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Abstract: In this article the Differential Transform method is working for obtaining solutions for higher order differential equations. 

This proposed technique   gives the series of solutions which can be easily converted to exact ones. The differential transform method 

was productively applied to higher order differential equations The results  of the study has established that the method is easy , effective 

and flexible. The result of the differential transform method is in good agreement with those obtained by using the already existing ones.  
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1. Introduction  
 

Nonlinear phenomena have significant effects in applied 

mathematics, physics and related to engineering; many such 

physical phenomena are modeled in terms of nonlinear 

differential equations [3,4,10]. A variety of numerical and 

analytical methods have been developed to obtain precise 

approximate and analytic solutions for the problems in the 

literature [3,7,8,10,11,12]. The classical Taylor's series 

method is one of the earliest analytic techniques to many 

problems, especially ordinary differential equations. 

However, since it requires a lot of symbolic calculation for 

the derivatives of functions, it takes a lot of computational 

time for higher derivatives. Here, we introduce the update 

version of the Taylor series method which is called the 

differential transform method (DTM)[4,5]. The (DTM) is 

the method to determine the coefficients of the Taylor series 

of the function by solving the induced recursive equation 

from the given differential equation. The basic idea of the 

(DTM) was introduced by Zhou [5]. In what follows we 

introduce a few notations for the (DTM).  

 

2. The Differential Transform Method  
 

The transformation of the k 
th

 derivative of a function y(x) in 

one variable is defined as follows 

  

     Y  k =  
1

𝑘!
[
𝑑𝑘 𝑦 𝑥  

𝑑𝑥 𝑘
]𝑥=0                     (1) 

 

and the inverse transform of Y(k) is defined as 

 

                      y x =   Y(k)xk∞
k=0                         (2) 

 

The following are the important theorems of the one 

dimensional differential transform method  

 

Theorem 1: If   then Y k =  M(k) ± N(k) 

 

Theorem 2: If y x =  αm x , they x =  m x ± n x , 
Y k =  αM(k)     

Theorem 3: If  𝑦 x =
dm (x)

dx
 , then Y k =  K + 1 Y(k + 1)   

Theorem 4: If y(x)  =  m x n(x), then Y k =
 M r N(k − r)k

r=0     
 

Theorem 5: If y x =  xl , then Y k =  δ k − l =

 
1, if k = l
0, if k ≠ l

  

 

Theorem 6: If  y x =  
d2g(x)

dx2  then Y k =  k + 1  k +

2G(k+2) 
 

Theorem 7: If y x =  
dm g(x)

dxm
 then Y K =  k + 1  k +

2+…+k+mG(k+m) 

 

Theorem 8:If y x =  1 then Y k =  δ(k) 

 

Theorem 9:If y x =  x then Y k =  δ(k − 1) 

 

Theorem 10:If y x = eax   then Y k =  
ak

k!
 

 

Theorem 11:𝐼𝑓 𝑦 𝑥 = (1 + 𝑥)𝑚  𝑡𝑕𝑒𝑛 𝑌 𝑘 =
𝑚 𝑚−1  𝑚−2 …(𝑚−𝑘+1)

𝑘!
 

 

Theorem 12:𝐼𝑓 𝑦 𝑥 = sin 𝑤𝑥 + 𝛼 𝑡𝑕𝑒𝑛 𝑌 𝑘 =

 
𝑤𝑘

𝑘!
𝑠𝑖𝑛(𝑘𝜋 + 𝛼) 

 

Theorem 13: 𝐼𝑓 𝑦 𝑥 = cos 𝑤𝑥 + 𝛼 𝑡𝑕𝑒𝑛 𝑌 𝑘 =

 
𝑤𝑘

𝑘!
𝑐𝑜𝑠(𝑘𝜋 + 𝛼) where w and 𝛼 are constants 

 

3. Applications  
 

In this section, we apply the (DTM) to some ordinary 

differential equations  

 

 Problem 1:  Consider the following initial value problem  

 
𝑑2𝑦

𝑑𝑥2 − 2𝑝
𝑑𝑦

𝑑𝑥
+ 𝑝2𝑦 =

 𝑒𝑝𝑥 , 𝑝 ≠ 0 𝑖𝑠 𝑎𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑔𝑖𝑣𝑒𝑛 𝑡𝑕𝑎𝑡 𝑦 0 =
 0, 𝑦 1 = 1/𝑝  (1) 
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Apply DTM to (1), we obtain 

 

(𝑘 + 2) 𝑘 + 1 𝑌 − 2𝑝 𝑘 + 1 𝑌 𝑘 + 1 + 𝑝2𝑌 𝑘 =  
pk

k!
 

 

 𝑝𝑢𝑡 𝑘 = 0 𝑡𝑕𝑒𝑛 2𝑌(2) −
2𝑝𝑌 1 + 𝑝2𝑌 0 = 1 

                         2Y(2)−2𝑝  
1

𝑝
 + 𝑝2 0 = 1 

                          

                            𝑌 2 =
1+2

2
=

3

2
 

Put  k = 1, then 6Y(3) −2𝑝𝑌 2 + 𝑝2𝑌 1 = 𝑝 

 

                        6Y(3)−2𝑝  
3

2
 + 𝑝2  

1

𝑝
 = 𝑝 

 

                        6Y(3)−𝑝 3 + 𝑝 = 𝑝 

 

                       Y(3) = 
3𝑝

6
 

And so on. 

 

The solution is  

 

 y x =   Y(k)xk∞
k=0    

 

𝑦 𝑥 = 𝑌 0 𝑥0 + 𝑌 1 𝑥1 + 𝑌 2 𝑥2 + 𝑌 3 𝑥3 + ⋯ 
 

𝑦 𝑥 = 0.1 +
1

𝑝
𝑥 +

3

2
𝑥2 +

3𝑝

6
𝑥3 + ⋯. 

𝑦 𝑥 =
1

𝑝
𝑥 +

3

2
𝑥2 +

𝑝

2
𝑥3 + ⋯  

 

Problem 2:  Consider the following initial value problem  

 

𝑑2𝑦

𝑑𝑥2
+ 𝑙2𝑦 =  𝑒𝑙𝑥 + 𝑠𝑖𝑛𝑙𝑥

+ 𝑐𝑜𝑠𝑙𝑥 , 𝑙 ≠ 0 𝑖𝑠 𝑎𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟,  
𝑔𝑖𝑣𝑒𝑛 𝑡𝑕𝑎𝑡 𝑦 0 = 1, 𝑦 1 = 𝑙   (2) 

 

 Apply DTM to (2), we obtain 

 

(k+1)(k+2)Y(k+2) +𝑙2𝑌 𝑘 =  
lk

k!
+

𝑙𝑘

𝑘!
𝑠𝑖𝑛 𝑘𝜋 +

𝑙𝑘

𝑘!
𝑐𝑜𝑠(𝑘𝜋) 

 

Put k = 0, then 2Y(2)+𝑙2𝑌 0 = 1 + 0 + 1 

 

                         2Y(2)+𝑙2. 1 = 2 

 

                            𝑌 2 =
2−𝑙2

2
 

Put  k = 1, then 6Y(3) +𝑙2𝑌 1 = 𝑙 + 𝑙 0 + 𝑙(−1) 

 

                        6Y(3)+𝑙2  
2−𝑙2

2
 = 𝑙 

 

                       Y(3) = 
𝑙−𝑙2 

2−𝑙2

2
 

2
=  

2𝑙−2𝑙2+𝑙4

4
 

 

And so on. 

The solution is  

 

 y x =   Y(k)xk∞
k=0    

 

𝑦 𝑥 = 𝑌 0 𝑥0 + 𝑌 1 𝑥1 + 𝑌 2 𝑥2 + 𝑌 3 𝑥3 + ⋯ 
 

𝑦 𝑥 = 1.1 + 𝑙𝑥 +
2 − 𝑙2

2
𝑥2 +

2𝑙 − 2𝑙2 + 𝑙4

4
𝑥3 + ⋯. 

 

 Problem 2: Consider the following initial value problem  

 

𝑑3𝑦

𝑑𝑥3
+ 𝑎2

𝑑𝑦

𝑑𝑥
=  𝑠𝑖𝑛𝑎𝑥 , 𝑎 ≠ 0 𝑖𝑠 𝑎𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟,  

𝑔𝑖𝑣𝑒𝑛 𝑡𝑕𝑎𝑡 𝑦 0 = 1, 𝑦 1 = 𝑎, 𝑦 2 = 𝑎2   
     (3) 

 

 Apply DTM to (3), we obtain 

 

(k+1)(k+2)(k+3)Y(k+3) +𝑎2(𝑘 + 1)𝑌 𝑘 + 1 =
𝑎𝑘

𝑘!
𝑠𝑖𝑛 𝑘𝜋  

 

Put k = 0, then 6Y(3)+𝑎2𝑌 1 = 0 

                          

6Y(3)+𝑎2 . 𝑎 = 0 

 

                            𝑌 3 = −𝑎3 

Put  k = 1, then 24Y(4) +𝑎2𝑌 2 = 𝑎. 0 

 

                        24.Y(4)+𝑎2(−𝑎3) = 0 

                         

                       Y(4) = 
𝑎5

24
 

 

And so on. 

 

The solution is  

 

 y x =   Y(k)xk∞
k=0    

 

𝑦 𝑥 = 𝑌 0 𝑥0 + 𝑌 1 𝑥1 + 𝑌 2 𝑥2 + 𝑌 3 𝑥3 + 𝑌 4 𝑥4

+ ⋯ 

𝑦 𝑥 = 1.1 + 𝑎𝑥 + 𝑎2𝑥2 − 𝑎3𝑥3 +
𝑎5

24
𝑥4 + ⋯. 

 

4. Conclusion  
 

The observations of the present study have shown that the 

(DTM) is easy to apply and effective. As a result, the 

conclusion comes through this work, is that the Differential 

Transform Method can be applied to a wide class of 

differential equations, due to the efficiency in the application 

to get the possible results. 
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