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1. Introduction 
 

It is generally recognized that the Pell equation 𝑥2 − 𝐶𝑦2 =
1 always have positive-integer solutions, where C is a 

positive-integer which is not a perfect square. When N is not 

equal to 1, there may be no positive-integer solution for 

𝑥2 − 𝐶𝑦2 =  𝑁. The positive-integer solution for𝑥2 −
𝐶𝑦2 = −1equation depends on the period length of 

 𝐶continued fraction expansion. When 𝑚 is a positive 

integer as well as 𝐶 = 𝑚2 ± 1, 𝑚2 ± 2, 𝑚2 ± 𝑚, particularly 

if a solution is available, all positive integer solutions are 

provided in terms of Generalized Bi-Periodic Fibonacci and 

Lucas sequences. In the present article, we will utilize 

 𝐶continued fraction expansion to obtain all positive integer 

solutions of the equations for different values of C, if a 

solution exists. 

 

2. Preliminaries 
 

Some writers have generalized the sequences, Fibonacci and 

Lucas, by altering their initial conditions and recurring 

relations. Yayenie and Edson [11] generalize the Fibonacci 

sequence to the new set of sequences denoted as   𝑝𝑛   and is 

defined by  

𝑝0 = 0, 𝑝1 = 1,  𝑝𝑛 =  
𝑎𝑝𝑛−1 + 𝑝𝑛−2,     𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑏𝑝𝑛−1 + 𝑝𝑛−2 ,     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑,

     𝑛

≥ 2 

 

Bilgici [1], generalized the Lucas sequence by presenting a 

bi-periodic Lucas sequence denoted as   𝑙𝑛   and is expressed 

as: 

𝑙0 = 2, 𝑙1 = 𝑎,  𝑙𝑛 =  
𝑏𝑙𝑛−1 + 𝑙𝑛−2,    𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑎𝑙𝑛−1 + 𝑙𝑛−2,     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑,

     𝑛 ≥ 2 

as well as several interesting associations between 
 𝑝𝑛  and 𝑙𝑛  have been proven. 

 

We now consider a generalized bi-periodic Fibonacci 

sequence  𝑓𝑛 and Lucas sequence  𝑞𝑛   which are the 

generalization of  𝑝𝑛  and 𝑙𝑛 , defined by: 

𝑓0 = 0, 𝑓1 = 1,  𝑓𝑛 =  
𝑎𝑓𝑛−1 + 𝑐𝑓𝑛−2,     𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑏𝑓𝑛−1 + 𝑐𝑓𝑛−2,     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑,

  𝑛 ≥ 2 

and 

𝑞0 = 2𝑑, 𝑞1 = 𝑎𝑑,  𝑞𝑛 =  
𝑏𝑞𝑛−1 + 𝑐𝑞𝑛−2,   𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑎𝑞𝑛−1 + 𝑐𝑞𝑛−2, , 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 𝑛 ≥ 2 

where 𝑎, 𝑏, 𝑐, 𝑑 are nonzero real numbers. 

 

Yayenie and Choo [11] and [3] gave Binet’s formulas for 
 𝑓𝑛 and 𝑞𝑛   are given by 

  𝑓𝑛 𝑎, 𝑏, 𝑐 =
𝑎𝜁 𝑛+1 

 𝑎𝑏  
𝑛

2
 
 
𝛼𝑛 − 𝛽𝑛

𝛼 − 𝛽
                       (1) 

𝑞𝑛 𝑎, 𝑏, 𝑐, 𝑑 =
𝑑

 𝑎𝑏  
𝑛

2
 𝑏𝜁 𝑛 

 𝛼𝑛 + 𝛽𝑛         (2) 

where 𝛼 =
𝑎𝑏 + 𝑎2𝑏2+4𝑎𝑏𝑐

2
  and 𝛽 =

𝑎𝑏− 𝑎2𝑏2+4𝑎𝑏𝑐

2
, i.e., 

𝛼and𝛽 are equation roots 𝑥2 − 𝑎𝑏𝑥 − 𝑎𝑏𝑐 = 0, and 

𝜁 𝑛 = 𝑛 − 2  
𝑛

2
  is the parity function such that 

𝜁 𝑛 =  
0 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
1 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

  

 

We now provide the fundamental solution to an equation 

𝑥2 − 𝐶𝑦2 = ±1 utilizing the length ofa period of  𝐶 

continued fraction expansion. 

 

Lemma 2.1:Suppose𝑙 be period length of  𝐶 continued 

fraction expansion. When𝑙 is even, then the fundamental 

solution for𝑥2 − 𝐶𝑦2 = 1equation is given by 

𝑥1 + 𝑦1 𝐶 = 𝑝𝑙−1 + 𝑞𝑙−1 𝐶 

and𝑥2 − 𝐶𝑦2 = −1equation has no integer solution. In case 

of 𝑙 is odd, then the fundamental solution for𝑥2 − 𝐶𝑦2 =
1equation is given by 

 

𝑥1 + 𝑦1 𝐶 = 𝑝2𝑙−1 + 𝑞2𝑙−1 𝐶 
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and fundamental solution for𝑥2 − 𝐶𝑦2 = −1equation is 

given by 

 

𝑥1 + 𝑦1 𝐶 = 𝑝𝑙−1 + 𝑞𝑙−1 𝐶 

 

Cognition 2.1 Let 𝑥1 + 𝑦1 𝐶 be the fundamental solution 

of𝑥2 − 𝐶𝑦2 = 1 equation. Then all positive-integer 

solutions of𝑥2 − 𝐶𝑦2 = 1equation is given by 

 

𝑥𝑛 + 𝑦𝑛 𝐶 =  𝑥1 + 𝑦1 𝐶 
𝑛

 

with 𝑛 ≥ 1. 

 

Cognition 2.2 Let 𝑥1 + 𝑦1 𝐶 be the fundamental solution 

of𝑥2 − 𝐶𝑦2 = −1 equation. Then all positive-integer 

solutions for𝑥2 − 𝐶𝑦2 = −1equation are given by 

 

𝑥𝑛 + 𝑦𝑛 𝐶 =  𝑥1 + 𝑦1 𝐶 
2𝑛−1

 

with 𝑛 ≥ 1. 

 

Cognition 2.3 Let𝐶 = 𝑚2 ± 1, 𝑚2 ± 2, 𝑚2 ± 𝑚.Then   𝐶 continued fraction expansionis given by  

 𝐶 =

 
  
 

  
 

 𝑚; 2𝑚     ,                                              if C = 𝑚2 + 1 𝑤𝑖𝑡ℎ 𝑚 ≥ 1

 𝑚 − 1; 1, 2𝑚 − 2             ,                         if C = 𝑚2 − 1 𝑤𝑖𝑡ℎ𝑚 > 1

 𝑚; 𝑚, 2𝑚         ,                                         if C = 𝑚2 + 2 𝑤𝑖𝑡ℎ 𝑚 > 1

 𝑚 − 1; 1, 𝑚 − 2,1, 2𝑚 − 2                         , if C = 𝑚2 − 2 𝑤𝑖𝑡ℎ 𝑚 > 1

 𝑚; 2, 2𝑚        ,                                        if C = 𝑚2 + 𝑚 𝑤𝑖𝑡ℎ 𝑚 > 1

 𝑚 − 1; 2, 2𝑚 − 2             ,                        if C = 𝑚2 − 𝑚 𝑤𝑖𝑡ℎ 𝑚 > 1

  

 

Corollary 2.1Let𝐶 = 𝑚2 ± 1, 𝑚2 ± 2, 𝑚2 ± 𝑚.The basic solution of 𝑥2 − 𝐶𝑦2 = 1equation is given by 

𝑥1 + 𝑦1 𝐶 =

 
 
 
 

 
 
 
 2𝑚2 + 1 + 2𝑚 𝐶,   𝑖𝑓 𝐶 = 𝑚2 + 1

 2𝑚2 − 1 + 2𝑚 𝐶,   𝑖𝑓 𝐶 = 𝑚2 − 1

 𝑚2 + 1 + 𝑚 𝐶,   𝑖𝑓 𝐶 = 𝑚2 + 2

 𝑚2 − 1 + 𝑚 𝐶,   𝑖𝑓 𝐶 = 𝑚2 − 2

 2𝑚 + 1 + 2 𝐶,   𝑖𝑓 𝐶 = 𝑚2 + 𝑚

 2𝑚 − 1 + 𝑚 𝐶,   𝑖𝑓 𝐶 = 𝑚2 − 𝑚

  

 

Corollary 2.2Let 𝑚 > 0 and 𝐶 = 𝑚2 + 1. The basic 

solution of 𝑥2 − 𝐶𝑦2 = −1equation is 𝑥1 + 𝑦1 𝐶 = 𝑚 +

 𝐶. 
 

3. Main Theorems 
 

Theorem 3.1: Suppose 𝑚 > 0and𝐶 = 𝑚2 + 1. Then all 

positive solution of the equation 

𝑥2 − 𝐶𝑦2 = 1 are given by 

 𝑥, 𝑦 

=  22𝑛−1𝑚 𝑛 𝑞2𝑛  1, 𝑚,
1

4𝑚
, 1 , 22𝑛−1𝑚 𝑛 𝑓2𝑛  1, 𝑚,

1

4𝑚
   

(or) 

 𝑥, 𝑦 

=  22𝑛−1𝑚 𝑛 𝑞2𝑛  𝑚, 1,
1

4𝑚
, 1 , 22𝑛−1

𝑚 𝑛 

𝑚
𝑓2𝑛  𝑚, 1,

1

4𝑚
   

with 𝑛 ≥ 1. 

 

Proof 

 

By Corollary 2.1, Cognition 2.1, and 2.3, Then all positive 

solution of the equation𝑥2 − 𝐶𝑦2 = 1 are given by 

𝑥𝑛 + 𝑦𝑛 𝐶 =   2𝑚2 + 1 + 2𝑚 𝐶 
𝑛

 

 

with 𝑛 ≥ 1. Let 𝛼1 =  2𝑚2 + 1 + 2𝑚 𝐶  and𝛽1 =

 2𝑚2 + 1 − 2𝑚 𝐶. Then, 

 

𝑥𝑛 + 𝑦𝑛 𝐶 = 𝛼1
𝑛and𝑥𝑛 − 𝑦𝑛 𝐶 = 𝛽1

𝑛
 

 

Thus, it follows that 

𝑥𝑛 =
𝛼1

𝑛 + 𝛽1
𝑛

2
and𝑦𝑛 =

𝛼1
𝑛 − 𝛽1

𝑛

2 𝐶
 

 

Let 

𝛼 =
𝑎𝑏 +  𝑎2𝑏2 + 4𝑎𝑏𝑐

2
and 𝛽 =

𝑎𝑏 −  𝑎2𝑏2 + 4𝑎𝑏𝑐

2
 

 

Case (i) 

 

Take  𝑎 = 1, 𝑏 = 𝑚, 𝑐 =
1

4𝑚
, we get 

𝛼 =
𝑚 +  𝑚2 + 1

2
and 𝛽 =

𝑚 −  𝑚2 + 1

2
 

Thus, 4𝛼2 =  2𝑚2 + 1 + 2𝑚 𝑚2 + 1 = 𝛼1 and 4𝛽2 =

 2𝑚2 + 1 − 2𝑚 𝑚2 + 1 = 𝛽1 
 

Therefore, we get,  

𝑥𝑛 =
 4𝛼2 𝑛 +  4𝛽2 𝑛

2
= 22𝑛−1 𝛼2𝑛 + 𝛽2𝑛 

= 22𝑛−1𝑚 𝑛 𝑞2𝑛  1, 𝑚,
1

4𝑚
, 1 by (2) 

and  

𝑦𝑛 =
 4𝛼2 𝑛 −  4𝛽2 𝑛

2 𝑚2 + 1
= 22𝑛−1

𝛼2𝑛 − 𝛽2𝑛

𝛼 − 𝛽

= 22𝑛−1𝑚 𝑛 𝑓2𝑛  1, 𝑚,
1

4𝑚
   by (1) 

 

Thus, 𝑥, 𝑦 =

 22𝑛−1𝑚 𝑛 𝑞2𝑛  1, 𝑚,
1

4𝑚
, 1 , 22𝑛−1𝑚 𝑛 𝑓2𝑛  1, 𝑚,

1

4𝑚
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Case (ii) 

Take,  𝑎 = 𝑚, 𝑏 = 1, 𝑐 =
1

4𝑚
 , we get  

𝛼 =
𝑚 +  𝑚2 + 1

2
 and 𝛽 =

𝑚 −  𝑚2 + 1

2
 

Thus, 4𝛼2 =  2𝑚2 + 1 + 2𝑚 𝑚2 + 1 = 𝛼1 and 4𝛽2 =

 2𝑚2 + 1 − 2𝑚 𝑚2 + 1 = 𝛽1 

 

Therefore, we get,  

𝑥𝑛 =
 4𝛼2 𝑛 +  4𝛽2 𝑛

2
= 22𝑛−1 𝛼2𝑛 + 𝛽2𝑛 

= 22𝑛−1𝑚 𝑛 𝑞2𝑛  𝑚, 1,
1

4𝑚
, 1 by (2) 

and  

𝑦𝑛 =
 4𝛼2 𝑛 −  4𝛽2 𝑛

2 𝑚2 + 1
= 22𝑛−1

𝛼2𝑛 − 𝛽2𝑛

𝛼 − 𝛽

= 22𝑛−1
𝑚 𝑛 

𝑚
𝑓2𝑛  𝑚, 1,

1

4𝑚
 by (1) 

Thus,  

 𝑥, 𝑦 

=  22𝑛−1𝑚 𝑛 𝑞2𝑛  𝑚, 1,
1

4𝑚
, 1 , 22𝑛−1

𝑚 𝑛 

𝑚
𝑓2𝑛  𝑚, 1,

1

4𝑚
   

From cases (i) and (ii) we get the required solution. 

 

Now we examine the remaining instances of C without 

providing evidence since they can be proven to be identical 

to those of Theorem 3.1.  

 

Theorem 3.2 Let𝑚 > 0 and 𝐶 = 𝑚2 + 1. Then all positive solution of the equation 

𝑥2 − 𝐶𝑦2 = −1 are given by 

 𝑥, 𝑦 =  22𝑛−2 . 𝑚. 𝑚 
2𝑛−1

2
 . 𝑞2𝑛−1  1, 𝑚,

1

4𝑚
, 1 , 22𝑛−2. 𝑚 

2𝑛−1

2
 . 𝑓2𝑛−1  1, 𝑚,

1

4𝑚
   

(or) 

 𝑥, 𝑦 =  22𝑛−2 . 𝑚 
2𝑛−1

2
 . 𝑞2𝑛−1  𝑚, 1,

1

4𝑚
, 1 , 22𝑛−2. 𝑚 

2𝑛−1

2
 . 𝑓2𝑛−1  𝑚, 1,

1

4𝑚
   

with 𝑛 ≥ 1. 

 

Theorem 3.3 Let𝑚 > 0 and 𝐶 = 𝑚2 − 1.  

 

Then all positive solution of the equation 

𝑥2 − 𝐶𝑦2 = 1 are given by 
 𝑥, 𝑦 

=  2𝑛−1𝑚
 
𝑛

2
 
𝑚𝜁 𝑛 𝑞𝑛  1, 𝑚,

−1

4𝑚
, 1 , 2𝑛−1𝑚

 
𝑛

2
 
𝑓𝑛  1, 𝑚,

−1

4𝑚
   

 

(or) 
 𝑥, 𝑦 

=  2𝑛−1𝑚
 
𝑛

2
 
𝑞𝑛  𝑚, 1,

−1

4𝑚
, 1 , 22𝑛−1

𝑚
 
𝑛

2
 

𝑚𝜁 𝑛+1 
𝑓𝑛  𝑚, 1,

−1

4𝑚
   

with 𝑛 ≥ 1. 

 

Theorem 3.4: Suppose 𝑚 > 0and 𝐶 = 𝑚2 + 2. Then all 

positive solution of the equation 

𝑥2 − 𝐶𝑦2 = 1 are given by 

 𝑥, 𝑦 =  2𝑛−1𝑚 𝑛 𝑞2𝑛  1, 𝑚,
1

2𝑚
, 1 , 2𝑛−1𝑚 𝑛 𝑓2𝑛  1, 𝑚,

1

2𝑚
   

(or) 

 𝑥, 𝑦 =  2𝑛−1𝑚 𝑛 𝑞2𝑛  𝑚, 1,
1

2𝑚
, 1 , 2𝑛−1

𝑚 𝑛 

𝑚
𝑓2𝑛  𝑚, 1,

1

2𝑚
   

with 𝑛 ≥ 1. 

 

Theorem 3.5: Suppose 𝑚 > 0 and 𝐶 = 𝑚2 − 2. Then all 

positive solution of the equation 

𝑥2 − 𝐶𝑦2 = 1are given by 

 𝑥, 𝑦 =  2𝑛−1𝑚 𝑛 𝑞2𝑛  1, 𝑚,
−1

2𝑚
, 1 , 2𝑛−1𝑚 𝑛 𝑓2𝑛  1, 𝑚,

−1

2𝑚
   

(or) 

 𝑥, 𝑦 =  2𝑛−1𝑚 𝑛 𝑞2𝑛  𝑚, 1,
−1

2𝑚
, 1 , 2𝑛−1

𝑚 𝑛 

𝑚
𝑓2𝑛  𝑚, 1,

−1

2𝑚
   

with 𝑛 ≥ 1. 

 

Theorem 3.6 Let𝑚 > 0 and 𝐶 = 𝑚2 + 𝑚. Then all positive 

solution of the equation 

𝑥2 − 𝐶𝑦2 = 1 are given by 

 𝑥, 𝑦 

=  22𝑛−1
𝑚 𝑛 

𝑚𝑛
𝑞2𝑛  1, 𝑚,

1

4
, 1 , 22𝑛−1

𝑚 𝑛 

𝑚𝑛
𝑓2𝑛  1, 𝑚,

1

4
   

(or) 

 𝑥, 𝑦 

=  22𝑛−1
𝑚 𝑛 

𝑚𝑛
𝑞2𝑛  𝑚, 1,

1

4
, 1 , 22𝑛−1

𝑚 𝑛 

𝑚𝑛
𝑓2𝑛  𝑚, 1,

1

4
   

with 𝑛 ≥ 1. 

 

Theorem 3.7 Let𝑚 > 0 and 𝐶 = 𝑚2 − 𝑚. Then all positive 

solution of the equation 

𝑥2 − 𝐶𝑦2 = 1are given by 
 𝑥, 𝑦 

=  22𝑛−1
𝑚 𝑛 

𝑚𝑛 𝑞2𝑛  1, 𝑚,
−1

4
, 1 , 22𝑛−1

𝑚 𝑛 

𝑚
𝑓2𝑛  1, 𝑚,

−1

4
   

(or) 
 𝑥, 𝑦 

=  22𝑛−1
𝑚 𝑛 

𝑚𝑛 𝑞2𝑛  𝑚, 1,
−1

4
, 1 , 22𝑛−1

𝑚 𝑛 

𝑚𝑛+1 𝑓2𝑛  𝑚, 1,
−1

4
   

with 𝑛 ≥ 1. 

Theorem 3.8 Let 𝐶 =

 
 
 

 
 𝑚2 − 1, 𝑚 > 1

𝑚2 + 2, 𝑚 ≥ 0

𝑚2 − 2, 𝑚 ≥ 2

𝑚2 + 𝑚, 𝑚 ≥ 1

𝑚2 − 𝑚, 𝑚 ≥ 2

   then the equation 

𝑥2 − 𝐶𝑦2 = −1 has no solution in positive integers. 
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Proof 

Since by Cognition 2.3, the period length of  𝐶continued 

fraction expansion is even always. It follows from Lemma 

2.1 that equation does not have a positive-integer value  

𝑥2 − 𝐶𝑦2 = −1. 

 

4. Conclusion 
 

In this paper, we investigate the Pell equation 𝑥2 − 𝐶𝑦2 =
±1, 𝐶 = 𝑚2 ± 1, 𝑚2 ± 2, 𝑚2 ± 𝑚 and in 𝑥and𝑦, we are 

seeking positive-integer values. We have all positive integer 

values in the Pell equations 𝑥2 − 𝐶𝑦2 = ±1for generalized 

Bi-Periodic Fibonacci and Lucas sequences when 𝐶 = 𝑚2 ±
1, 𝑚2 ± 2, 𝑚2 ± 𝑚. 
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