterior compartment of	the neck
Relations:	Superior-hyoid bone
	Inferior-suprasternal notch
	Lateral-medial border of carotid sheath on either side
Level VII- Superior mediastinal lyr	nph nodes
Relations:	Superior-suprasternal notch
	Inferior-innominate artery
Description I should WII have been included	lad in the themesic success of lawsup as dee

Recently, Level VII has been included in the thoracic group of lymph nodes.

Patients & Methods

The present study was carried out in the Department of General Surgery, Kamineni Institute of Medical Sciences, Narketpally. The study includes 100 patients who were admitted during the period from October 2019 – September2021.

Inclusion Criteria:

- Patients presenting with palpable cervical lymph node enlargement of >1cm of >3 weeks duration
- 2) Patients more than 8 years of age
- 3) Patients of both genders

Exclusion Criteria:

- 1) Patients less than 8 years of age.
- 2) Patients where FNAC and/or Biopsy of node could not be carried out.
- 3) Patients not willing to undergo any investigations are excluded

3. Results

In the present study, 100 cases were selected in the Department of General Surgery, outpatient and inpatient department in the surgical wards of Kamineni Institute of Medical Sciences, Narketpally, Nalgonda from the period of October 2019- September 2021.

Table 1: Histopathological Diagnosis based on FNAC,
n-100

11–100				
Histopathological diagnosis	Number of cases	Percentage		
Tuberculosis	53	53		
Reactive lymphadenopathy	27	27		
Secondaries	14	14		
Hodgkin's lymphoma	1	1		
Non-hodgkin's lymphoma	5	5		

Amongst cervical lymphadenopathy cases, majority were tuberculosis, followed by reactive lymphadenopathy cases, and the least being lymphomas.

Volume 12 Issue 1, January 2023

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

Table 2: Gender Distribution, n=100			
Gender	Number of cases	Percentage	
Male	58	58	
female	42	42	

Cervical lymphadenopathy- Male:Female ratio is 1.38:1

Table 3: Age Distribution in Both Genders

Age Group (years)	Male	Female	Total
8-20	6	8	14
21-30	19	13	32
31-40	14	8	22
41-50	7	6	13
51-60	7	3	10
>60	5	4	9

Most of the patients presenting with cervical lymphadenopathy were amongst the age group 21-30 years (32%), followed by 31-40 years age group. very few cases presented within the age groups of >60 years

Table 4: Distribution of Cases according to PresentingSymptoms n=100

Symptoms, n=100		
Symptoms	Number of Cases	
Neck Swelling	100	
Pain	15	
Fever	19	
Cough	13	
Loss of Appetite	12	
Loss of Weight	17	
Difficulty in swallowing	2	
Change in voice	1	

Table No. 6: Levels of Lymph Node Distribution, n =100

Site	Tubercular	Reactive	Lymphomas	Secondaries	Total
Level I	9	10	0	0	19
Level II	14	6	3	7	30
Level III	7	1	0	4	12
Level IV	5	3	1	1	10
Level V	18	7	2	2	29
Total	53	27	6	14	100

In Tuberculosis- most cases presented with level v lymph nodes; also being most common etiology of lymph nodal enlargement

- 1) In Reactive lymphadenitis- most cases presented with level i lymph nodes
- 2) In Lymphomas- most cases presented with level ii lymph nodes
- 3) In Secondaries- most presented with level ii lymph nodes

 Table 7: Solitary/Discrete/Matted Presentations of Lymph

Nodes, N=53		
Presentations	Number of Cases	
Solitary	6	
Matted	30	
discrete	64	

Most cases of tubercular cervical lymphadenitis presented with discrete lymph nodes on clinical examination

 Table No. 8: Chest X-Ray Findings in Tubercular Cervical

 Lymphadenitis, n=53

Lymphademus, n=55			
Chest X-Ray Findings	Number of Cases	Percentage (%)	
Positive	5	9.43	
Negative	48	90.57	

Most cases of tubercular cervical lymphadenitis had no findings on chest x-ray

Table 9:	Involvement	of Other	Groups	of Lymph Nod	les,
		n-10			

n=10				
Lymph Node Group	Tubercular Cervical Lymphadenitis (%)	Reactive Lymph Node (%)	Lymphomas (%)	
Cervical+ Inguinal	2	1	1	
Cervical+ Axillary	2	4	0	
Cervical+ Inguinal+ Axillary	0	0	12	

- 1) In tb- 3.7% of cases presented with cervical and axillary lymphadenopathy
- 2) In rl-14.8% of cases presented with cervical and axillary lymphadenopathy
- 3) In lymphomas- 33.3% of all cases had cervical, axillary and inguinal lymphadenopathy

Table 10: Neoplastic Vs Non-Neoplastic Lesions, n=100

Type of Lesion	Number of Cases
Non neoplastic	80
Neoplastic:	
1) Primary	6
2) Secondaries	14

Majority of lesions presenting as cervical lymphadenopathy are non-neoplastic

 Table 11: Main Types of Lymphomas, n=6

Types of Lymphomas	Number of Cases
Non-hodgkin's lymphoma	5
Hodgkin's lymphoma	1

Most lymphoma cases were non-hodgkin's lymphoma-83.3

 Table 12: Distribution of Primary in Malignant Secondaries of Neck, N=14

01 Neck, N=14		
Primary Site of Malignancy	Histopathological Pattern	Number of Cases
Oesophagus	Squamous cell carcinoma	4
Larynx	Squamous cell carcinoma	2
Stomach	Adenocarcinoma	2
Thyroid	Papillary carcinoma	2
Unknown	Squamous cell carcinoma	3
	Adenocarcinoma	1
Total		14

Amongst the secondaries- most primary sites occurred from the oesophagus

 Table 13: Sensitivity & Specificity of FNAC in Diagnosing

 Tuberculous Cervical Lymphadenitis, N=100

Tuberculous Cervical Lymphademus, N=100		
FNAC	Number of Cases	
True positive	40	
False positive	0	
True negative	14	
False negative	37	
Total	100	

Volume 12 Issue 1, January 2023

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Sensitivity= TP/TP+FN= 75.5% Specificity= TN/TN+FP= 100%

Table 14: Sensitivity & Specificity of FNAC in Diagnosing
Reactive Lymphadenitis

FNAC	Number of Cases
True positive	27
False positive	5
True negative	0
False negative	68
Total	100

Sensitvitiy= 100% Specificity= 93.1%

 Table 15: Sensitivity & Specificity of FNAC in Diagnosing Secondaries in Cervical Lymph Nodes

FNAC	Number Of Cases
True positive	13
False positive	0
True negative	1
False negative	86
Total	100

Sensitivity= 92.8% Specificity= 100%

 Table 16: Sensitivity & Specificity of FNAC in Diagnosing

 Lymphome in Cervical Lymph Node

Lymphoma in Cervical Lymph Node	
FNAC	Number of Cases
True positive	5
False positive	0
True negative	1
False negative	94
Total	100
1.1. 0.0.0.1	

Sensitivity= 83.3% Specificity= 100%

4. Discussion

Discussion is mainly based on analysis and observations made regarding presenting symptoms, signs, clinical behaviour, events in 100 cases of cervical lymph node enlargements, investigations, management and postoperative treatment given to patients attending to Kamineni Institute of Medical Sciences, Narketpally, Nalgonda, Telangana, during the period of October 2019-September 2021.

In the present study, which studies 100 cases of cervical lymphadenopathy, 80 were non-neoplastic lesions and 20 were neoplastic lesions

Study	Incidence of Non-	Incidence of Neoplastic
Study	Neoplastic Lesions (%)	Lesions (%)
Shafullah et al.	90.6	9.4
Syed Humayun et al.	90.6	9.4
Present Study	80	20

In the study made by Shafullah and Syed Humayun Shah et al., the incidence of non-neoplastic and neoplastic lesions were 90.6% and 9.4% respectively.

Site Distribution of Cervical Lymphadenopathy:

This study utilised the Memorial Kettering Hospital Classification of neck lymph nodes from Level I to Level VII

It was observed that in tuberculosis:

Level V was most commonly affected- 33.9%

Level II- 26.4%In contrast, in secondaries- Level II group was most commonly involved- 50%

In lymphomas, similarly, Level II group was involved

Study	Site Distribution of Lymph Nodes
Jha BC et al.	LEVEL II
Baskota DK et al	LEVEL V
Present Study	LEVEL V

In the Jha BC et al. series, Level II group was most involved in tuberculosis. The result of this study is comparable to the study made by Baskota DK et al. study, wherein tuberculosis Level V lymph nodes is most commonly involved

Types of Lesions of Lymph Nodes:

Study	Matted	Discrete
Jha BC et al.	38.3%	
Present Study	30%	64%

In this present study, 30% showed matted lymph nodes in tuberculous lymphadenopathy.

64% showed discrete lymph nodes.

Jha BC et al. study showed matted lymph nodes in 38.3% of cases which is comparable with the present study.

Chest X-Ray Positivity Signs:

* *	0
Study	Chest X-Ray Positivity Signs
Aggarwal P et al.	28.3%
Jha BC et al	16%
PRESENT STUDY	9.43%

Studies made by Aggarwal P et al. series showed 28.3% positive signs and Jha BC et al. series showed 16% positivity. Chest X-ray positive signs was seen in 9.43% of cases of present study.

Non-Hodgkin's and Hodgkin's Lymphoma:

Study	NHL:HL Ratio
Peh SC and Shamie et al.	9:1
Raymond Alexandrian	5.02:1
PRESENT STUDY	5:1

In the present study. Non-Hodgkins lesion: Hodgkin's lesion ratio is 5:1

While findings by Peh SC and Shamie et al. had a ratio of 9:1

Raymond Alexandrian study had a ratio of 5.02:1, which has similar results as this present study.

Volume 12 Issue 1, January 2023

Role of FNAC in Cervical Lymphadenopathy: In the present study, the sensitivity and specificity of FNAC in detecting various lesions of cervical lymph node are shown:

Histopathological Diagnosis	Sensitivity (%)	Specificity (%)
Tubercular lymphadenitis	75.8	100
Reactive lymphadenitis	100	93.1
Malignant Secondaries	92.8	100
Lymphomas	83.3%	100

Study	Jha BC et al.	Dandapat MC et al.	Chao SS, Loh KS et al.	Prasad RR et al.
Tubercular Lymphadenitis	Sensitivity- 92.8%	Sensitivity- 83%	Sensitivity- 88%	Sensitivity- 84%
			Specificity-96%	Specificity- 95%
Malignant Secondaries				Sensitivity- 97%
				Specificity- 99%
Hodgkin's Lymphoma				Sensitivity- 80%
				Specificity- 98%
Non-Hodgkin's Lymphoma				Sensitivity- 81%
				Specificity- 96%

In the present study, FNAC sensitivity for tubercular lymphadenitis is low as compared to above studies.

5. Conclusion

Cervical lymphadenopathy is a very common presentation of enlarged neck nodes in the general population. Overall, age at presentation was maximum between 12 years and 30 years. Most common histopathological types include:

- Tuberculous lymphadenitis
- Reactive lymphadenitis
- Malignant secondaries
- Lymphomas

In metastatic lymph node, method of diagnosis was Fine Needle Aspiration Cytology. Lymphomas were diagnosed by Fine Needle Aspiration Cytology and confirmed with excision biopsy. In the present study, Fine Needle Aspiration Cytology was found to be reliable and cheapest method of diagnosis without any significant morbidity and with good patient compliance.

References

- [1] Levine C. Primary disorders of the lymphatic vessels—a unified concept. J. Pediatr Surg. 1989;24:233-240
- [2] Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. *Nature*. 2005;438:946-953.
- [3] Mortimer PS, Rockson SG. New developments in clinical aspects of lymphatic disease. J. Clin Invest. 2014;124:915-921.
- [4] Connell FC, Gordon K, Brice G, et al. The classification and diagnostic algorithm for primary lymphatic dysplasia: an update from 2010 to include molecular findings. *Clin Genet.* 2013;84:303-314
- [5] Mishiima T, Ito Y, Nishizawa N, et al. RAMP1 signaling improves lymphedema and promotes lymphangiogenesis in mice. *J Surg Res.* 2017;219:50-60
- [6] Schmid Geert, Schoenbein, John Ross Jr. Structure function relation in Peripheral circulation. Chapter-6 in Best & Taylor's, Physiological basis of medical practices, 12th Edition, West John
- [7] Williams, Peter L et al. The lymphatic system. Chapter 393, in: Grey's Anatomy. 40 th Edition, England; Churchill Livingstone; 2008. 821.

- [8] Sahana SN. Lymphatic of head in neck. Chapter-1 in Sahana's human anatomy Descriptive and Applied, Vol II, 1st Edition
- [9] Gray's Anatomy, The Anatomical Basis of Clinical Practice, 41st ed
- [10] Kim LH, Peh SC, Chen KS. Pattern of lymphnode Pathology in a private laboratory:Malays J Pathol, 1999 Dec; 21(2); 87-93
- [11] Aruna D, Mahopatro S. Correlation of FNAC with histopathological study in peripheral lymph node lesions. Indian J PatholMicrobiol: 1999;30(2); 96-98
- [12] Leung AK, Davies HD,Cervical lymphadenitis: etiology, diagnosis, and management. Current Infectious Diseases Rep. 2009 May;11(3):183-9
- [13] Ananthnarayanan R, Jayaram CK Paniker. Mycobacterium- Tuberculosis. Chapter 39, in: Textbook of Microbiology, 6 th Edition Chennai; Orient Longman: 2003. 32-
- [14] Chakroborty P. "Spirocheates", Chapter- 44. Miscellaneous pathogenic bacteria, Chapter- 46, in: A Textbook of Microbiology, 3 rd Edition, Calcutta; New Central Book Agency: 2006. 351
- [15] Jindal n, Devi B, Aggarwal A. Mycobacterial cervical lymphadenopathy in childhood. Post- graduate Med. J 2002; 87: 182-3
- [16] Nataraj G, Kurup S, Pandit A, Mehta P. Correlation of FNAC, smear and culture intubercular lymphadenitis: a prospective study: Indian J Pathol; 2001, 82:96-97
- [17] Arora B, Arora DR, FNAC in diagnosis of tubercular lymphadenitis: Indian J Medical Research 1990 May; 91: 189-92
- [18] Kim LH, Peh SC, Chen KS. Pattern of lymphnode Pathology in a private laboratory:Malays J Pathol, 1999 Dec; 21(2); 87-93
- [19] Aruna D, Mahopatro S. Correlation of FNAC with histopathological study in peripheral lymph node lesions. Indian J PatholMicrobiol: 1999;30(2); 96-98
- [20] Dandapat MC, Mishra BM, Dash SP, Kar PK. Peripheral lymph node tuberculosis: a review of 80 cases. Br J Surg 1990 Aug; 77(8): 911-12

Authors Profile

Ryali Jaya Madhuri, Resident of General Surgery. Mail ID: ryali.jayamadhuri@gmail.com, Phone number: 8498890006

K. Ramesh Reddy, Assistant Professor, Department of General surgery

Volume 12 Issue 1, January 2023

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY