
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Resource Validation Framework: Ensuring State

and Lifecycle Consistency

Mahidhar Mullapudi

Abstract: In the intricate landscape of commerce, maintaining accurate and synchronized information about resources which are

granular units in commerce like meters, Skus etc., is a multifaceted challenge. This paper introduces a robust solution - the Resource

Validation Framework. At its core, this framework integrates critical components, leveraging a Commerce application that publishes

configured resource data [1]. This data, vital for external partner systems, undergoes a meticulous journey—initially stored in a

normalized format that business planners can configure and then transformed into an intermediate model with all possible combinations

and permutations and converted into resources that are granular to be able to transact which are published and stored in Cosmos DB and

subsequently archived in a Git repository through a seamless pull request mechanism. The resulting Cosmos DB and Git repository serve

as authoritative sources for resource state and lifecycle [2] [3] [4] [5]. The essence of the validation framework lies in guaranteeing the

validity of this data, focusing particularly on the state of each resource—whether it's in a test, preview, GA, public, or decommissioned

phase. The lifecycle of resources, encapsulating the start and end dates of those state changes, becomes paramount for operational

transparency. To achieve this, a systematic approach is implemented, requiring service teams responsible for products and meters to

validate the latest resource information against their local datasets. Subsequently, these teams attest to the accuracy of the data, signaling

that the resources under their ownership are in a valid state [6]. For streamlined management, the framework introduces a state - tracking

mechanism. Resources with discrepancies are designated as 'pending, ' accompanied by a link to the respective incident for tracking.

Meanwhile, unattested resources are systematically tracked, fostering a structured validation process. This monthly validation cycle aligns

seamlessly with the regular billing and auditing processes of the company, establishing a proactive and integrated approach to resource

management.

Keywords: Modern Ingestion, Resource Validation, Lifecycle State Management, Large Scale Distributed Applications, Data Consistency,

Attestation process.

1. Introduction

The modern paradigm of large - scale commerce applications

demands a meticulous orchestration of resource data to ensure

operational fluidity and financial integrity. At the heart of this

challenge is the Resource Validation Framework, a

comprehensive solution tailored to address the complexities

of resource state and lifecycle management across diverse

ecosystems [1].

A pivotal aspect of this framework is the Commerce

application, acting as the conduit for publishing configured

resource data. This data, forming an essential connection for

external partner systems, goes through a complex process. It

finds its initial repository in Cosmos DB [7], ensuring real -

time access to the latest resource information. Subsequently,

this data is archived in a Git repository through a seamless

pull request mechanism, providing external partners with a

dependable and up - to - date resource reference [8].

The essence of the validation framework lies in its dedication

to guaranteeing the accuracy of this data, with a particular

emphasis on the resource states and lifecycles. States, ranging

from test to decommissioned, demand meticulous validation,

while the lifecycle, encapsulating the chronological sequence

of state changes, adds a layer of operational transparency [9]

[10].

To operationalize this framework, service teams responsible

for products and meters are entrusted with the validation

process. Their task is to ensure that the latest resource

information aligns with their local datasets, attesting to the

validity of the data under their ownership. To streamline this

validation, the framework introduces a state - tracking

mechanism, categorizing resources with discrepancies as

'pending, ' each linked to the respective incident. Resources

that are not verified are consistently monitored, creating a

formal process of confirmation and accountability.

This monthly validation cycle, a cornerstone of the

framework, aligns seamlessly with the regular billing and

auditing processes of the company. It establishes a proactive

and integrated approach to resource management, reinforcing

a culture of accountability and precision in the ever - evolving

landscape of commerce [11] [12].

2. Systems Overview

Paper ID: SR24304115225 DOI: https://dx.doi.org/10.21275/SR24304115225 1492

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Resource Validation Framework Overview

As illustrated in Figure 1, the resource validation framework

consists of the following major components:

Commerce Application

Commerce Application maintains the data for products and

services that are configured by Business planners talking to

different service owners and service providers. So, the data

being configured or collected is in a denormalized format for

simplicity and is stored that way in this application. Once the

changes are complete, tasks picked up based on events and

perform an operation called expansion where this normalized

data is transformed into an intermediate model using all the

combinations of latest data components and policies

configured for the type of resource [13] [2].

This intermediate model data is transformed into granular

units that can be transactable which we call resources.

Resource has a state and lifecycle associated with it. The

pipeline contains instructions on how to transform and store

this resource information to multiple data streams – cosmos

db and git repositories. Cosmos db offers better querying and

performance capabilities, whereas the git repo offers easy

access and visibility to the resource data that can be easily

exposed to other teams for validation and other purposes [14].

Service Teams Data Validation

Service Teams in this context are the owners of those specific

resources. The service teams would have the correct

information and expectation about the state and lifecycle of

the resources stored in their local database. They use the latest

information that the Commerce application publishes and

validates that information with their local database and

performs a process which we call Attestation. Here the core

of this framework is that the service owner performs these

validations to ensure that the state of the resource and the

lifecycle properties match their expectations [1] [6].

Permission Validation and Attestation Process

This Attestation function takes care of ensuring that the

service owners have the right permissions to provide

attestation/confirmation on the resources that they have

validated and stores that attestation information. This

function also ensures that the attestation information is stored

and serves reporting and creating action item information.

This attestation function connects to cosmos db to ensure the

data that is being attested for those meters is latest and identify

any unattested resources and aggregate or group them by

product/service/service family [8] [15].

3. DEEP DIVE – ATTESTATION FUNC

Paper ID: SR24304115225 DOI: https://dx.doi.org/10.21275/SR24304115225 1493

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: Attestation process - Deep Dive

In this comprehensive exploration, we intricately dissect the

attestation validation process, shedding light on advanced

design and implementation strategies that bolster efficiency

and reliability, incorporating technical details for a thorough

understanding.

1) Resource Validation by Service Owners:

Service owners engage in a meticulous validation process,

leveraging advanced querying techniques to compare their

local datasets against configurations published by the

commerce system. This involves utilizing industry - standard

data querying languages and techniques, such as SQL or

NoSQL queries, to ensure a comprehensive alignment of

resource states and lifecycles [5] [15].

2) Payload Creation:

Upon successful validation, service providers craft a payload

containing resource information. This payload adheres to a

well - defined schema, ensuring structured and standardized

data representation. JSON formats may be employed, with

each resource detail meticulously organized within the

payload.

3) Attestation Function Overview:

The attestation function, a critical component, commences by

validating authentication information using robust

cryptographic methods. This ensures the integrity and

security of user credentials during the attestation process [9].

4) Schema and Authorization Checks:

Following authentication, the attestation function rigorously

checks the payload schema against predefined guidelines,

employing JSON or XML schema validation techniques.

Simultaneously, it verifies user permissions through OAuth

or other industry - standard authorization protocols, ensuring

only authorized personnel can provide attestations.

5) Payload Processing and Version Control:

The attestation function then processes the payload,

converting it into a collection of resources. For version

control, service - to - service calls are initiated, leveraging

secure communication protocols such as HTTPS. Cosmos

DB, acting as the source of truth, is queried for the latest

resource information, ensuring that the attestation function

works with the most up - to - date data.

6) Validation of Resource Versioning:

Each resource undergoes meticulous examination, with the

attestation function ensuring that the version property aligns

with the latest data. Techniques such as conditional requests

or ETags may be employed for efficient version checking,

minimizing unnecessary data transfer.

7) Aggregation and Result Summary:

Results, categorized as valid or stale based on version status,

are aggregated by the attestation function. The summary,

enriched with technical details like cryptographic hash

functions for data integrity, is prepared for further processing.

8) Ingestion to Data Factory:

The summarized results are seamlessly ingested into the data

factory, orchestrated through efficient data processing

frameworks such as Apache Kafka or Apache Flink. This step

ensures the secure and reliable storage of attestation results in

storage.

9) Reporting and Autonomous Validations:

The database, now enriched with attestation results, has

become a dynamic resource for reporting and validation

systems. RESTful APIs or other communication protocols

facilitate seamless integration, allowing these systems to

generate actionable insights and create periodic action items

for service teams [16] [17] [18].

Below is a sample algorithm that is language agnostic that

outlines the list of steps that are performed in this validation

framework:

function attestationValidationProcess

(serviceOwnerData, commerceSystemConfig) {

// Step 1: Resource Validation by Service Owners

 validateResources (serviceOwnerData,

commerceSystemConfig);

// Step 2: Payload Creation

payload = createPayload (serviceOwnerData);

// Step 3: Attestation Function

authenticationResult = validateAuthentication ();

if (authenticationResult. success) {

// Step 4: Schema and Authorization Checks

Paper ID: SR24304115225 DOI: https://dx.doi.org/10.21275/SR24304115225 1494

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

schemaCheckResult = validatePayloadSchema

(payload);

authorizationResult = validateAuthorization ();

if (schemaCheckResult. success &&

authorizationResult. success) {

// Step 5: Payload Processing and Version Control

resourceCollection = processPayload (payload);

latestResourceInfo =

queryCosmosDBForLatestInfo

(resourceCollection);

// Step 6: Validation of Resource Versioning

validationResults = validateResourceVersioning

(resourceCollection, latestResourceInfo);

// Step 7: Aggregation and Result Summary

summary = aggregateResults (validationResults)

// Step 8: Ingestion to DataFactory

ingestToDataFactory (summary);

// Step 9: Reporting and Validation Systems

Integration

integrateWithReportingAndValidationSystems

();

} else {

// Handle authorization or schema check failures

handleValidationFailure (schemaCheckResult,

authorizationResult);

 }

} else {

// Handle authentication failure

handleAuthenticationFailure

(authenticationResult);

 }

}

Below are samples of some of the helper functions that would

be useful in this validation process:

// Helper functions

function validateResources (serviceOwnerData,

commerceSystemConfig) {

 // Implement resource validation logic

}

function createPayload (serviceOwnerData) {

 // Implement payload creation logic

}

function validateAuthentication () {

 // Implement authentication validation logic

}

function validatePayloadSchema (payload) {

 // Implement payload schema validation logic

}

function validateAuthorization () {

 // Implement authorization validation logic

}

function processPayload (payload) {

 // Implement payload processing logic

}

function queryCosmosDBForLatestInfo

(resourceCollection) {

 // Implement querying Cosmos DB for the latest

resource information

}

function validateResourceVersioning

(resourceCollection, latestResourceInfo) {

 // Implement resource versioning validation logic

}

function aggregateResults (validationResults) {

 // Implement result aggregation logic

}

function ingestToDataFactory (summary) {

 // Implement ingestion to Data Factory logic

}

function

integrateWithReportingAndValidationSystems ()

{

 // Implement integration with reporting and

validation systems

}

function handleValidationFailure

(schemaCheckResult, authorizationResult) {

 // Implement logic to handle validation failures

}

function handleAuthenticationFailure

(authenticationResult) {

 // Implement logic to handle authentication

failures

}

This information can be used by reporting and validation

systems to create action items for the service teams to perform

the attestation on a periodic basis [19].

4. Conclusion

The Resource Validation Framework, detailed in this paper,

represents a significant advancement in ensuring the

consistency of resource configurations across diverse

ecosystems. By combining meticulous resource validation by

service owners, a well - defined attestation process, and

seamless integration with reporting and validation systems,

this framework establishes a robust foundation for proactive

resource management and precision in the dynamic landscape

of modern commerce.

The attestation validation process, as explored in - depth,

highlights the intricacies of authentication, schema checks,

version control, and result aggregation. Leveraging secure

Paper ID: SR24304115225 DOI: https://dx.doi.org/10.21275/SR24304115225 1495

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

communication protocols, industry - standard authorization

mechanisms, and efficient data processing frameworks, this

process addresses the challenges posed by resource validation

in a comprehensive and technically sound manner.

5. Future Directions

Looking ahead, future enhancements to the Resource

Validation Framework could involve the integration of

machine learning algorithms to augment the validation

process. By analyzing usage metrics and patterns, machine

learning models can be trained to identify anomalies and flag

potential invalid states or configurations. This intelligent

layer can significantly enhance the attestation validation

process by automating the detection of discrepancies,

reducing manual efforts, and providing real - time insights

into the health of the resource ecosystem.

Moreover, the incorporation of machine learning can

contribute to the continuous improvement of the validation

process. Models trained on historical data can adapt to

evolving patterns, offering a proactive approach to identifying

emerging issues before they impact the integrity of resource

configurations. In addition to anomaly detection, exploring

techniques such as natural language processing (NLP) could

further enhance the schema checks during the attestation

process. NLP algorithms can parse and understand textual

descriptions of resource configurations, ensuring a more

nuanced validation approach that goes beyond the structural

constraints of traditional schema checks.

As the landscape of commerce evolves, embracing machine

learning - driven enhancements to the Resource Validation

Framework positions organizations to stay ahead of the curve.

These future developments not only streamline the attestation

validation process but also empower businesses to proactively

address challenges, ensuring the ongoing integrity of resource

configurations in an increasingly complex and dynamic

environment.

References

[1] B. P. D. G. Yogesh L. Simmhan, "A Survey of Data

Provenance Techniques".

[2] Kleppmann, Martin, Designing Data - Intensive

Applications, O'Reilly Media, 2017.

[3] "Azure Data Factory, " [Online]. Available: https:

//azure. microsoft. com/en - us/products/data - factory.

[4] "Azure Data Explorer, " [Online]. Available: https:

//learn. microsoft. com/en - us/azure/data - explorer/.

[5] "What is Azure Data Factory?, " [Online]. Available:

https: //learn. microsoft. com/en - us/azure/data -

factory/introduction.

[6] J. L. M. H. D. D. M. F. T. R. V. Kalavri, "Three steps

is all you need: fast, accurate, automatic scaling

decisions for distributed streaming dataflows., " OSDI,

2018.

[7] "Azure Cosmos Db, " [Online]. Available: https:

//learn. microsoft. com/en - us/azure/cosmos -

db/introduction.

[8] "Cassandra, " [Online]. Available: https: //cassandra.

apache. org/.

[9] "Azure Functions, " [Online]. Available: https: //learn.

microsoft. com/en - us/azure/azure - functions/.

[10] "Azure Event Hubs, " [Online]. Available: https:

//learn. microsoft. com/en - us/azure/event - hubs/event

- hubs - about.

[11] "Apache Kafka, " [Online]. Available: https: //kafka.

apache. org/.

[12] "Apache Spark, " [Online]. Available: https: //spark.

apache. org/.

[13] K. H. Robert Martin, Clean Architecture: A

Craftsman's Guide to Software Structure and Design,

Pearson.

[14] "Low latency system design, " [Online]. Available:

https: //kayzen. io/blog/large - scale - low - latency -

system - design.

[15] "microservices - best - practices, " [Online]. Available:

https: //www.mulesoft.

com/sem/lp/whitepaper/api/microservices - best -

practices.

[16] K. Beck, Extreme Programming Explained: Embrace

Change, Addison - Wesley, 2000.

[17] "12 Factor App, " [Online]. Available: https:

//12factor. net/.

[18] "Owasp, " [Online]. Available: https: //owasp. org/.

[19] "Semantic Matching Wiki, " [Online]. Available:

https: //en. wikipedia. org/wiki/Semantic_matching.

Paper ID: SR24304115225 DOI: https://dx.doi.org/10.21275/SR24304115225 1496

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

