
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 9, September 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Towards a QoS - Aware ODP Computational

Viewpoint

Oussama Mohamed REDA

Algorithms, Networks, Intelligent Systems and Software Engineering (ANISSE) Research team Department of Computer Sciences,

Faculty of Sciences of Rabat, Mohammed V University in Rabat, Morocco

o.reda[at]um5r.ac.ma

Abstract: QoS characteristics are fundamental to the expression of QoS requirements in ODP system. A QoS characteristic represents

an identifiable ad quantifiable aspect of a system, a service, or a resource. Examples of usual temporal QoS characteristics relative to

interactions between two objects are: transit delay, jitter and throughput. Specifications of such temporal characteristics require two

interaction points. The ODP computational model of interfaces is complex and contains inconsistencies which make specification of

QoS on computational entities a difficult task. End-to-end QoS Characteristics can only be defined on primitive (atomic) computational

entities. This work proposes a simple model of primitive computational interfaces and interactions which intrinsically support the

definition (specification) of end-to-end QoS Characteristics in a computational specification.

Keywords: ODP, QoS, Computational Viewpoint, Interface, Interaction, Computational specification

1. Introduction

The Reference Model (RM) of Open Distributed

Processing (ODP) [1], [2], [3], [4], defines a set of

concepts and architecture for the construction of ODP

systems in terms of five viewpoints. The computational

viewpoint supports three models of interactions, each of

which has an associated kind of computational interface:

signals and signal interfaces, flows and stream interfaces,

operations and operation interfaces.

Qos (Quality of service) specification on interfaces and

interactions in the computational viewpoint is difficult.

Indeed, RM-ODP states QoS characteristics can be

specified only on primitive (signal) computational entities.

In order to specify QoS on operations and flows they have

to be refined into primitives. The computational viewpoint

prescribes rules for those refinements. However, the

semantics of conceptual relationships between operations

flows and signals are not well defined in the RM-ODP

computational view-point.

Works [5], [6], [7], [11] have raised those semantic

relationships issues, then proposed in reliable solutions.

Based on these works [8] [12] [13] have partially

proposed a new conceptual model of interfaces (QoS-

capable interfaces) for the specification of QoS in the

computational viewpoint. The aim of the current work is

the completion of the conceptual model of QoS-capable

ODP computational interfaces.

The reminder of the paper is as follows. Section 2,

presents the computational model interfaces and

interactions as well as how QoS is treated in the

computational viewpoint. Section 3 defines concepts

related to QoS specification on interactions and interfaces

necessary to understand the following sections. Section 4

is the core of this work. It proposes a new conceptual view

on flows which is flows quantification. Section 5 shows

how flows quantification allows support of Qos

specification simply in the computational viewpoint. A

conclusion and perspectives end the paper.

2. QoS in the Computational Viewpoint

The computational viewpoint is directly concerned with

the distribution of processing but not with the interaction

mechanisms that enable distribution to occur. The

computational specification decomposes the system into

objects performing individual functions and interacting at

well defined interfaces.

Interactions between computational objects are essentially

asynchronous and can take three forms:

• Operations, that are similar to procedures, and are

invoked on designated interfaces;

• Flows, that are abstractions of continuous sequences of

data between interfaces;

• Signals, which are elementary atomic interactions.

Operations reflect the client/server paradigm. An

operation is an interaction between a client object and a

server object which requests (an invocation) the

performance of some function by the server. There are

two types of operations:

• An interrogation, in which the server returns a response

(a termination) to the client request (See Figure 1);

• An announcement, in which there is no response to the

client request.

Signals are the lowest level of description of interactions
between computational objects. A signal is a pairwise,
atomic shared action resulting in one-way communication
from an initiating computational object to a responding
computational object (in this context responding means
accepting the communication). This means:

Paper ID: SR22916215308 DOI: 10.21275/SR22916215308 971

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 9, September 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• That the signal occurs at a defined point in time and,

hence, is a point of reference for measurement purposes

(e. g. in QOS observations);

• That a failure is identical for, and visible to, all

participants.

Figure 1: Interactions refinements in the Computational viewpoint of RM-ODP

An operation or a flow can be explained in terms of a

combination of several signals. An interrogation, for

instance, can be understood as a sequence of signals [3]

[8]: invocation emission (by the client object), invocation

receipt (by the server object), termination emission (by the

server), termination receipt (by the client) (See Figure 1).

In contrast, since the exact semantics of flows is not given

in the computational model, their map-ping on signals is

not defined. Modeling operations or flows in terms of

signals becomes necessary in order to define end-to-end

QOS characteristics [3] [8], and the operation of

multiparty binding and bindings between different kinds

of interface (e. g. stream to operation interface bindings).

3. From Parameterized interactions to QoS-

capable interfaces

This section provides definitions of some concepts as well

as propositions which are necessary to understand the

reminder of the paper. From now on, we intently drop the

term signature there where it is found it will lighten the

definitions of the introduced concepts. Wherever the term

interaction or interface is present, it is implicitly followed

by the term signature without explicitly mentioning it. We

also drop the terms interaction and interface whenever

there is no surrounding ambiguity in the context they are

dropped in. We let by be the contracture of by and only by.

Definition 1:

An Action Template is defined by the name of the action

(interaction) and its causality.

Proposition 1:

All Interaction Signatures are Action Templates.

Proof:

See [9], [10].

Proposition 2:

Interaction Signatures but flows are parameterized (i. e

contain finite set of parameters as well as their name and

numbers).

Proof:

See [9], [10].

Definition 2:

A Parameterized interaction signature is an Action

Template with a finite set of parameters as well as their

numbers.

Corollary 1: See [9], [10].

1) Interaction signatures are of two kinds: Parameterized

interactions signatures and flow interactions
signatures.

2) Operation Interfaces signatures and Signal Interfaces

signatures are composed by Parameterized interactions

signatures.

3) A stream interface signature is composed by a set of

flowing interactions signatures.

Definition 3:

See [9], [10].

A Functional Interface Signature is an interface signature

composed by Parameterized Interaction signatures.

Corollary 2: See [9], [10].

Interface Signatures are of two kinds, namely; Functional

Interface Signature and Stream Interface Signature.

Definition 4:

A QoS-labeled interaction is a Primitive Parameterized

interaction [12], [13], [15].

Paper ID: SR22916215308 DOI: 10.21275/SR22916215308 972

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 9, September 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Definition 5:

A QoS-capable interface is a Functional interface

signature composed by QoS-labeled interactions [12],
[13], [15].

Definition 6:

An outgoing interaction is a QoS-labeled interaction

going from an client QoS-capable interface out to a server

QoS-capable interface or vice-versa [12], [13], [15].

Definition 7:

An incoming interaction is a QoS-labeled interaction

coming from a server QoS-capable interface into an client

QoS-capable interface or vice-versa [12], [13], [15].

4. Flow quantification for computational QoS

specification

Quantification of flowing interactions

In order to complete the conceptual model of QoS-

Capable computational interfaces, we need to model flows

as primitives. Flows can be used to model, for example,

the flow of audio or video information in a multimedia

application or in voice-based telecommunication services,

or the continuous flow of periodic sensor readings in a

process control application. Modeling operations or flows

in terms of primitives becomes necessary in order to

define end-to-end QOS characteristics and the operation

of multiparty binding and bindings between different

kinds of interface (e. g. stream to functional interface

bindings) [3].

In the previous section, we have defined primitives as

incoming and outgoing inter-actions. Thus modeling flows

in terms of primitives comes down to modeling flows in

terms of both incoming and outgoing interactions.

However, we have seen in the previous sections that

incoming and outgoing interactions are parameterized

interactions (discrete interactions). In contrast, flows are

defined in the computational model as continuous

sequences of interactions (continuous flow of data).

Indeed, the computational language defines a flow by two

characteristics, namely its name and its type, which

specifies the nature and format of data exchanged. Thus,

an ODP flow defines no parameters in the computational

language.

The exact semantics of flows is not given in the

computational model of RM-ODP and their mapping on

primitives is not defined. In order to model flows in terms

of primitive parameterized interactions (incoming and

outgoing interactions) we need to "parameterize" flows.

«Parmeterizing» flows come down to transform it to a

parameterized interaction (an interaction with parameters).

Figure 2: Conceptual model of QoS-capable interfaces

In order to parameterize flows we refine flows into a set of

subflows (fragments). Each subflow constitutes a

parameter on its own. An analogue example of this

concept is the fragmentation processed by the transport

layer in a data network. For instance, TCP/IP networks do

fragment data received from higher layers (application

layers) in order to inject (data) into the IP layer. Thus,

even the data is a continuum from the higher layers point

of view, it is no more viewed such as such in the IP layer.

An example of this is are IP telephony networks which

consider voice no more as continuous flows of bits but

rather as a set of data fragments transmitted from a router

to another.

This is the same concept we introduce in the

computational language so as that flows do no more be

conceived such as continuous sequences of interactions

but rather as a set of huge data quantities. Since in the

current work we are only considering flows in the

computational viewpoint, the way to parameterize

(fragment) flows is not our concern since this must be

treated in the engineering viewpoint.

Now that we have parameterized flows (flows parameters

are the fragments pieces of flows) they can be considered

as parameterized interactions. Since they are

parameterized interactions they can be defined as

functional interfaces (definition 3 in previous section). It

is shown in [] that a functional interface composed by

Parameterized interactions can be redefined by primitive

parameterized interactions (PIS). Thus, from definition 4

in previous section we can consider a flow as PIS. and

consequently as QoS-labeled inter-action. From definition

5 in previous section we can consider stream interfaces as

QoS-capable interfaces. Consequently, computational

objects can interact now only through QoS-capable

interfaces and thus, QoS characteristics can be specified

on every kind of computational interactions including

"flows" (See Figure 1).

Paper ID: SR22916215308 DOI: 10.21275/SR22916215308 973

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 9, September 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Definability of QoS characteristics on computational

entities

Interactions between objects can be modeled implicitly or

explicitly through a binding object to which are attributed

a set of QoS characteristics. An interaction not occurring

through a binding object can be considered as occurring at

single location (interface). This limits the set of QoS

requirements on an interaction (for example, a request

response service) to declaration referring to a single point.

Thus, throughput, integrity and turn-around trip delay

statements can be defined. On the other hand, QoS

statements relative to relatives to transit delay or jitter

require the knowledge of two interaction points (two

interfaces). Whenever a QoS statement on QoS

characteristic related to two interaction points (interfaces)

must be specified, the interfaces involved in the

interaction must be primitives [3]. Thus, computational

QoS characteristics can only be defined for atomic

primitive computational entities.

A computational operational interface has a partial of the

interaction it is involved in. Indeed, a client interface

invoking an operation from a server interface never knows

the instant of arrival of the request of the server [3] [14].

Similarly, a server interface cannot know the instant of

arrival of the response of the server (termination) to the

request of the client. Consequently, the interaction model

of an operational interface can specify QoS statements

related to turn-around delay of interaction but cannot

specify QoS requirements on transit delay or jitter since it

needs the knowledge of two interaction points.

Figure 3: Temporal QoS characteristics in the computational viewpoint

In contrast, QoS statements (transit delay, throughput,

jitter, etc.) relative to two interaction points can be

specified in the computational QoS-capable interface

model. For example transit delay and jitter of an

interaction can be measured by the two given inter-action

points ((a) and (b)) or ((c) and (d)) (See Figure 3).

Similarly, specification of QoS requirements on internal

time processing of a QoS capable interface is possible by

the two given interaction points (b) and (c). Turn-around

trip delay can be measured between (a) and (d).

5. Conclusions & Perspectives

This work proposes a simple model of primitive

computational interfaces (QoS-capable interfaces) and

interactions (QoS-labeled interactions) which intrinsically

supports the definition (specification) of end-to-end QoS

Characteristics in a computational specification. The work

provides a conceptual framework for a QoS-aware

computational viewpoint. In order to provide

interoperability in ODP systems, a computational

specification is by three structuring rules: Typing rules,

interaction rules and binding rules [1] [3].

No particular formal description and specification

techniques for the specification of ODP systems have

been prescribed by RM-ODP to be used. Recently,

UML4ODP FDIS (Use of UML for ODP systems

specification; Final Draft International Standard) [18]

became the framework of choice in industry for ODP

systems specification using UML 2.0 [16]. In [11] [12]

[15] [10] [14] we enhanced the computational metamodel

of UML4ODP with QoS concepts and specified them

using UML/OCL 2.0 [16] [17] to specify typing and

interaction rules. However, since the QoS-capable model

proposed in [11] [12] [15] [10] is only a partial model

(does nit take into account QoS characteristics

specification on flows), the QoS-capable model we

propose in the current work provides a basis on which we

can fully specify a QoS-aware computational metamodel

in UML4ODP.

References

[1] ISO/IEC, Basic Reference Model of Open Distributed

Processing-Part1: Overview and Guide to Use,

ISO/IEC CD 10746-1, 1994.

[2] ISO/IEC, RM-ODP-Part2: Descriptive Model,

ISO/IEC CD 10746-2, 1994.

[3] ISO/IEC, RM-ODP-Part3: Perspective Model,

ISO/IEC DIS 10746-3, 1994.

[4] ISO/IEC, RM-ODP-Part4: Architectural semantics,

ISO/IEC DIS 10746-4, 1994.

Paper ID: SR22916215308 DOI: 10.21275/SR22916215308 974

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 9, September 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[5] OUSSAMA REDA, BOUABID EL OUAHIDI,

DANIEL BOURGET, Interaction Signatures and

Action Templates in the ODP Computational

Viewpoint, EDOC Workshops 2006: 38, 10th IEEE

International Enterprise Distributed Object

Computing Conference EDOC, 2006.

[6] OUSSAMA REDA, BOUABID EL OUAHIDI,

DANIEL BOURGET, Resolving the ODP

Computational Viewpoint Interaction Signatures in

Terms of Action Templates using UML, IC-TIS’O7:

Information and Communication Technologies

International Symposium, April 3-5, 2007.

[7] OUSSAMA REDA, BOUABID EL OUAHIDI,

DANIEL BOURGET, Interaction signatures and

Action Templates in The ODP Computational

Viewpoint, Proceedings of the 6th WSEAS

International SEPADS’07, Corfu Greece, Feb 16-19,

2007.

[8] OUSSAMA REDA, BOUABID EL OUAHIDI,

DANIEL BOURGET, Towards a Refinement of the

Open Distributed Systems Interactions Signatures,

WSEAS transactions on communications, vol.6,

pp.601-607, Apr 2007.

[9] OUSSAMA REDA, BOUABID EL OUAHIDI,

DANIEL BOURGET, On UML Modeling of

Computational Interfaces & Interactions in the

UML4ODP Computational Language, In Proceedings

of the 12th WSEAS International multiconference,

Advances in computers, CSCC’08, Crete Island, July

23-25, Greece, 2008.

[10] OUSSAMA REDA, BOUABID EL OUAHIDI,

DANIEL BOURGET, UML4ODP: OCL 2.0

Constraints Specification & UML Modeling of

Interfaces in the Computational Metamodel, WSEAS

Transactions on Computers international Journal,

February 20, 2009.

[11] OUSSAMA REDA, BOUABID EL OUAHIDI,

DANIEL BOURGET, OCL 2.0 Constraints

Specification On Computational Interfaces of ODP

Applications, Proceedings of CARI’08 (Africain

Conference on Research in Computer Science and

Applied Mathematics, CARI’08, 2008.

[12] OUSSAMA REDA, BOUABID EL OUAHIDI,

DANIEL BOURGET, Embedded QoS aspects in the

UML4ODP Computational Metamodel, International

Conference on Multimedia Computing and Systems,

ICMCS’09, 2009.

[13] OUSSAMA REDA, BOUABID EL OUAHIDI,

DANIEL BOURGET, Towards QoS-aware ODP

Computational interfaces, The 7th ACS/IEEE

International Conference on Computer Systems and

Applications, AICCSA 2009.

[14] OUSSAMA REDA, Méta Modélisation UML des

traitements distribuées à support de la QoS dans

UML4ODP, Thése de doctorat, Faculté des sciences

de Rabat, 11 July 2009.

[15] OUSSAMA REDA, BOUABID EL OUAHIDI,

DANIEL BOURGET, Typing rules specification on

ODP QoS-capablec Computational interfaces, ARIMA

Journal, CARI’08 special issue, ARIMA 2009.

[16] OMG, UML 2.0 Superstructure Specification, OMG

document formal/05-07-04, 2005.

[17] OMG, UML 2.0 OCL Final Specification, OMG

Document ptc/03-10-14, 2003.

[18] ISO/IEC, ITU-T Recommendation X.906 | ISO/IEC

19793, Use of UML for ODP system specifications,

SC 7/WG19 and ITU-T, 2007

Paper ID: SR22916215308 DOI: 10.21275/SR22916215308 975

