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Abstract: Large numbers of connected devices including sensors, mobile, wearable, and other Internet of Things (IoT) devices, is 

creating large scale of data that are moving across the network. To carry out machine learning (ML), IoT data are typically transferred 

to the cloud or another centralized system for storage and processing; however, this causes latencies and increases network traffic. Edge 

computing has the potential to remedy those issues by moving computation closer to the network edge and data sources. On the other 

hand, edge computing is limited in terms of computational power, and thus, is not well-suited for ML tasks. Consequently, proposed 

work aims to combine edge and cloud computing for IoT data analytics by taking advantage of edge nodes to reduce data transfer. In 

order to process data close to the source, sensors are grouped according to locations, and feature learning is performed on the close by 

edge node. For comparison reasons, similarity-based processing is also considered. Feature learning is carried out with deep learning-

the encoder part of the trained Auto-encoder is placed on the edge and the decoder part is placed on the cloud. The evaluation was 

performed on the task of human activity recognition from sensor data. When sliding windows are used in the preparation step, data can 

be reduced on the edge up to 80% without significant loss in accuracy. 
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1.Introduction 
 

CISCO estimates that the number of connected devices 

will exceed 28 billion by the year 2022, up from 18 billion 

in 2017 [1]. More than half of those devices, over 14.6 

billion, will be machine-to-machine connections. The 

number of connected devices, together with a flood of 

data they generate, will increase network traffic. 

According to Cisco, by the year2022, global annual 

internet traffic will reach 4.8 zettabytes. Although this will 

come with positive impacts including new 

applications/services and increased use of the existing 

ones, it will also increase demand on network bandwidth 

and put pressure on the already strained communication 

infrastructure. 

 

The Internet of Things (IoT) provides a platform for 

devices to connect to the Internet and other devices and 

enables devices to collect data about their environment. 

IoT supports smart systems such as smart cities, smart 

health care, smart transportation, and smart energy; 

however, the realization of these smart systems relies on 

the ability to analyze these data [2]. On the other hand, 

most IoT edge devices, such as sensors, do not have 

computation abilities to perform complex data analytics 

computations and, therefore, have been primarily 

responsible for monitoring the environment and 

transmitting data to a more powerful system, often the 

cloud or a centralized system, for storage and processing 

[3]. 

 

Consequently, a typical IoT data analytics involve sending 

data to the cloud, analyzing it on the cloud, and 

subsequently delivering results to another device. For 

example, process monitoring data from a smart factory 

may be transferred to a data center thousands of miles 

away where they are stored and processed; then, the 

results are sent back to the same factory for process 

optimization. This workflow increases not only network 

traffic, but also data transfer latencies. However, data 

analytics computation cannot be performed solely on the 

connected devices as they have limited computation 

resources. 

 

Combining edge with cloud computing has the potential to 

reduce IoT network traffic and associated latencies while 

still supporting complex data analytics tasks. Edge 

computing (EC) pushes the computation away from the 

cloud or a centralized system and to the edges of the 

network and sources of data, and thus, reduces network 

traffic and latencies. Although EC has been recognized as 

a powerful approach for tasks such as mobile task 

offloading [4] and content delivery [5], its use for data 

analytic has remained limited [6], [7]. 

 

In recent years, deep learning (DL) has demonstrated 

success in a variety of domains including image 

classification [8] and human activity recognition (HAR) 

[9]. In the IoT context, DL ability to carry out 

representation learning and to transform data into 

hierarchical abstract representations is beneficial for IoT 

data analytics because it can enable learning the good 

features. A type of DL, a deep autoencoder (AE) is a NNs 

trained to learn data encoding in an unsupervised manner. 

Together with encodings, the reconstruction is learned 

enabling AE to restore its inputs from the reduced 

encodings, possibly with some loss of information. 

 

Proposed work investigates combining edge and cloud 

computing with IoT data analytics. The main 

contributions are the reduction of network traffic and 

latencies for machine learning (ML) tasks by employing 
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the edge nodes and the evaluation of the degree of data 

reduction that can be achieved on the edge without a 

significant impact on the ML task accuracy. Edge nodes 

act as intermediaries between IoT devices and the cloud 

reducing the quantity of data sent to the cloud. The 

encoder part of the trained AE is employed on the edge to 

create data encodings that are sent to the cloud. ML task 

on the cloud is carried out in two ways-directly with 

encoded data, or the original data are first restored with 

the decoder part of the AE and then used for the ML task. 

 

As IoT data can originate from different sensors and 

locations, this study explores feature learning from all data 

fused together, from data grouped by their source 

locations, and from data grouped according to sensor 

similarities. The evaluation scenario involves HAR from 

sensors including accelerometers and gyroscopes mounted 

on different parts of the human body. 

 

The remainder of the paper is organized as follows. 

Section II provides the background; Section III discusses 

related work, Sections IV present edge-cloud ML model. 

Finally, Section V concludes this article. 

 

2.Background 
 

This section introduces EC and discusses DL-based 

dimensionality reduction. 

 

A. Edge Computing 

 

Centralized infrastructure systems, such as the cloud, store 

data, execute business logic, and perform data analytics 

tasks far away from the end users and data sources. They 

offer great advantages of immense computation capability, 

high scalability and reliability, pay-as-you-go billing 

model, and low initial cost. However, with zettabyte-sized 

traffic and the explosion of connected devices, 

transferring all data to the cloud for processing is not 

practical or even feasible. EC has emerged as a way of 

dealing with these challenges by pushing computation to 

the edges of the network and sources of data [6]. 

 

Fog computing shares many characteristics with EC. 

Occasionally, the terms “fog” and “edge” are used 

interchangeably [10]; but EC focuses more on nodes 

closer to IoT devices, whereas fog can include any 

resource located anywhere between the end device and the 

cloud. In this work, the term “edge” to refer to the end 

devices themselves, such as sensor nodes and smart 

phones, as well as computation nodes located close to the 

network edge such as edge servers. 

 

The key idea behind the EC is to reduce the network 

traffic by bringing computation closer to the data sources. 

It has been investigated extensively in mobile computing: 

mobile EC offloads computation and data storage to the 

edge (e.g., base stations) to reduce network latencies, 

improve user experience, reduce battery consumption, and 

introduce location-awareness [11]. EC is especially 

suitable for applications with ultralow latency 

requirements and for content delivery and caching [12]. 

 

Even though EC provides advantages of reduced traffic, 

computing resources available on the edge are not 

comparable to those present in the cloud. Thus, 

computationally intensive tasks, such as ML, are not well-

suited for edge devices. Nevertheless, the edge can 

supplement the cloud computing and perform part of the 

computation, consequently reducing network traffic and 

latencies. 

 

B. Deep Learning 

 

DL is a class of ML approaches in which the models are 

composed of multiple computational layers responsible 

for learning data representations with different levels of 

abstraction [13]. Due to its representation capabilities, 

ability to learn complex models and diversity of 

architectures [2], DL has been successful in many 

domains including various vision tasks, natural language 

processing, and speech recognition. 

 

AEs are a subcategory of DL approaches used for learning 

data representations (encodings) in an unsupervised way. 

Essentially, an AE is a neural network (NN) that learns to 

reconstruct its inputs; bottleneck NN layers prevent it 

from merely copying the input to output and force it to 

learn data representations. An AE consists of encoder and 

decoder, each one possibly composed of several stacked 

layers. The encoder part of the network is responsible for 

reducing dimensionality (encoding); therefore, the number 

of neurons typically reduces starting from the input layer 

to the last encoder layer. In contract, the decoder part is 

responsible for reconstructing the input signal from 

encoded values, and thus, typically consists of layers with 

a gradually increasing number of neurons. AE can be used 

for noise removal and anomaly detection, but they often 

serve as a preprocessing step for another ML task [2]. 

Once an AE is trained, the encoder network can be used 

for dimensionality reduction by taking encoder outputs 

(encodings) as inputs to another ML model. 

 

In this article, the encoder part of the trained AE is 

deployed on the edge to reduce dimensionality before the 

data are sent to the cloud. Moreover, the decoder is 

employed on the cloud to reconstruct the original signal. 

 

3.Related Work 
 

EC has been gaining popularity, especially with 

applications that require fast response time and those with 

limited bandwidth because it locates computation close to 

data sources. Applications of EC including smart street 

lamps [14], face identification [15], smart manufacturing 

[16], and vehicular networks [17] have demonstrated great 

success and prompted further investigations. 

 

Wang et al. [18] presented a survey on mobile edge 

networks focusing on computing-related issues, edge 

offloading, and communication techniques for edge-based 

computing. The use cases highlighted in their study 

include IoT, connected vehicles, content delivery, and big 

data analysis. At the same time, Wang et al. [18] identified 

real-time analytics as one of the open challenges. 

Similarly, Abbas et al. [12] surveyed mobile EC and also 
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identified big data analytics as a future research direction. 

While Wang et al. [18] and Abbas et al. [12] examined 

mobile EC, El-Sayed et al. [6] focused on IoT applications 

of EC. They compared the characteristics of cloud, multi 

cloud, fog, and EC, and identified low bandwidth 

utilization and latencies as the main EC advantages. Mao 

et al. [19] see EC as a key enabling technology for 

realizing the IoT vision and, similar to Wang et al. [18] 

and Abbas et al. [12], recognize data analytics as one of 

the future research directions in EC. The discussed 

surveys [6], [12], [18], [19] note the potential ofEC in data 

analytics and point out the importance of EC in IoT for 

handling the rapid increase of the number of connected 

devices. Proposed work contributes to employing EC for 

data analytics by combining edge and cloud computing for 

the delivery of ML applications. 

 

Smart cities are one of the commonly discussed use cases 

and applications of EC. Mohammad et al. [20] examined 

possibilities of service-oriented middleware for cloud and 

fog enabled smart city services. They did not discuss 

specific smart city services but focused on the 

middleware. Their experiments demonstrated the benefits 

of EC in terms of response time. Tang et al. [21] presented 

a hierarchical fog computing architecture for the support 

of connected devices in smart cities. In addition to the 

hierarchy of fog nodes, the proposed model includes the 

cloud as the top layer. The evaluation was performed on 

an event detection task in a smart pipeline monitoring 

system: the preliminary results demonstrated the 

feasibility of the proposed architecture. Similar to 

Mohammad et al. [20] and Tang et al. [21], proposed work 

also employs both edge/fog and cloud, but differs from 

theirs in that it also includes an extensive evaluation of the 

presented edge-cloud architecture. 

 

Another example of the cloud-fog approach is the work of 

Wang et al. [22] on combining fog and cloud computing 

for real-time traffic management. In their system, vehicles 

act as edge nodes, and roadside units take the role of 

cloudlets and communicate between vehicles and the 

cloud. Their study [22] focuses on message passing and 

processing while this work deals with ML for IoT. He et 

al. [23] proposed a multitier fog computing model for 

large-scale IoT data analytics in Smart Cities. They 

evaluated the proposed model on the classification tasks-

the results demonstrated that fogs can improve the 

performance of smart city services. While the work of He 

et al. [23] deals with fog architecture, proposed study 

takes advantage of both edge and cloud for the ML task. 

 

There are also applications of fog computing in health 

care. Rahmani et al. [24] presented a fog-assisted 

architecture for smart e-Health which embeds intelligence 

between sensors and the cloud. In their study, fog nodes 

are quite powerful and thus able to handle data filtering, 

compression, fusion, and analysis with only minimal data 

sent to the cloud. This study, on the other hand, still 

performs a large part of the computation on the cloud. 

Ritrovato et al. [25] also dealt with health care and 

proposed an EC anomaly detection system for streaming 

data. While they are concerned with stream processing 

algorithms, this study deals with ML algorithms. 

The main difference between proposed work and the 

reviewed studies is that this work combines the edge and 

cloud for ML tasks. Several studies also employed edge-

cloud architectures [20], [22], [24], but for non-ML tasks. 

For ML tasks, the processing on the edge must 

accommodate final ML computation on the cloud while 

still reducing network traffic. The most similar work to 

this is the work of Tang et al. [21] as they also consider 

ML and feature extraction on the edge; however, they 

only extract the signal’s mean and variance, which limits 

application scenarios, while proposed work use a generic 

approach based on AEs. Moreover, here also evaluate the 

degree of feature reduction that can be carried out without 

significantly impacting ML accuracy. 

 

As this study evaluates the presented approach on sensor 

based (HAR, it is important to mention a few works from 

this category. Given the fact that DL has been quite 

successful and extensively used for HAR [26], the work of 

Wang et al. [26] surveyed DL approaches for activity 

recognition; they highlighted the importance of model 

selection and the significance of preprocessing including 

the sliding window technique. Zdravevski et al. [27] 

specifically focused on feature engineering for HAR: they 

first extracted a large number of features (3232 for 

MHEALTH dataset), and then reduced them by 

combining different feature reduction techniques. Ferrari 

et al. [28] investigated personalization of HAR models 

and also applied sliding windows and feature generation. 

Li et al. [29] are concerned with recognizing transitions 

between activities; they first extracted 118 features and 

created fixed size segments. Next, each segment was 

analyzed to determine if there was a change of activity 

within the segment. 

 

These HAR studies do not employ EC, nor are they 

concerned with network traffic. As the sliding window 

technique improves accuracy, it is commonly used in 

HAR studies [26]– [28]; While others are interested in the 

sliding window technique effect on accuracy, here 

investigate its impact on data reduction on the edge. AE 

and principal component analysis (PCA) have been used 

to improve HAR accuracy [9], but our study uses those 

techniques to reduce network traffic. 

 

4.Edge-Cloud Ml System Model 
 

The overall architecture of the edge-cloud ML model is 

depicted in figure and details of each of the three main 

components, preprocessing, data reduction, and Cloud 

ML, are described in the following sections. 
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A. Preprocessing 

 

The edge-cloud ML process starts with data from IoT 

sensors being passed to the edge for preprocessing in 

contrast to traditional ML where the data are sent directly 

to the cloud. The preprocessing always includes 

normalization while the sliding window technique is 

optional, and its impact is evaluated in the experiments. 

 

1) Normalization: To avoid dominance of features with 

large values and to improve training convergence, the data 

are normalized using standardization (z-score). In place of 

standardization, min–max scaling could be used, but 

standardization was selected because of its ability to 

handle outliers. Each feature is rescaled to have zero mean 

and unit variance as given by  

 
where x is the original feature value, μ and σ are that 

feature mean and standard deviation, and ˆx is the 

normalized value. 

 

2) Sliding Window: At this point, one data sample 

consists of several readings, potentially from different 

sensors and different locations, for the same time step t. 

For the time series data, the windows sliding technique is 

applied to help the model capture time-dependencies or to 

prepare data in the format needed by the ML algorithms 

[30]. In HAR, the sliding window has achieved great 

success [30]. This study investigates if features can be 

reduced after the sliding window technique is applied and 

examines the effect on the degree of data reduction. With 

the sliding window of length l, the first sample consists of 

all readings for the first l time steps; with the f number of 

features, this result in the l × f matrix for each sample. 

Next, the window slides for k steps and the second sample 

consists of the readings from the time step k to k + l. The 

window keeps sliding to create the remaining samples. In 

this work, the sliding step k = 1 is used as this results in a 

higher number of samples for training and allows the input 

to capture shifts in temporal patterns. Once the system is 

trained, different sliding steps can be applied depending 

on the specifics of the use case and data transfer 

constraints.  

 

B. Data Reduction 

 

Data reduction happens on the edge in order to reduce the 

quantity of data sent to the cloud. Feature reduction 

challenges include selecting the technique and the number 

of features. In the centralized systems, these decisions are 

primarily driven by the ML accuracy while in the edge-

cloud environment; network traffic also needs to be 

considered. Even though AEs are well suited for feature 

learning on the edge; it remains a challenge to determine 

the maximum feature reduction and the corresponding 

traffic reduction while maintaining the accuracy of the 

ML tasks. Data reduction can be carried out directly with 

normalized data or with samples created by the sliding 

window technique. Regardless of whether the sliding 

window technique is used or not, the data reduction 

approach is the same. Two categories of approaches are 

considered-reversible and nonreversible.  

 

1) Reversible: Reversible approaches are the approaches 

that reduce data with an ability to reproduce the original 

data from the reduced representations. With these 

approaches data reduction executes on the edge, reduced 

data are sent over the network, and on the cloud, ML can 

be performed directly on the reduced data, or the original 

data can be reproduced first. Here, focus on AEs as, once 

the AE is trained, the encoder can reduce data on the edge 

and decoder can restore the original data on the cloud. AE 

performance is compared to data reduction with PCA [31]. 

When PCA is applied to reduce dimensions, original data 

can be reconstructed using the eigenvectors. For both, AE 

and PCA, the accuracy of reconstructed data depends on 

the degree of dimensionality reduction.  

 

As illustrated in Fig.1, for both reversible techniques, AE 

and PCA, three different scenarios are considered-all 

sensors, location-based, and similarity-based scenarios. In 

the all sensors approach, all the data are considered 

together, and data reduction is performed on the merged 

data from all sensors. The location-based scenario 

considers data reduction based on a group of colocated 

sensors. For example, in location 1, there are four 

different sensors, and their data are sent to the edge node 

E1 because of its close proximity to those sensors. 

Similarly, the location 2 sensors send their data to E2, and 

so on. The idea is to keep the edge part of the processing 

as close as possible to the sources of data and reduce the 

distance data needs to travel before reduction. The data 

that arrive at one node are reduced together on that node; 

consequently, there is one AE for each of the edge nodes. 

 

The similarity-based scenario sensors based on their 

similarity. For example, all gyroscopes could represent 

one group and all accelerometers another one. This will 

result in more homogeneous data groups, but it can also 

increase the distance of sensors from the edge nodes. As 

with the location-based scenario, there is one AE for each 

of the edge nodes. 

 

2) Nonreversible: Nonreversible approaches include those 

without the way of reproducing the original data after the 

data have been reduced. Here, considering the vector 

magnitude which is suitable for sensors that measure 

values in multidimensional space such as accelerometers 

and gyroscopes. The dimensionality is reduced as follows:  

 

d = sqrt (x
2
+ y

2
+ z

2).
 (2) Here x, y, z are the measurements 

in Euler coordinates and d is the vector magnitude. 

Consequently, vector magnitude reduces dimensions in 3: 

1 ratio.  

 

C. Cloud ML 

 

The reduced data are sent from the edge to the cloud for 

further ML processing. As illustrated in Fig., there are two 

possible ways to carry out the ML task. The first option is 

to reproduce original data and use these reproduced data 

for the ML task. This is possible only if the reversible 

technique was used for data reduction. 
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The second option is to carry out the ML task directly on 

the reduced data, which works for both reversible and 

nonreversible reduction techniques. As the reproduced 

data have a larger number of features, training ML model 

for such data is more computationally expensive than 

training ML model for the reduced number of features. 

 

5.Conclusion 
 

Traditionally, ML with IoT data was done by transferring 

data to the cloud or another centralized system for storage 

and processing. With the explosion of connected devices, 

this would lead to increased latencies and it would put a 

strain on communication networks. Proposed work 

explored merging edge and cloud computing for ML with 

IoT data with the objective of reducing network traffic and 

latencies. Three scenarios were examined-all sensors 

together consider all the data at once, location-based 

scenario groups data according to the IoT device 

locations, and similarity based scenario groups data 

according to the similarities of sensors. The evaluation 

was carrying out on the HAR task considering two 

nonreversible approaches, AE and PCA, and one 

nonreversible approach, vector magnitude. 

 

References 
 

[1] CISCO, Cisco Global Cloud Index: Forecast and 

Methodology, 2016–2021. Accessed: Dec.27, 2019. 

[Online]. Available: 

https://www.cisco.com/c/en/us/solutions/collateral/ser

vice-provider/globalcloud-index-gci/white-paper-c11-

738085. html 

[2] A. L’heureux, K. Grolinger, H. F. Elyamany, and M. 

A. M. Capretz, “Machine learning with Big Data: 

Challenges and approaches,” IEEE Access, vol.5, 

pp.777–797, 2017.  

[3] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, “IoT-

based big data storage systems in cloud computing: 

Perspectives and challenges,” IEEE Int. Things J., 

vol.4, no.1, pp.75–87, Feb.2017.  

[4] M. Chen and Y. Hao, “Task offloading for mobile 

edge computing in software defined ultra-dense 

network,” IEEE J. Sel. Areas Commun., vol.36, no.3, 

pp.587–597, Mar.2018.  

[5] R. Roman, J. Lopez, and M. Mambo, “Mobile edge 

computing, Fog et al.: A survey and analysis of 

security threats and challenges,” IEEE Commun. 

Mag., vol.78, no.2, pp.680–698, Jan.2018.  

[6] H. El-Sayed et al., “Edge of things: The big picture 

on the integration of edge, IoT and the cloud in a 

distributed computing environment,” IEEE Access, 

vol.6, pp.1706–1717, 2018.  

[7] A. Kumari, S. Tanwar, S. Tyagi, N. Kumar, R. M. 

Parizi, and K. R. Choo, “Fog data analytics: A 

taxonomy and process model,” J. Netw. Comput. 

Appl., vol.128, pp.90–104, 2019.  

[8] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, 

“Learning transferable architectures for scalable 

image recognition,” in Proc Conf. Comput. Vision 

Pattern. Recognit., 2018, pp.8697–8710.  

[9] H. F. Nweke, Y. W. Teh, M. A. A.-G., and U. R. Alo, 

“Deep learning algorithms for human activity 

recognition using mobile and wearable sensor 

networks: State of the art and research challenges,” 

Expert Syst. Appl., vol.105, pp.233–261, 2018.  

[10] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge 

computing: Vision and challenges,” IEEE Int. Things 

J., vol.3, no.5, pp.637–646, Oct.2016.  

[11] A. Ahmed and E. Ahmed, “A survey on mobile edge 

computing,” in Proc.10th Int. Conf. Intell. Syst. 

Control, 2016, pp.1–8.  

[12] N. Abbas, A. Zhang, Y. Taherkordi, and T. Skeie, 

“Mobile edge computing: A survey,” IEEE Int. 

Things J., vol.5, no.1, pp.450–465, Feb.2018.  

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep 

learning,” Nature, vol.521, no.7553, pp.436–444, 

2015.  

[14] G. G. Jia, G. G. Han, A. Li, and J. Du, “SSL: Smart 

street lamp based on fog computing for smarter 

cities,” IEEE Trans. Ind. Informat., vol.14, no.11, 

pp.4995–5004, Nov.2018.  

[15] P. Hu, H. Ning, T. Qiu, Y. Zhang, and X. Luo, “Fog 

computing based face identification and resolution 

scheme in internet of things,” IEEE Trans. Ind. 

Informat., vol.13, no.4, pp.1910–1920, Aug.2017.  

[16] L. Li, K. Ota, and M. Dong, “Deep learning for smart 

industry: Efficient manufacture inspection system 

with fog computing,” IEEE Trans. Ind. Informat., 

vol.14, no.10, pp.4665–4673, Oct.2018.  

[17] Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. 

Guo, “Traffic and computation co-offloading with 

reinforcement learning in fog computing for industrial 

applications,” IEEE Trans. Ind. Informat., vol.15, 

no.2, pp.976–986, Feb.2019.  

[18] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and 

W. Wang, “Asurvey on mobile edge networks: 

Convergence of computing, caching and 

communications,” IEEE Access, vol.5, pp.6757–

6779, 2017.  

[19] Y. Mao, C. You, J. Zhang, K. Huang, andK. B. 

Letaief, “Asurvey on mobile edge computing: The 

communication perspective,” IEEE Commun. Surv. 

Tut., vol.19, no.4, pp.2322–2358, Fourth quarter 

2017.  

[20] N. Mohamed, J. Al-Jaroodi, I. Jawhar, S. Lazarova-

Molnar, and S. Mahmoud, “Smartcityware: A 

service-oriented middleware for cloud and fog 

enabled smart city services,” IEEE Access, vol.5, 

pp.17 576–17 588, 2017.  

[21] B. Tang, Z. Chen, G. Hefferman, S. Pei, T. Wei, H. 

He, and Q. Yang, “Incorporating intelligence in fog 

computing for big data analysis in smart cities,” IEEE 

Trans. Ind. Informat., vol.13, no.5, pp.2140–2150, 

Oct.2017.  

[22] X. Wang, Z. Ning, and L. Wang, “Offloading in 

internet of vehicles: A fogenabled real-time traffic 

management system,” IEEE Trans. Ind. Informat., 

vol.14, no.10, pp.4568–4578, Oct.2018.  

[23] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. 

Zhang, “Multi-tier fog computing with large-scale 

IoT data analytics for smart cities,” IEEE Internet 

Things J., vol.5, no.5, pp.677–686, Apr.2018.  

[24] A. M. Rahmani et al., “Exploiting smart e-health 

gateways at the edge of healthcare Internet-of-things: 

Paper ID: SR22916132133 DOI: 10.21275/SR22916132133 841 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 9, September 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

A fog computing approach,” Future Gener. Comput. 

Syst., vol.78, no.2, pp.641–658, 2018.  

[25] P. Ritrovato, F. Xhafa, and A. Giordano, “Edge and 

cluster computing as enabling infrastructure for 

internet of medical things,” in Proc. IEEE 32ndInt. 

Conf. Adv. Inf. Netw. Appl., 2018, pp.717–723.  

[26] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep 

learning for sensor based activity recognition: A 

survey,” Pattern Recognit. Lett., vol.119, pp.3–11, 

2019.  

[27] E. Zdravevski et al., “Improving activity recognition 

accuracy in ambient assisted living systems by 

automated feature engineering,” IEEE Access, vol.5, 

pp.5262–5280, 2017.  

[28] A. Ferrari, D. Micucci, M. Mobilio, and P. 

Napoletano, “On the personalization of classification 

models for human activity recognition,” IEEE 

Access, vol.8, pp.32 066–32 079, 2020.  

[29] J.-H. Li, L. Tian, H. Wang, Y. An, K. Wang, and L. 

Yu, “Segmentation and recognition of basic and 

transitional activities for continuous physical human 

activity,” IEEE Access, vol.7, pp.42 565–42 576, 

2019.  

[30] M. N. Fekri, A. M. Ghosh, and K. Grolinger, 

“Generating energy data for machine learning with 

recurrent generative adversarial networks,” Energies, 

vol.13, no.1, 2020, Art. no.130.  

[31] N. Kambhatla and T. K. Leen, “Dimension reduction 

by local principal component analysis,” Neural 

Comput., vol.9, no.7, pp.1493–1516, 1997.  

[32] C. Banos et al., “Design, implementation and 

validation of a novel open framework for agile 

development of mobile health applications,” Biomed. 

Eng. Online, vol.14, no.2, 2015, Art. no. S6 

Paper ID: SR22916132133 DOI: 10.21275/SR22916132133 842 




