On Certain Classes of Generalized Rational Functions

V. Srinivas

Abstract

A normalized function f analytic in the open unit disc around the origin and nonvanishing outside the origin can be expressed in the form $z / g(z)$ where $g(z)$ has Taylor coefficients b_{n} 's. Necessary and sufficient conditions in terms of b_{n} 's are derived for some classes of analytic functions.

1. Introduction

Let A_{1} be the class of functions analytic in $U=$ $\{z \in C ;|z|<1\}$, and normalized by $f(0)=0, f^{\prime}(0)=1$ where C is the set of complex numbers. An f in A_{1} with $f(z) \neq 0$ in the punctured disc $U /\{0\}$, may be expressed as $f(z)=$ $\psi(g)=z / g(z)$ in U,
where $g(z)=1+\sum_{n=1}^{\infty} b_{n} z^{n}$ in U.
Mitrinovic [2], Reade et.al [5], Silverman and Silvia [6] and Srinivas [7, 8] studied these coefficients.

Mitrinovic [3] obtained estimates for the radii on univalence of certain generalized rational functions $z / g(z)$. In particular, he found sufficient conditions for functions of the form
(1) $\frac{z}{1+b_{1}+b_{2} z^{2}+\ldots .+b_{n} z^{n}}$
$b_{n} \neq 0$, to be univalent in the unit disk U .
A function
(2) $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$
in A_{1} is said to be starlike with respect to the origin in U , if it satisfies $R e \frac{z f^{\prime}(z)}{f(z)}>\alpha$ in U . A function $f(z)$ in A_{1} is said to be convex, if $\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0$ in the unit disc U .

Mac Gregor [1] showed the following.
Theorem A: If $f \in A$ satisfies

$$
\left|\frac{f(z)}{z}-1\right|<1(z \in U),
$$

then

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1\left(|z|<\frac{1}{2}\right)
$$

so that

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0\left(|z|<\frac{1}{2}\right)
$$

Therefore, $f(z)$ is univalent and starlike for $|z|<\frac{1}{2}$.
Also, Mac Gregor [2] had given the following result.
Theorem B. If $f \in A$ satisfies

$$
\left|f^{\prime}(z)-1\right|<1(z \in U)
$$

then

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0\left(|z|<\frac{1}{2}\right)
$$

Therefore $f(z)$ is convex for $|z|<\frac{1}{2}$
The condition domains to Theorem A and Theorem Bare some circular domains whose centre is the point $\mathrm{z}=1$.

In the research paper Nunokawa et.al [4], some sufficient conditions for starlikeness and convexity under the hypotheses whose condition domains were centered at the origin were obtained as follows.

A result for starlikeness of $f(z)$ is
Theorem C. Let for $f \in A_{1}$ suppose that
$0.10583 \ldots .=\exp \left(-\frac{\pi^{2}}{4 \log 3}\right)<\left|\frac{z f^{\prime}(z)}{f(z)}\right|<\exp \left(\frac{\pi^{2}}{4 \log 3}\right)=$ 9.44915.... $(z \in U)$.

Then $f(z)$ is starlike for $|z|<\frac{1}{2}$.
Theorem D. Let for $f \in A_{1}$ suppose that
$0.472367 \quad \ldots \quad=\quad \exp \quad\left(-\frac{3}{4}\right)<\left|\frac{f(z)}{z}\right|<\exp \left(\frac{3}{4}\right)=$ 2.1777.... $(z \in U)$.

Then we have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1\left(|z|<\frac{1}{2}\right)
$$

and $f(z)$ is starlike for $|z|<\frac{1}{2}$.
For convexity of functions $f(z)$, the following result was derived.

Corollary E. Let $f \in A_{1}$ and suppose that
$0.472367 \quad \ldots .=\exp \quad\left(-\frac{3}{4}\right)<\left|f^{\prime}(z)\right|<\exp \left(\frac{3}{4}\right)=$ 2.1777.... $(z \in U)$.

Then $f(z)$ is convex for $|z|<\frac{1}{2}$.
A result for convexity of functions $f(z)$ was derived in
Theorem F. Let $f \in A_{1}$ and suppose that
$0.778801 \quad \ldots .=\exp \quad\left(-\frac{1}{4}\right)<\left|\frac{z f^{\prime}(z)}{f(z)}\right|<\exp \left(\frac{1}{4}\right)=$ 1.28403.... $(z \in U)$.

Then $f(z)$ is convex for $|z|<\frac{1}{2}$.
Theorem G Let $f \in A_{1}$ and suppose that
$0.10583 \ldots=\exp \left(-\frac{\pi^{2}}{4 \log 3}\right)<\left|\frac{z f^{\prime}(z)}{f(z)}\right|<\exp \left(\frac{\pi^{2}}{4 \log 3}\right)=$ 9.44915.... $(z \in U)$.

Then $f(z)$ is convex for $|z|<r_{0}$ where r_{0} is the root of the equation

$$
\begin{aligned}
& (4 \log 3) r^{2}-2\left(4 \log 3+\pi^{2}+r+4 \log 3\right)=0 \\
& \quad r_{0}=\frac{\pi^{2}-4 \log 3-\pi \sqrt{\pi^{2}+8 \log 3}}{4 \log 3}=0.15787 \ldots
\end{aligned}
$$

In this paper we derive sufficient conditions on $b_{n}{ }^{\prime} s$ for f to be starlike or convex in $|z|<\frac{1}{2}$.

SECTION - 1

First we determine some sufficient conditions on f in terms of $b_{n}{ }^{\prime} s$ for f to be starlike in $|z|<\frac{1}{2}$, in the following Theorems 1 to 3 .

Theorem 1: Let $f(z)=z /\left(1+\sum_{n=1}^{\infty} b_{n} z^{n}\right) \in A_{1}$ with $b_{n}{ }^{\prime} s$ satisfying.

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|b_{n}\right|<\frac{1}{2} \tag{1}
\end{equation*}
$$

Then $f(z)$ is univalent and starlike for $|z|<\frac{1}{2}$
Theorem 2: Let $f(z)=z /\left(1+\sum_{n=1}^{\infty} b_{n} z^{n}\right) \in A_{1}$. If $b_{n}{ }^{\prime} s$ satisfy
(i)

$$
\begin{equation*}
1-e\left(\frac{-\pi^{2}}{4 \log 3}\right)>e\left(\frac{-\pi^{2}}{4 \log 3}\right)\left|b_{1}\right|+\sum_{2}^{\infty}[(n-1)+ \tag{2}
\end{equation*}
$$ $e-\pi 24 \log 3 b n$

or
(ii) $\sum_{2}^{\infty}\left[(n-1)+e\left(\frac{-\pi^{2}}{4 \log 3}\right)\right]\left|b_{n}\right|<e\left(\frac{\pi^{2}}{4 \log 3}\right)-1$
then $f(z)$ is starlike for $|z|<\frac{1}{2}$
Theorem 3: Let $f(z)=z /\left(1+\sum_{n=1}^{\infty} b_{n} z^{n}\right) \in A_{1}$. If $b_{n}{ }^{\prime} s$ satisfy
(i) $\quad \sum_{1}^{\infty}\left|b_{n}\right|<\frac{1}{2}$
or
(ii) $\quad \sum_{1}^{\infty}\left|b_{n}\right|<1-e^{3 / 4}$
or
(iii) $\quad \sum_{1}^{\infty}\left|b_{n}\right|<e^{3 / 4}-1$
then $f(z)$ is starlike for $|z|<\frac{1}{2}$.
Finally we obtain some sufficient conditions on f in terms of $b_{n}{ }^{\prime} s$ for f to be convex in $|z|<\frac{1}{2}$, in the following result.

Theorem 4. Let $f(z)=z /\left(1+\sum_{n=1}^{\infty} b_{n} z^{n}\right) \in A$. If $b_{n}{ }^{\prime} s$ satisfy
(i) $1-e^{-1 / 4}>\sum_{1}^{\infty}\left\{(n-1)+e^{1 / 4}\right\}\left|b_{n}\right|$
or
(ii) $\sum_{n=1}^{\infty}\left\{(n-1)+e\left(\frac{1}{4}\right)\right\}\left|b_{n}\right|<e\left(\frac{1}{4}\right)-1$
then $f(z)$ is convex for $|z|<\frac{1}{2}$.
Proof of Theorem 1: For $f(z)=z / g(z)$ where $g(z)=$ $\left(1+\sum_{n=1}^{\infty} b_{n} z^{n}\right), z \in U$, we have

$$
\left|\frac{f(z)}{z}-1\right|=\left|\frac{1}{g(z)}-1\right|
$$

$$
\begin{aligned}
&=\left|\frac{1-g(z)}{|g(z)|}\right| \\
&=\left|\frac{-\sum_{1}^{\infty} b_{n} z^{n}}{1+\sum_{1}^{\infty} b_{n} z^{n}}\right| \\
& \leq \frac{\sum_{1}^{\infty}\left|b_{n}\right|}{1-\left|\sum_{1}^{\infty} b_{n} z^{n}\right|} \\
& \leq \frac{\sum_{1}^{\infty}\left|b_{n}\right|}{1-\sum_{1}^{\infty}\left|b_{n}\right|}<1
\end{aligned}
$$

for z in U , since (1) implies that

$$
2 \sum_{1}^{\infty}\left|b_{n}\right|<1 \Rightarrow \sum_{1}^{\infty}\left|b_{n}\right|<1-\sum_{1}^{\infty}\left|b_{n}\right| .
$$

Therefore $f(z)$ is univalent and starlike for $|z|<\frac{1}{2}$ by Theorem A of Mac Gregor [1]

Proof of Theorem 2 : Let $f(z)=z / g(z)$ where $g(z)=$ $\left(1+\sum_{n=1}^{\infty} b_{n} z^{n}\right), z \in U$
Part (i): We have

$$
\begin{align*}
&\left|\frac{z f^{\prime}(z)}{f(z)}\right|=\left|1-\frac{z g^{\prime}(z)}{g(z)}\right|=\left|\frac{1+\sum_{1}^{\infty}(1-n) b_{n} z^{n}}{\sum_{0}^{\infty} b_{n} z^{n}}\right| \\
& \geq \frac{1-\left|\sum_{1}^{\infty}(1-n) b_{n} z^{n}\right|}{1+\left|\sum_{0}^{\infty} b_{n} z^{n}\right|} \\
& \geq \frac{1-\sum_{2}^{\infty}(n-1)\left|b_{n}\right|}{1+\sum_{1}^{\infty}\left|b_{n}\right|} \\
& \quad>e\left(\frac{-\pi^{2}}{4 \log 3}\right) \tag{4}
\end{align*}
$$

For z in U , since (2) implies
$1-e\left(\frac{-\pi^{2}}{4 \log 3}\right)>e\left(\frac{-\pi^{2}}{4 \log 3}\right)\left|b_{1}\right|+\sum_{2}^{\infty}[(n-1)+$ $e-\pi 24 \log 3 b n$,

$$
1-\sum_{2}^{\infty}(n-1)\left|b_{n}\right|>e\left(\frac{-\pi^{2}}{4 \log 3}\right)\left(1+\sum_{1}^{\infty} \quad\left|b_{n}\right|\right)
$$

Therefore $f(z)$ is starlike for $|z|<\frac{1}{2}$ by Theorem C of Nunokawa et.al. [4] and the inequality (4).

Part (iii) : We have

$$
\begin{align*}
& \left|\frac{z f^{\prime}(z)}{f(z)}\right|=\left|1-\frac{z g^{\prime}(z)}{g(z)}\right|=\left|1-\frac{\sum_{1}^{\infty} n b_{n} z^{n}}{1+\sum_{0}^{\infty} b_{n} z^{n}}\right| \\
& =\frac{\left|\sum_{1}^{\infty}(1-n) b_{n} z^{n}\right|}{\sum_{0}^{\infty} b_{n} z^{n}} \\
& \quad \leq \frac{1-\sum_{1}^{\infty}(n-1)\left|b_{n}\right|}{1+\sum_{1}^{\infty}\left|b_{n}\right|}<e\left(\frac{\pi^{2}}{4 \log ^{3}}\right) \tag{5}
\end{align*}
$$

for z in U , since (3) implies

$$
\begin{aligned}
& 1-\sum_{1}^{\infty}(n-1)\left|b_{n}\right|<e\left(\frac{\pi^{2}}{4 \log 3}\right)\left(1-\sum_{1}^{\infty} \quad\left|b_{n}\right|\right) \\
& \sum_{1}^{\infty} \quad\left\{(n-1)+e\left(\frac{\pi^{2}}{4 \log 3}\right)\right\}\left|b_{n}\right|<e\left(\frac{\pi^{2}}{4 \log 3}\right)-
\end{aligned}
$$

1
Therefore $f(z)$ is starlike for $|z|<\frac{1}{2}$ by Theorem C of Nunokawa et.al [4] and the inequality (5).

Proof of Theorem 3 :Consider $f(z)=z / g(z)$ where $g(z)=\left(1+\sum_{n=1}^{\infty} b_{n} z^{n}\right), z \in U$.

Part (i): Follows from Theorem 1.
Part (ii): $1-e^{-3 / 4}>\sum_{1}^{\infty} \quad\left|b_{n}\right|$

$$
\begin{aligned}
& \Rightarrow e^{-3 / 4}\left(1-\sum_{1}^{\infty} \quad\left|b_{n}\right|\right)>1 \\
& \Rightarrow\left|\frac{f(z)}{z}\right|=\left|\frac{1}{g(z)}\right|=\frac{1}{\left|1+\sum_{1}^{\infty} b_{n} z^{n}\right|} \leq \frac{1}{1-\sum_{1}^{\infty}\left|b_{n}\right|}<e^{3 / 4}
\end{aligned}
$$

Now Theorem D of Nunokawa et al. [4] gives the Part (ii).
Part (iii): We have
$\left|\frac{f(z)}{z}\right|=\left|\frac{1}{g(z)}\right|=\frac{1}{\left|1+\sum_{1}^{\infty} b_{n} z^{n}\right|} \geq \frac{1}{1+\sum_{1}^{\infty}\left|b_{n}\right|}>e^{-3 / 4}$
Now Theorem D of Nunokawa et al ... [4] gives the Part (iii).

Proof of Theorem 4 : Follows from that of Theorem 2 via Theorem F.

References

[1] Macgregor, T.H. The radius of univalence of certain analytic functions. II, Proc. Amer Math Soc., 14(3) (1963), 521-524
[2] Macgregor T.H. A class of univalent functions, Proc. Amer Math Soc., 15 (1964), 311-317.
[3] MitrinovicDragoslavS. : On the univalence of rational functions, Univ. Beograd Publ. Elektrotech, Fak., Ser, Mat. Fiz., No.634-No. 637 (1979), pp.221-227
[4] Nunokawa, M., Owa S., Nakamura Y. and Hayami T. : Sufficient conditions for starlikeness and convexity in $|z|<1 / 2$., JIPAM, Vol. 9 (2008), Issue 2, Article 32, $6 p p$.
[5] Reade, M.O., Silverman : H and Todorov, P.G. : On the starlikenes and convexity of a class analytic functions, RendicontidelCircoloMatematico di Palemo, serie II, Tomo XXXIII (1984), 265-272
[6] Silverman, H and Silvia, E.M. : Univalence preserving operators, Complex Variable 5 (1986), 313-312
[7] Srinivas, V. On Inverse coefficients, Journal of Orissa math Soc, Vol. 25 (1/2), (2006) 67-73.
[8] Srinivas, V. : On inverse coefficients, Journal of Analysis, Vol. 15 (1/2), (2007), 255-262

Author Profile

V. Srinivas, Department of Mathematics, Dr. B.R. Ambedkar Open University, Road 46, Jubilee Hills, Hyderabad - 500033. India. E-mail : prof.vsvas@gmail.com

