Positive Integer Solutions of Some Pell Equations via Generalized Bi-Periodic Fibonacci and Generalized Bi-Periodic Lucas Sequences

S. Sriram ${ }^{1}$, P. Veeramallan ${ }^{2}$
${ }^{1}$ Assistant Professor, National College (Affiliated to Bharathidasan University), Tiruchirappalli-620 001, Tamilnadu, India *Corresponding author: sriram.priya02[at]yahoo.com
${ }^{2}$ P.G Assistant in Mathematics, GHSS, Yethapur, Salem-636 117, Tamilnadu, India
(Part-time Research Scholar, National College (Affiliated to Bharathidasan University), Tiruchirappalli), veeramallan1986[at]gmail.com

Abstract

Let C be a non-perfect square positive-integer and $C=m^{2} \pm 1, m^{2} \pm 2, m^{2} \pm m$. The basic solution of the Pell equation is found in the present articlex $x^{2}-C y^{2}= \pm 1$ by using Continued fraction expansion of \sqrt{C}. Also, in terms of Generalized Bi-Periodic Fibonacci and Lucas sequences, we obtain all positive-integer solutions of the Pell equation $x^{2}-C y^{2}= \pm 1$.

Keywords: Continued fraction, Pell equations, Generalized Bi-Periodic Fibonacci and Lucas sequences
2010 Mathematics Subject Classifications: 11A55, 11B39, 11D55, 11D09, 11J70

1. Introduction

It is generally recognized that the Pell equation $x^{2}-C y^{2}=$ 1 always have positive-integer solutions, where C is a positive-integer which is not a perfect square. When N is not equal to 1 , there may be no positive-integer solution for $x^{2}-C y^{2}=N$. The positive-integer solution for $x^{2}-$ $C y^{2}=-1$ equation depends on the period length of \sqrt{C} continued fraction expansion. When m is a positive integer as well as $C=m^{2} \pm 1, m^{2} \pm 2, m^{2} \pm m$, particularly if a solution is available, all positive integer solutions are provided in terms of Generalized Bi-Periodic Fibonacci and Lucas sequences. In the present article, we will utilize \sqrt{C} continued fraction expansion to obtain all positive integer solutions of the equations for different values of C , if a solution exists.

2. Preliminaries

Some writers have generalized the sequences, Fibonacci and Lucas, by altering their initial conditions and recurring relations. Yayenie and Edson [11] generalize the Fibonacci sequence to the new set of sequences denoted as $\left\{p_{n}\right\}$ and is defined by

$$
\begin{gathered}
p_{0}=0, p_{1}=1, p_{n}=\left\{\begin{array}{ll}
a p_{n-1}+p_{n-2}, & \text { if } n \text { is even } \\
b p_{n-1}+p_{n-2}, & \text { if } n \text { is odd },
\end{array} \quad n\right. \\
\geq 2
\end{gathered}
$$

Bilgici [1], generalized the Lucas sequence by presenting a bi-periodic Lucas sequence denoted as $\left\{l_{n}\right\}$ and is expressed as:

$$
l_{0}=2, l_{1}=a, l_{n}=\left\{\begin{array}{ll}
b l_{n-1}+l_{n-2}, & \text { if } n \text { is even } \\
a l_{n-1}+l_{n-2}, & \text { if } n \text { is odd, }
\end{array} \quad n \geq 2\right.
$$

as well as several interesting associations between $\left\{p_{n}\right\}$ and $\left\{l_{n}\right\}$ have been proven.

We now consider a generalized bi-periodic Fibonacci sequence $\left\{f_{n}\right\}$ and Lucas sequence $\left\{q_{n}\right\}$ which are the generalization of $\left\{p_{n}\right\}$ and $\left\{l_{n}\right\}$, defined by:
$f_{0}=0, f_{1}=1, f_{n}=\left\{\begin{array}{ll}a f_{n-1}+c f_{n-2}, & \text { if } n \text { is even } \\ b f_{n-1}+c f_{n-2}, & \text { if } n \text { is odd, }\end{array} n \geq 2\right.$ and

$$
q_{0}=2 d, q_{1}=a d, q_{n}=\left\{\begin{array}{l}
b q_{n-1}+c q_{n-2}, \text { if } n \text { is even } \\
a q_{n-1}+c q_{n-2}, \text {, if } n \text { is odd } n \geq 2
\end{array}\right.
$$

where a, b, c, d are nonzero real numbers.
Yayenie and Choo [11] and [3] gave Binet's formulas for $\left\{f_{n}\right\}$ and $\left\{q_{n}\right\}$ are given by

$$
\begin{align*}
& f_{n}(a, b, c)=\frac{a^{\zeta(n+1)}}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor}}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right) \tag{1}\\
& q_{n}(a, b, c, d)=\frac{d}{(a b)^{\left\lfloor\frac{n}{2}\right\rfloor} b^{\zeta(n)}}\left(\alpha^{n}+\beta^{n}\right) \tag{2}
\end{align*}
$$

where $\alpha=\frac{a b+\sqrt{a^{2} b^{2}+4 a b c}}{2}$ and $\beta=\frac{a b-\sqrt{a^{2} b^{2}+4 a b c}}{2}$, i.e.,
$\alpha \operatorname{and} \beta$ are equation roots $x^{2}-a b x-a b c=0$, and
$\zeta(n)=n-2\left\lfloor\frac{n}{2}\right\rfloor$ is the parity function such that

$$
\zeta(n)=\left\{\begin{array}{l}
0 \text { if } n \text { is even } \\
1 \text { if } n \text { is odd } .
\end{array}\right.
$$

We now provide the fundamental solution to an equation $x^{2}-C y^{2}= \pm 1$ utilizing the length ofa period of \sqrt{C} continued fraction expansion.

Lemma 2.1:Supposel be period length of \sqrt{C} continued fraction expansion. Whenl is even, then the fundamental solution for $x^{2}-C y^{2}=1$ equation is given by

$$
x_{1}+y_{1} \sqrt{C}=p_{l-1}+q_{l-1} \sqrt{C}
$$

and $x^{2}-C y^{2}=-1$ equation has no integer solution. In case of l is odd, then the fundamental solution for $x^{2}-C y^{2}=$ 1equation is given by

$$
x_{1}+y_{1} \sqrt{C}=p_{2 l-1}+q_{2 l-1} \sqrt{C}
$$

and fundamental solution for $x^{2}-C y^{2}=-1$ equation is given by

$$
x_{1}+y_{1} \sqrt{C}=p_{l-1}+q_{l-1} \sqrt{C}
$$

Cognition 2.1 Let $x_{1}+y_{1} \sqrt{C}$ be the fundamental solution of $x^{2}-C y^{2}=1$ equation. Then all positive-integer solutions of $x^{2}-C y^{2}=1$ equation is given by
with $n \geq 1$.
Cognition 2.2 Let $x_{1}+y_{1} \sqrt{C}$ be the fundamental solution of $x^{2}-C y^{2}=-1$ equation. Then all positive-integer solutions for $x^{2}-C y^{2}=-1$ equation are given by

$$
x_{n}+y_{n} \sqrt{C}=\left(x_{1}+y_{1} \sqrt{C}\right)^{2 n-1}
$$

with $n \geq 1$.

$$
x_{n}+y_{n} \sqrt{C}=\left(x_{1}+y_{1} \sqrt{C}\right)^{n}
$$

Cognition 2.3 Let $C=m^{2} \pm 1, m^{2} \pm 2, m^{2} \pm m$. Then \sqrt{C} continued fraction expansionis given by

$$
\sqrt{C}= \begin{cases}{[m ; \overline{2 m}],} & \text { if } \mathrm{C}=m^{2}+1 \text { with } m \geq 1 \\ {[m-1 ; \overline{1,2 m-2}],} & \text { if } \mathrm{C}=m^{2}-1 \text { with } \gg 1 \\ {[m ; \overline{m, 2 m}],} & \text { if } \mathrm{C}=m^{2}+2 \text { with } m>1 \\ {[m-1 ; \overline{1, m-2,1,2 m-2}],} & \text { if } \mathrm{C}=m^{2}-2 \text { with } m>1 \\ {[m ; \overline{2,2 m}],} & \text { if } \mathrm{C}=m^{2}+m \text { with } m>1 \\ {[m-1 ; \overline{2,2 m-2}],} & \text { if } \mathrm{C}=m^{2}-m \text { with } m>1\end{cases}
$$

Corollary 2.1Let $C=m^{2} \pm 1, m^{2} \pm 2, m^{2} \pm m$. The basic solution of $x^{2}-C y^{2}=1$ equation is given by

$$
x_{1}+y_{1} \sqrt{C}=\left\{\begin{array}{l}
\left(2 m^{2}+1\right)+2 m \sqrt{C}, \text { if } C=m^{2}+1 \\
\left(2 m^{2}-1\right)+2 m \sqrt{C}, \text { if } C=m^{2}-1 \\
\left(m^{2}+1\right)+m \sqrt{C}, \text { if } C=m^{2}+2 \\
\left(m^{2}-1\right)+m \sqrt{C}, \text { if } C=m^{2}-2 \\
(2 m+1)+2 \sqrt{C}, \text { if } C=m^{2}+m \\
(2 m-1)+m \sqrt{C}, \text { if } C=m^{2}-m
\end{array}\right.
$$

Corollary 2.2Let $m>0$ and $C=m^{2}+1$. The basic solution of $x^{2}-C y^{2}=-1$ equation is $x_{1}+y_{1} \sqrt{C}=m+$ \sqrt{C}.

3. Main Theorems

Theorem 3.1: Suppose $m>0$ and $C=m^{2}+1$. Then all positive solution of the equation
$x^{2}-C y^{2}=1$ are given by
(x, y)
$=\left(2^{2 n-1} m^{\lfloor n\rfloor} q_{2 n}\left(1, m, \frac{1}{4 m}, 1\right), 2^{2 n-1} m^{\lfloor n\rfloor} f_{2 n}\left(1, m, \frac{1}{4 m}\right)\right)$
(x, y)
$=\left(2^{2 n-1} m^{\lfloor n\rfloor} q_{2 n}\left(m, 1, \frac{1}{4 m}, 1\right), 2^{2 n-1} \frac{m^{\lfloor n\rfloor}}{m} f_{2 n}\left(m, 1, \frac{1}{4 m}\right)\right)$
with $n \geq 1$.

Proof

By Corollary 2.1, Cognition 2.1, and 2.3, Then all positive solution of the equation $x^{2}-C y^{2}=1$ are given by

$$
x_{n}+y_{n} \sqrt{C}=\left(\left(2 m^{2}+1\right)+2 m \sqrt{C}\right)^{n}
$$

with $\quad n \geq 1$. Let $\alpha_{1}=\left(2 m^{2}+1\right)+2 m \sqrt{C}$ and $\beta_{1}=$ $\left(2 m^{2}+1\right)-2 m \sqrt{C}$. Then,

$$
x_{n}+y_{n} \sqrt{C}=\alpha_{1}^{n} \text { and } x_{n}-y_{n} \sqrt{C}=\beta_{1}^{n}
$$

Thus, it follows that

$$
x_{n}=\frac{\alpha_{1}^{n}+\beta_{1}^{n}}{2} \text { and } y_{n}=\frac{\alpha_{1}^{n}-\beta_{1}^{n}}{2 \sqrt{C}}
$$

Let

$$
\alpha=\frac{a b+\sqrt{a^{2} b^{2}+4 a b c}}{2} \text { and } \beta=\frac{a b-\sqrt{a^{2} b^{2}+4 a b c}}{2}
$$

Case (i)

Take $a=1, b=m, c=\frac{1}{4 m}$, we get

$$
\alpha=\frac{m+\sqrt{m^{2}+1}}{2} \text { and } \beta=\frac{m-\sqrt{m^{2}+1}}{2}
$$

Thus, $4 \alpha^{2}=\left(2 m^{2}+1\right)+2 m \sqrt{m^{2}+1}=\alpha_{1}$ and $4 \beta^{2}=$ $\left(2 m^{2}+1\right)-2 m \sqrt{m^{2}+1}=\beta_{1}$

Therefore, we get,

$$
\begin{aligned}
x_{n}=\frac{\left(4 \alpha^{2}\right)^{n}+\left(4 \beta^{2}\right)^{n}}{2}=2^{2 n-1}\left(\alpha^{2 n}+\beta^{2 n}\right) \\
=2^{2 n-1} m^{\lfloor n\rfloor} q_{2 n}\left(1, m, \frac{1}{4 m}, 1\right) \text { by }(2)
\end{aligned}
$$

and

$$
\begin{array}{r}
y_{n}=\frac{\left(4 \alpha^{2}\right)^{n}-\left(4 \beta^{2}\right)^{n}}{2 \sqrt{m^{2}+1}}=2^{2 n-1} \frac{\alpha^{2 n}-\beta^{2 n}}{\alpha-\beta} \\
=2^{2 n-1} m^{[n\rfloor} f_{2 n}\left(1, m, \frac{1}{4 m}\right) \text { by (1) }
\end{array}
$$

Thus, $(x, y)=$
$\left(2^{2 n-1} m^{\lfloor n\rfloor} q_{2 n}\left(1, m, \frac{1}{4 m}, 1\right), 2^{2 n-1} m^{\lfloor n\rfloor} f_{2 n}\left(1, m, \frac{1}{4 m}\right)\right)$

Case (ii)
Take, $a=m, b=1, c=\frac{1}{4 m}$, we get

$$
\alpha=\frac{m+\sqrt{m^{2}+1}}{2} \text { and } \beta=\frac{m-\sqrt{m^{2}+1}}{2}
$$

Thus, $4 \alpha^{2}=\left(2 m^{2}+1\right)+2 m \sqrt{m^{2}+1}=\alpha_{1}$ and $4 \beta^{2}=$ $\left(2 m^{2}+1\right)-2 m \sqrt{m^{2}+1}=\beta_{1}$

Therefore, we get,

$$
\begin{aligned}
& x_{n}=\frac{\left(4 \alpha^{2}\right)^{n}+\left(4 \beta^{2}\right)^{n}}{2}=2^{2 n-1}\left(\alpha^{2 n}+\beta^{2 n}\right) \\
& =2^{2 n-1} m^{[n]} q_{2 n}\left(m, 1, \frac{1}{4 m}, 1\right) \text { by }(2)
\end{aligned}
$$

and

$$
\begin{aligned}
& y_{n}=\frac{\left(4 \alpha^{2}\right)^{n}-\left(4 \beta^{2}\right)^{n}}{2 \sqrt{m^{2}+1}}=2^{2 n-1} \frac{\alpha^{2 n}-\beta^{2 n}}{\alpha-\beta} \\
&=2^{2 n-1} \frac{m^{\lfloor n\rfloor}}{m} f_{2 n}\left(m, 1, \frac{1}{4 m}\right) \text { by (1) }
\end{aligned}
$$

Thus,
(x, y)
$=\left(2^{2 n-1} m^{\lfloor n\rfloor} q_{2 n}\left(m, 1, \frac{1}{4 m}, 1\right), 2^{2 n-1} \frac{m^{\lfloor n\rfloor}}{m} f_{2 n}\left(m, 1, \frac{1}{4 m}\right)\right)$
From cases (i) and (ii) we get the required solution.
Now we examine the remaining instances of C without providing evidence since they can be proven to be identical to those of Theorem 3.1.

Theorem 3.2 Let $m>0$ and $C=m^{2}+1$. Then all positive solution of the equation $x^{2}-C y^{2}=-1$ are given by

$$
\begin{gathered}
(x, y)=\left(2^{2 n-2} \cdot m \cdot m^{\left\lfloor^{2 n-1} 2\right.}\right\rfloor
\end{gathered} q_{2 n-1}\left(1, m, \frac{1}{4 m}, 1\right), 2^{2 n-2} \cdot m^{\left\lfloor^{\left.\frac{2 n-1}{2}\right\rfloor} \cdot f_{2 n-1}\left(1, m, \frac{1}{4 m}\right)\right)} \begin{aligned}
& (\text { or }) \\
& (x, y)=\left(2^{2 n-2} \cdot m^{\left.\frac{2^{2 n-1}}{2}\right\rfloor} \cdot q_{2 n-1}\left(m, 1, \frac{1}{4 m}, 1\right), 2^{2 n-2} \cdot m^{\left\lfloor^{2 n-1} \frac{1}{2}\right\rfloor} \cdot f_{2 n-1}\left(m, 1, \frac{1}{4 m}\right)\right)
\end{aligned}
$$

with $n \geq 1$.
Theorem 3.3 Let $m>0$ and $C=m^{2}-1$.

Then all positive solution of the equation
$x^{2}-C y^{2}=1$ are given by

$$
(x, y)
$$

$$
=\left(2^{n-1} m^{\left\lfloor\frac{n}{2}\right.} m^{\zeta(n)} q_{n}\left(1, m, \frac{-1}{4 m}, 1\right), 2^{n-1} m^{\left\lfloor\frac{n}{2}\right.} \int_{n}\left(1, m, \frac{-1}{4 m}\right)\right)
$$

(or)
(x, y)
$=\left(2^{n-1} m^{\left[\frac{n}{2}\right]} q_{n}\left(m, 1, \frac{-1}{4 m}, 1\right), 2^{2 n-1} \frac{m^{\left\lfloor\frac{n}{2}\right\rfloor}}{m^{\zeta(n+1)}} f_{n}\left(m, 1, \frac{-1}{4 m}\right)\right)$
with $n \geq 1$.
Theorem 3.4: Suppose $m>0$ and $C=m^{2}+2$. Then all positive solution of the equation
$x^{2}-C y^{2}=1$ are given by
$(x, y)=\left(2^{n-1} m^{[n\rfloor} q_{2 n}\left(1, m, \frac{1}{2 m}, 1\right), 2^{n-1} m^{\lfloor n\rfloor} f_{2 n}\left(1, m, \frac{1}{2 m}\right)\right)$
(or)
$(x, y)=\left(2^{n-1} m^{[n\rfloor} q_{2 n}\left(m, 1, \frac{1}{2 m}, 1\right), 2^{n-1} \frac{m^{\lfloor n\rfloor}}{m} f_{2 n}\left(m, 1, \frac{1}{2 m}\right)\right)$ with $n \geq 1$.

Theorem 3.5: Suppose $m>0$ and $C=m^{2}-2$. Then all positive solution of the equation
$x^{2}-C y^{2}=1$ are given by
$(x, y)=\left(2^{n-1} m^{[n\rfloor} q_{2 n}\left(1, m, \frac{-1}{2 m}, 1\right), 2^{n-1} m^{\lfloor n\rfloor} f_{2 n}\left(1, m, \frac{-1}{2 m}\right)\right)$
(or)
$(x, y)=\left(2^{n-1} m^{[n\rfloor} q_{2 n}\left(m, 1, \frac{-1}{2 m}, 1\right), 2^{n-1} \frac{m^{\lfloor n\rfloor}}{m} f_{2 n}\left(m, 1, \frac{-1}{2 m}\right)\right)$ with $n \geq 1$.

Theorem 3.6 Let $m>0$ and $C=m^{2}+m$. Then all positive solution of the equation
$x^{2}-C y^{2}=1$ are given by

$$
\begin{aligned}
& =\left(2^{2 n-1} \frac{m^{\lfloor n\rfloor}}{m^{n}} q_{2 n}\left(1, m, \frac{1}{4}, 1\right), 2^{2 n-1} \frac{m^{\lfloor n\rfloor}}{m^{n}} f_{2 n}\left(1, m, \frac{1}{4}\right)\right) \\
& \left(\begin{array}{c}
(x, y)
\end{array}\right. \\
& =\left(2^{2 n-1} \frac{m^{\lfloor n\rfloor}}{m^{n}} q_{2 n}\left(m, 1, \frac{1}{4}, 1\right), 2^{2 n-1} \frac{m^{\lfloor n\rfloor}}{m^{n}} f_{2 n}\left(m, 1, \frac{1}{4}\right)\right)
\end{aligned}
$$

with $n \geq 1$.
Theorem 3.7 Letm >0 and $C=m^{2}-m$. Then all positive solution of the equation
$x^{2}-C y^{2}=1$ are given by

$$
\begin{aligned}
& (x, y) \\
& \left(2^{2 n-1} \frac{m^{\lfloor n\rfloor}}{m^{n}} q_{2 n}\left(1, m, \frac{-1}{4}, 1\right), 2^{2 n-1} \frac{m^{\lfloor n\rfloor}}{m} f_{2 n}\left(1, m, \frac{-1}{4}\right)\right) \\
= & \left(2^{2 n-1} \frac{m^{\lfloor n\rfloor}}{m^{n}} q_{2 n}\left(m, 1, \frac{-1}{4}, 1\right), 2^{2 n-1} \frac{m^{\lfloor n\rfloor}}{m^{n+1}} f_{2 n}\left(m, 1, \frac{-1}{4}\right)\right)
\end{aligned}
$$

with $n \geq 1$.
Theorem 3.8 Let $C=\left\{\begin{array}{l}m^{2}-1, m>1 \\ m^{2}+2, m \geq 0 \\ m^{2}-2, m \geq 2 \\ m^{2}+m, m \geq 1 \\ m^{2}-m, m \geq 2\end{array}\right.$ then the equation
$x^{2}-C y^{2}=-1$ has no solution in positive integers.

Volume 11 Issue 8, August 2022

Proof

Since by Cognition 2.3 , the period length of \sqrt{C} continued fraction expansion is even always. It follows from Lemma 2.1 that equation does not have a positive-integer value

$$
x^{2}-C y^{2}=-1
$$

4. Conclusion

In this paper, we investigate the Pell equation $x^{2}-C y^{2}=$ $\pm 1, C=m^{2} \pm 1, m^{2} \pm 2, m^{2} \pm m$ and in x and y, we are seeking positive-integer values. We have all positive integer values in the Pell equations $x^{2}-C y^{2}= \pm 1$ for generalized Bi-Periodic Fibonacci and Lucas sequences when $C=m^{2} \pm$ $1, m^{2} \pm 2, m^{2} \pm m$.

References

[1] Bilgici, G. Two generalizations of Lucas sequence. Appl. Math. Comput. 2014, 245, 526-538.
[2] Burton, D.M. Elementary Number Theory, Seventh Edition, The McGraw Hill Companies, New York (2011).
[3] Choo, Y. On the generalized bi-periodic Lucas quaternions. Int. J. Math. Anal.2020, 14, 137-145.
[4] Choo, Y. Relations between Generalized Bi-Periodic Fibonacci and Lucas Sequences, MDPI, 2020, 8, 1527.
[5] Duman, M.G. Positive Integer Solutions of Some Pell equations, MATHEMATIKA, 2014, Vol. 30(1), 97-108.
[6] Keskin, R. and Duman, M.G. Positive integer solutions of some Pell equations, Palestine Journal of Mathematics, Vol. 8(2) (2019), 213-226.
[7] LeVeque, W. J. Topics in Number Theory. Volume 1 and 2. Dover Publications. 2002.
[8] Nagell, T. Introduction to Number Theory. New York: Chelsea Publishing Company. 1981.
[9] Tekcan, A. "Continued Fractions Expansions of \sqrt{D} and Pell Equation $x^{2}-D y^{2}=1 "$, Mathematica Moravica, Vol. 15-2 (2011), 19-27.
[10] TituAndreescu, DorinAndrica and Ion Cucurezeanu., An introduction to Diophantine Equations, Birhauser, New York, 2010.
[11] Yayenie, O. A note on generalized Fibonacci sequences. Appl. Math. Comput. 2011, 217, 56035611.

