
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 1, January 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

High Performance and Scalable Microservices

Architecture using Kubernetes

Balasirisha J
1
, Mounika K

2
, Mahim Saxena

3
, Kishore SVSRK

4
, Ravi Kumar MV

5

1balasirisha_j[at]nrsc.gov.in

2mounika_k[at]nrsc.gov.in
3mahim_saxena[at]nrsc.gov.in

4kishore_svsr[at]nrsc.gov in
5ravikumar_mv[at]nrsc.gov.in

Abstract: Microservices have become increasingly popular over the past few years, and it’s not quite a surprise that the Microservices

application architecture continues to invade software design. Microservices’ architecture is emphasized in the industry and has gained

prominence for its dynamic and agile qualities in API management and execution of highly defined and discrete tasks. Microservices

are more adaptable and less complicated to maintain over time. However, the solutions with Microservices are not without their

challenges. One of the significant challenges is dealing with massive event ingestion scenarios. If the microservices are overwhelmed

with the volume of incoming events, issues like contention, lack of stability, and performance issues can all arise. This is where the auto

- scaling capabilities associated with Kubernetes become usable and effective. Based on the load experienced by the application, auto -

scaling allows applications to add or remove computing resources. When the load is high, for the application to keep up with the load,

additional resources are to be provisioned. When the load is low, resources are revoked, ensuring that no resources are idle. When

implemented correctly, auto - scaling allows applications to use fewer resources while maintaining application performance. Among the

most popular open - source tools for enabling microservices with automation, this paper describes the auto - scaling mechanism that

delivers applications with better performance. In this paper, the need for the development of a scalable environment along with open -

source monitoring and alert management tools that help proactive system management is proposed. This paper serves as a reference for

implementing microservices architecture.

Keywords: Microservices, Kubernetes, Autoscaling, Monitoring, Alert – Management

1. Introduction

The Microservices style of architecture develops complex

application software from small, individual applications that

communicate with each other using language - independent

interfaces (APIs). Microservices break down complex tasks

into smaller processes that work independently. Building an

application using microservices increases the number of

microservice instances during high load and reduces them

during low load times.

Micro - services implement the service - oriented

architecture model that allows application deployment in

highly distributed patterns to provide flexibility, agility, and

scale. Cloud - native platforms with containers and

serverless deployments help realize the flexibility, agility,

and scalability of the microservices architecture efficiently.

Microservices - based applications can be deployed within

containers, which are completely virtual operating system

environments that provide processes with isolation and

dedicated access to underlying hardware resources. It

ensures that issues in one microservice can’t affect others.

Containers, on the other hand, provide a more light weighted

way to isolated execution of service instances. It is much

more convenient to distribute the load, create highly -

available deployments, and manage upgrades while easing

development and team management.

However, the solutions with microservices have their own

challenges. One of the significant challenges is dealing with

massive event ingestion scenarios wherein thousands to

millions of requests must be processed simultaneously,

ensuring the health of the backend infrastructure. Issues like

Contention, lack of stability, and performance issues can

arise if the microservices are overwhelmed. This is where

Kubernetes can be an effective solution to address these

issues. Kubernetes is an open - source container

orchestration platform that helps in the management and

discovery of containers of services that make up an

application and facilitates automation. The containers are

grouped into logical units, which are easy to scale using auto

- scaling. It is also essential to know whether to scale up or

down the infrastructure at any given time.

2. Literature Survey

Microservices are the most scalable way of developing

software. But, a lot matters in choosing the correct way to

deploy microservices: (i) processes or containers? (ii) Run

on servers or use the cloud? (iii) Is Kubernetes required?

When it comes to microservice architecture, there are a lot

of options, and it is hard to know which is the best. It is

crucial to define a target architecture before beginning to

scale microservices; otherwise, the IT landscape may

devolve into chaos and exhibit worse properties than the

existing monolithic applications.

Microservice applications can run in many ways, with

different tradeoffs and cost structures. What works for small

applications spanning a few services will likely not suffice

for large - scale systems. From simple to complex, here are

the five ways of running microservices:

1) Single machine, multiple processes: buy or rent a server

and run the microservices as processes.

Paper ID: SR221229142739 DOI: 10.21275/SR221229142739 85

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 1, January 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2) Multiple machines, multiple processes: the obvious next

step is adding more servers and distributing the load,

offering more scalability and availability.

3) Containers: packaging the microservices inside a

container makes it easier to deploy and run along with

other services. It’s also the first step towards

Kubernetes.

4) Orchestrator: orchestrators such as Kubernetes or

Nomad are complete platforms designed to run

thousands of containers simultaneously.

5) Serverless: run code directly on the cloud.

Figure 1: Different ways to run Microservices

Orchestrators are platforms specialized in distributing

container workloads over a group of servers. The most well -

known orchestrator is Kubernetes.

Orchestrators provide, in addition to container management,

extensive network features like routing, security, load

balancing, and centralized logs — everything needed to run

a microservice application. Kubernetes is the most popular

option for organizations making heavy use of containers; it

provides the benefits of load balancing, self - healing, and

automated rollouts and rollbacks.

Figure 2: Kubernetes Architecture

Though microservices are deployed on containers, tools to

monitor everything happening inside their clusters

successfully are required. For this, the application has to

expose metrics to track the load, and an agent is used to

display the container/pod status on the dashboard. This

paper discusses Prometheus – a service that intermittently

polls a set of configured targets to fetch their metric values.

And Grafana – a pre - configured dashboard that allows

visualization of the most important metrics. After all, data in

a graphic format is the quickest for us to understand and

figure out what to do next. Grafana integrated directly with

Prometheus, allows the building of helpful dashboards for

microservice applications.

The focus here will be on the Horizontal Pod Autoscaling of

Kubernetes, which is used to automatically scale the number

of pods on deployments, replica - sets, stateful - sets or a set

of them, based on observed usage of CPU, memory, or using

custom metrics. To understand the deployment architecture,

concepts like System Metrics, Custom Metrics,

backpressure, etc. have to be studied and looked into.

Paper ID: SR221229142739 DOI: 10.21275/SR221229142739 86

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 1, January 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

System Metrics

The runtime environment generates metrics at all levels of

abstraction of the computing node, from hardware metrics to

application metrics. An auto - scaling system needs these

metrics to measure and analyze application performance and

check if SLA violations are occurring or are likely to happen

in the future. Different auto - scaling systems look at

different metrics, and the simplest auto - scalers look at low

- level metrics such as CPU utilization. This type of auto -

scaler is then usable for every application as every

application generates CPU utilization metrics.

Custom Metrics

Custom metrics, also known as application - specific

metrics, define and collects information which the built - in

basic Monitoring metrics cannot. Such metrics can be

captured using an API provided by a library to instrument

the code, which can then be sent to a backend Monitoring

application. In this deployment solution, the Arrival rate

custom metric (number of records arriving per second) has

been used for auto - scaling.

Backpressure

A pod in a microservice architecture can be defined as the

smallest object representing a microservice in action. It

usually contains one container but can be a group of more

than one. The ability of the system to function, especially

under heavy - load scenarios, is a crucial factor while

increasing the Pod instances. It could be compromised due

to extended memory usage of the Pod containers, thereby

leading to overall poor performance of the system. In such

scenarios, the system deliberately pushes back the

overflowing requests to avoid an overload. This resistance to

accept new events or decreased system responsiveness to

deliver the desired outcome is termed as Backpressure.

Since the demand exceeds the system's capacity to process

them, if it is not mitigated in time, it will impact the running

processes.

Although Kubernetes dramatically simplifies the

deployment of containerized applications, its multi - level

architecture and multiple abstraction layers (e. g., pods,

services) introduces new complexities to the daily tasks of

application monitoring. Static monitoring solutions designed

for standalone desktop applications are not suitable for

Kubernetes because it is a distributed environment where

numerous applications and services are spread across

multiple cluster nodes. The platform requires monitoring

tools that can dynamically capture container events and be

tightly integrated with Kubernetes schedulers and

controllers.

Capturing, Visualizing and Monitoring Backpressure

System operators need to monitor backpressure signals

because they indicate a system is nearing its capacity limit.

Leading indicators like response times and queue sizes are

essential because they give you time to respond proactively

before the system becomes unavailable. Many solutions

exist for monitoring Kubernetes clusters, viz., Heapster,

Prometheus, and several proprietary Application

Performance Management (APM) vendors like Sysdig,

Datadog, and Dynatrace. Efficient auto - discovery features

and support for containers and Kubernetes make Prometheus

a perfect choice for monitoring Kubernetes applications and

cluster components. Prometheus is an open - source

monitoring toolkit that polls a set of configured targets to

fetch metric values intermittently. Prometheus can be

configured to scrape metrics from applications, and once it

has collected the data, it stores and indexes it in such a way

that it can be queried in meaningful ways. Once a curated

list of queries is compiled, it can be used to create

dashboards using Grafana to render system metrics

monitored by Prometheus. Grafana is a multi - platform

analytics and visualization web application that acts as a

single pane of glass for displaying all of the system’s metric

data. Prometheus collects rich metrics and provides a

powerful querying language; Grafana transforms metrics

into meaningful visualizations. Both are compatible with

many, if not most, data source types. It is prevalent for

DevOps teams to run Grafana on top of Prometheus.

Prometheus provides insights into Kubernetes cluster and

containerized applications, but a separate tool is required to

communicate when any problem occurs. Prometheus

Alertmanager will send notifications to configured

notification channels when the Kubernetes cluster meets pre

- configured events and metrics rules in the Prometheus

server. These rules can include sending critical messages

when an unhealthy node is detected or warning when node

resource consumption is reaching its limit. Alertmanager

mechanism can be configured to send event notifications to

a number of channels, including email, Slack, webhook, and

other common platforms. Furthermore, Alertmanager offers

the ability to group related alerts into a single notification

and to suppress alerts triggered by problems for which

notices have already been sent.

Backpressure Management Mechanism in Microservices

The preferable solution of developing in - built capacities in

individual systems does not work in favor of large - scale

service architectures, thanks to the dynamic nature of the

cloud and containers. To ensure stability and smooth

functioning of processes, interactions at the client - server

level need to be controlled along with the systematic

addition of new instances, which can be done using the

below backpressure management.

Horizontal Pod Autoscaler (HPA)

The horizontal pod auto - scaler automatically adds or

removes pods based on a particular metric. If the workload

can be scaled, HPA responds to the resource requirements

by increasing or decreasing the number of Pods. It ensures

consistent performance irrespective of the situation, leading

to cost - effective, qualitative results. A few instances when

HPA adds more Pods are when the memory threshold is

exceeded, an increased rate of client requests per second is

recorded, or while servicing external requests. Each

workflow has a different HPA object, which regularly

checks the pre - decided threshold of the metrics to

accommodate changes at the earliest.

3. Methodology

System architecture

The architecture is based on a server - client type in which a

server responds to more clients. The server and the client run

Paper ID: SR221229142739 DOI: 10.21275/SR221229142739 87

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 1, January 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

web microservices, the communication protocol being

HTTP and the data format being JSON. This architecture is

useful in distributing and dynamically redistributing

resources between clients. This architectural model is used

to build large, complex, and scalable applications

horizontally consisting of small, independent, and decoupled

processes communicating with each other using application

programming interfaces (API).

Figure 3: Deployment Architecture

The application architecture was built using the Java Spring

Boot framework. The orchestrator service component

ensures, on the one hand, the communication between the

server and the clients, sending tasks from the server to the

clients. On the other hand, it monitors the status of incoming

requests.

The proposed system could be split into six different

modules:

1) Deploying Microservices on containers and orchestrating

them with Kubernetes: To run the containerized

workloads and services in a self - contained execution

environment, automation is the key process for managing

and scheduling the applications. This includes

management of Containers lifecycle, viz., provisioning,

deployment, scaling, networking, and load balancing.

2) Creating a Custom Metrics API Service in Kubernetes:

This allows accessing both system metrics and custom

metrics by third - party monitoring adapters and

pipelines. With custom metrics and horizontal autoscaler,

resource metrics can be tracked and scale thresholds for

the containers. Accordingly, the workloads can be

adapted.

3) Prometheus – This is a service to pull custom metrics

exposed from applications, stores them, and provides an

easy way to query them which works seamlessly with

Kubernetes. This tool scrapes the metrics, translates them

to monitoring format, and pushes them to monitoring

API. Metrics from pods/ clients are captured through

HTTP requests. Services do not have to continuously

send data - it is pulled by Prometheus server.

4) Configuring HPA (Horizontal Pod Autoscaling): HPA

monitors the resource requests from the application

workloads by querying the metrics. Custom metrics

pipeline feeds metrics to HPA in Kubernetes. The target

threshold value of HPA definition for the application

workloads is compared against the average resource

utilization. If the target threshold is reached, then HPA

will scale up the resources for deployment to meet higher

demands. If the target threshold is below the threshold, it

will scale down the deployment.

5) Alert Manager - Alert manager is configured that handles

all the alerting mechanisms for Prometheus metrics.

Certain rules can be configured on custom metrics using

Prometheus, which, if broken, will notify about the

problem, and the end user can be notified with emails or

other tools. Further, Alert manager offers the ability to

group related alerts into a single notification and to

suppress alerts triggered by problems for which

notifications have already been sent.

6) Grafana - An open - source lightweight dashboard tool is

configured that is integrated with Prometheus, which

allows building helpful dashboards for running

applications. This dashboard provides charts, graphs, and

alerts for easier interpretation and understanding.

Paper ID: SR221229142739 DOI: 10.21275/SR221229142739 88

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 1, January 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Monitoring System Design

4. Conclusion

This paper discusses various aspects of auto - scaling and,

specifically, its application in Microservice architecture.

With Kubernetes, the microservice architecture deployment

can be automatically managed and scaled. Kubernetes

offered features like self - healing, service exposure & load

balancing, scalability, and zero downtime were experienced.

With microservice architecture, a more manageable,

independently deployable, and more reliable setup is

established with benefits like development velocity and

product quality thereby increasing the modularity aspect.

Thus, Kubernetes integrated with microservice architecture

provided a more resilient and fault - tolerant framework with

high availability and scalability.

5. Future Work

In the current architecture, horizontal pod auto scaling was

implemented to handle multiple requests of varying

requirements. But the number of requests is never fixed, and

the need for allocating the right size of the cluster takes high

priority. This issue of traffic impacts the overall application.

In such cases, the Cluster Autoscaler (CA) plays an essential

part. Based on Kubernetes (K8S) scheduling statistics,

which factor in various indicators such as the number of Pod

instantiations, the Cluster Autoscaler optimizes the cluster

size. When Horizontal Pod Autoscaling decides to scale out

the number of Pod instances, the new Pods begin to be

commissioned. While this is the ideal approach, if the

process continues to increase the number of Pods, it can fail

as there will be no instance ready for the new Pod, thereby

causing the exhaustion of the cluster. This project can be

extended to use Cluster Autoscaler to provision a new

compute unit/node and adds it to the cluster.

References

[1] Backpressure, <https: //flink. apache.

org/2021/07/07/backpressure. html>

[2] Kubernetes, <https: //kubernetes. io/>

[3] Architecting Kubernetes clusters, <https: //learnk8s.

io/kubernetes - autoscaling - strategies>

[4] Horizontal Pod Autoscaler, <https: //kubernetes.

io/docs/tasks/run - application/horizontal - pod -

autoscale/>

[5] Kubernetes HPA, <https: //towardsdatascience.

com/kubernetes - hpa - with - custom - metrics - from -

prometheus - 9ffc201991e>

[6] Prometheus, <https: //prometheus. io/>

[7] Prometheus - adapter, <https: //github. com/kubernetes -

sigs/prometheus - adapter>

[8] Grafana On Kubernetes, <https: //devopscube.

com/setup - grafana - kubernetes/>

[9] Monitoring A Spring Boot Application, <https:

//tomgregory. com/monitoring - a - spring - boot -

application - part - 4 - visualisation - and - graphing/>

Author Profile

Balasirisha J, working as Scientist/Engineer - 'SC' in

Systems and Infrastructure Solutions Group at

National Remote Sensing Centre, ISRO. Email:

balasirisha_j[at]nrsc.gov.in

Mounika K, working as Scientist/Engineer - 'SE' in

Systems and Infrastructure Solutions Group at

National Remote Sensing Centre, ISRO. Email:

mounika_k[at]nrsc.gov.in

Mahim Saxena, working as Scientist/Engineer - 'SC'

in Systems and Infrastructure Solutions Group at

National Remote Sensing Centre, ISRO. Email:

mahim_saxena[at]nrsc.gov.in

Paper ID: SR221229142739 DOI: 10.21275/SR221229142739 89

https://tomgregory.com/monitoring-a-spring-boot-application-part-4-visualisation-and-graphing/
https://tomgregory.com/monitoring-a-spring-boot-application-part-4-visualisation-and-graphing/
https://tomgregory.com/monitoring-a-spring-boot-application-part-4-visualisation-and-graphing/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 1, January 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Kishore SVSRK, working as Group Head, Systems

and Infrastructure Solutions Group at National Remote

Sensing Centre, ISRO with a working experience of

more than 20 years. Email: kishore_svsr[at]nrsc.gov.in

Ravi Kumar MV, working as Deputy Director,

Management Systems Area at National Remote

Sensing Centre, ISRO with a working experience of

more than 25 years. Email: ravikumar_mv[at]nrsc.

gov.in

Paper ID: SR221229142739 DOI: 10.21275/SR221229142739 90

