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Abstract: Quantum dots, liquid crystals, compositionally graded crystals, and other condensed matter systems all use position dependent 

effective mass (PDEM) Hamiltonians to describe the dynamics of electrons. Because the PDEM quantum Hamiltonians are not 

Hermitian, we employ the effective mass kinetic energy operator in Von Ross’s two-parameter form, which is Hermitian by default and 

contains additional reasonable forms as special instances. It is shown that Hamiltonians of the form 𝑯(𝒔) = (𝟏 − 𝒔)𝑯− + 𝒔𝑯+, 𝟎 ≤ 𝒔 ≤
𝟏 where 𝑯± are supersymmetric partner Hamiltonians corresponding to position dependent mass Schrödinger equations are exactly 

solvable for a number of deformed shape invariant potentials.  
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1. Introduction 
 
During the past few years PDMSE has attracted a lot of 

attention due to it’s possible applications in a variety of fields 

like describing the dynamics of electrons in many condensed 

matter systems, such as compositionally graded crystals [2], 

quantum dots [3] and quantum liquids [4], in the 

determination of the electronic properties of semiconductors 

[5],  3 He cluster [6] etc. and also due to intrinsic interest in 

such systems. For this reason there have been a growing 

interest in obtaining the exact solutions of PDMSE in 

different contexts e.g, solutions of the nonrelativistic wave 

equation with position-dependent effective mass has been 

obtained [7], 𝑁-fold supersymmetry is studied in [8], exact 

solvability of complexified Von Ross Hamiltonian is 

discussed [9], singular position dependent mass is cosidered 

[10] etc. Exact solutions of PDMSE’s can be obtained using 

different methods e.g, via supersymmetric quantum 

mechanics [11, 12], point canonical transformation approach 

[7, 13], series solutions [14] and etc. in [15, 16, 17]. 

 

Recently using the shape invariance property Odake et al [18] 

obtained a new class of exactly solvable Hamiltonians of the 

form   

 

𝐻 𝑠 =  1 − 𝑠 𝐴†𝐴 + 𝑠𝐴𝐴† ,    0 ≤ 𝑠 ≤ 1           (1) 

 

where the operators 𝐴 and 𝐴†  are given by   

 

𝐴 =
𝑑

𝑑𝑥
+ 𝑊(𝑥),    𝐴† = −

𝑑

𝑑𝑥
+ 𝑊(𝑥),          (2) 

 

and 𝑊(𝑥)  is the superpotential corresponding to a shape 

invariant potential. The formalism was also found to be useful 

in the context of discrete quantum mechanical systems [18]. 

Here our another objective is to examine whether or not this 

formalism can be extended to shape invariant Hamiltonians 

with a position dependent mass [19, 20, 21, 22]. In particular 

we shall obtain the spectrum of a number of interpolating 

Hamiltonians constructed using shape invariant Hamiltonians 

with a position dependent mass. 

 

2. Constant Mass Hamiltonian 
 

In conventional quantum mechanics, the Hamiltonian in 

constant mass Schr𝑜 dinger equation is   

 

𝐻𝑐𝑚 = −
ℏ

2

2𝑚

𝑑2

𝑑𝑥2 + 𝑉 𝑥                                                 (3) 

 

which is in general Hermitian. Let us assume (𝑓𝑜𝑟 𝑚 =
1

2
 𝑎𝑛𝑑 ℏ = 1)   

 

𝐻𝑐𝑚 = 𝐻1,𝑐𝑚 = 𝐴† 𝑎 𝐴 𝑎 = −
𝑑2

𝑑𝑥2 + 𝑉1 𝑥, 𝑎       (4) 

 

Where "𝑎" represents the set of parameters and A(a) and 

𝐴†(𝑎) are defined as   

 

𝐴(𝑎) =
𝑑

𝑑𝑥
+ 𝑊(𝑥, 𝑎)

𝐴†(𝑎) = −
𝑑

𝑑𝑥
+ 𝑊(𝑥, 𝑎)

                          (5) 

 

Now let us define the Hamiltonian 𝐻2,𝑐𝑚  as follows   

 

𝐻2,𝑐𝑚 = 𝐴(𝑎)𝐴†(𝑎) = −
𝑑2

𝑑𝑥2 + 𝑉2(𝑥, 𝑎)         (6) 

 

The Hamiltonian 𝐻2,𝑐𝑚  is called the supersymmetric partner 

of 𝐻1,𝑐𝑚 . It can be easily shown that 𝐻1,𝑐𝑚  and 𝐻2,𝑐𝑚  are 

isospectral except for the ground state. We have 𝑉1(𝑥, 𝑎) =
𝑊2(𝑥, 𝑎) − 𝑊′(𝑥, 𝑎)  and 𝑉2(𝑥, 𝑎) = 𝑊2(𝑥, 𝑎) + 𝑊′(𝑥, 𝑎) , 

which are the partner potentials for constant mass and 

𝑊(𝑥, 𝑎) is known as superpotential.  

 

3. Position dependent effective mass (PDEM) 

Hamiltonian 
 
For ℏ = 2𝑚0 = 1, we may therefore write the PDEM SE as   
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𝐻𝑝𝑑𝑚 𝜓 𝑥 =  −
1

2
 

𝑀𝜉 ′
 𝛼, 𝑥 

𝑑

𝑑𝑥
𝑀𝜂 ′

 𝛼, 𝑥 
𝑑

𝑑𝑥
𝑀𝜍 ′ 𝛼, 𝑥 

+𝑀𝜍 ′ 𝛼, 𝑥 
𝑑

𝑑𝑥
𝑀𝜂 ′

 𝛼, 𝑥 
𝑑

𝑑𝑥
𝑀𝜉 ′

 𝛼, 𝑥 
 + 𝑉 𝑎, 𝑥  𝜓 𝑥 = 𝐸𝜓 𝑥                        (7) 

 

where 𝛼 𝑎𝑛𝑑 𝑎  denotes the two sets of parameters and 

𝜉′, 𝜂′, 𝜍′ are the Von Ross ambiguity parameters, constrained 

by the condition 𝜉′ + 𝜂′ + 𝜍′ = −1. 

 

On setting   

𝑀 𝛼, 𝑥 =
1

𝑓2 𝛼 ,𝑥 
       𝑓 𝛼, 𝑥 = 1 + 𝑔 𝛼, 𝑥            (8) 

 

(note that 𝑔(𝛼, 𝑥) = 0  corresponds to the constant mass 

case), Eqn.(7) becomes   

 

 −
1

2
 𝑓𝜉 𝛼, 𝑥 

𝑑

𝑑𝑥
𝑓𝜂 𝛼, 𝑥 

𝑑

𝑑𝑥
𝑓𝜍 𝛼, 𝑥 +

𝑓𝜍𝛼,𝑥𝑑𝑑𝑥𝑓𝜂𝛼,𝑥𝑑𝑑𝑥𝑓𝜉𝛼,𝑥+𝑉𝑎,𝑥𝜓𝑥=𝐸𝜓𝑥        (9) 

 

with 𝜉 + 𝜂 + 𝜍 = 2 . In simplified form Eqn. (9)  can be 

written as   

 

 Π2 + 𝑉𝑒𝑓𝑓  𝑏, 𝑥  𝜓 𝑥 = 𝐸𝜓 𝑥                    (10) 

 

 where   

Π =  𝑓(𝛼, 𝑥)𝑝 𝑓(𝛼, 𝑥) = −𝑖 𝑓(𝛼, 𝑥)
𝑑

𝑑𝑥
 𝑓(𝛼, 𝑥), 𝑝 = −𝑖

𝑑

𝑑𝑥

𝑉𝑒𝑓𝑓 (𝑏, 𝑥) = 𝑉(𝑎, 𝑥) + 𝑉 (𝛼, 𝜉, 𝑥)

𝑉 (𝛼, 𝜉,𝑥) =
1

2
(1 − 𝜉 − 𝜍)𝑓(𝛼, 𝑥)𝑓′′(𝛼, 𝑥) + (

1

2
− 𝜉)(

1

2
− 𝜍)𝑓 ′2(𝛼, 𝑥)

         

(11) 

and 𝑏 is a set of parameters depends on 𝑎, 𝛼, 𝜉. 

 

Let us now assume  

  

𝐻𝑝𝑑𝑚 = 𝐴† 𝜆 𝐴 𝜆 = 𝐻1,𝑝𝑑𝑚 = −Π2 + 𝑉1,𝑒𝑓𝑓  𝜆, 𝑥    (12) 

 

where 𝜆 is a parameter determined entirely by the potential 

parameter b and the first order differential operators A and 

𝐴†  are given by   

 

𝐴(𝜆) =  𝑓(𝑥, 𝛼)
𝑑

𝑑𝑥
 𝑓(𝑥, 𝛼) + 𝑊(𝑥, 𝜆)

𝐴†(𝜆) = − 𝑓(𝑥, 𝛼)
𝑑

𝑑𝑥
 𝑓(𝑥, 𝛼) + 𝑊(𝑥, 𝜆)

          (13) 

 

Therefore the isospectral partner of 𝐻1,𝑝𝑑𝑚  is defined as   

 

𝐻2,𝑝𝑑𝑚 = 𝐴 𝜆 𝐴† 𝜆 = −Π2 + 𝑉2,𝑒𝑓𝑓  𝜆, 𝑥          (14) 

 

Thus we have from above  

  

𝑉1,𝑒𝑓𝑓 (𝜆, 𝑥) = 𝑊2(𝑥, 𝜆) − 𝑓(𝛼,𝑥)𝑊′(𝑥, 𝜆)

𝑉2,𝑒𝑓𝑓 (𝜆, 𝑥) = 𝑊2(𝑥, 𝜆) + 𝑓(𝛼, 𝑥)𝑊′(𝑥, 𝜆)
        (15) 

  

3.1  Special csae: 

 
As a special case let us choose 𝜉 = 𝜍 = 0, then PDEM SE 

Eqn.(9) reduces to   

 

 −
𝑑

𝑑𝑥
𝑓2(𝑥, 𝛼)

𝑑

𝑑𝑥
+ 𝑉(𝑥, 𝑎) 𝜓(𝑥) = 𝐸𝜓(𝑥)      (16) 

 

In this case partner Hamiltonians are   

𝐻1,𝑝𝑑𝑚 = 𝐴†(𝑎)𝐴(𝑎) = −
𝑑

𝑑𝑥
𝑓2(𝑥, 𝛼)

𝑑

𝑑𝑥
+ 𝑉1(𝑥, 𝑎)

𝐻2,𝑝𝑑𝑚 = 𝐴(𝑎)𝐴†(𝑎) = −
𝑑

𝑑𝑥
𝑓2(𝑥,𝛼)

𝑑

𝑑𝑥
+ 𝑉2(𝑥, 𝑎)

  (17) 

 

Where the first order differential operators A(a) and 𝐴†(𝑎) 

are of the form   

 

𝐴(𝑎) = 𝑓(𝑥)
𝑑

𝑑𝑥
+ 𝑊(𝑥, 𝑎)

𝐴†(𝑎) = −𝑓(𝑥)
𝑑

𝑑𝑥
− 𝑈′(𝑥) + 𝑊(𝑥, 𝑎)

          (18) 

and   

 

𝑉1(𝑥, 𝑎) = 𝑊2(𝑥, 𝑎) − (𝑓(𝑥)𝑊(𝑥, 𝑎))′

𝑉2(𝑥, 𝑎) = 𝑊2(𝑥, 𝑎) + (𝑓(𝑥)𝑊(𝑥, 𝑎))′ − 2𝑓′(𝑥)𝑊(𝑥, 𝑎) − 𝑓(𝑥)𝑓′′(𝑥)
               (19) 

  

4. Interpolation of two supersymmetric 

partner Hamiltonians when mass is constant 
 
Recently, the interpolation of the isospectral partner 

Hamiltonian have been considered for constant mass case by 

S. Odake et al. They took the interpolating Hamiltonian as a 

covex combination of the partner Hamiltonian, which reads   

 

𝐻𝑠,𝑐𝑚 =  1 − 𝑠 𝐻1,𝑐𝑚 + 𝑠𝐻2,𝑐𝑚 = −
𝑑2

𝑑𝑥2 + 𝑊2 𝑥, 𝑎 +

 2𝑠 − 1 𝑊 ′ 𝑥, 𝑎 ,   0 ≤ 𝑠 ≤ 1                  (20) 

 

 They had shown that for a wide class of shape invariant 

Hamiltonians, the interpolating Hamiltonian also retain the 

shape invariance property. That is the interpolating 

Hamiltonian 𝐻𝑠,𝑐𝑚  has the same form as the original 

Hamiltonian 𝐻1,𝑐𝑚  with shifted coupling constant(s) and 

shifted ground state energy.  

 

4.1  General case 

 
 We have from Eqn.(12) and (14) the isospectral partner 

Hamiltonians of position dependent mass are 𝐻1,𝑝𝑑𝑚  and 

𝐻2,𝑝𝑑𝑚 . The interpolation Hamiltonian of the partner 

Hamiltonians, is given by   

 

 

    𝐻𝑠 ,𝑝𝑑𝑚 = (1 − 𝑠)𝐻1,𝑝𝑑𝑚 + 𝑠𝐻2,𝑝𝑑𝑚

= Π2 + 𝑊2(𝑥, 𝜆) + (2𝑠 − 1)𝑓(𝑥, 𝛼)𝑊′(𝑥, 𝜆)

= Π2 + 𝑉𝑠,𝑒𝑓𝑓 (𝑥, 𝜆′)

         (21) 

 

We note that 𝜆′ depends on s. 

 

Here we assume that the original potential 𝑉1,𝑒𝑓𝑓  belongs to 

shape invariance class. Next our plan is to check weather the 

interpolation Hamiltonian 𝐻𝑠,𝑝𝑑𝑚  has the same form as the 

𝐻1,𝑝𝑑𝑚  with coupling constant 𝜆 is replaced by 𝜆′. 
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4.2  Shape invariance property and solvability of the 

original Hamiltonian 𝑯𝟏,𝒑𝒅𝒎  

 
 Now to solve   

 

 𝐻1,𝑝𝑑𝑚 𝜓(𝑥, 𝛼) =  −Π2 + 𝑉1,𝑒𝑓𝑓 (𝜆, 𝑥) 𝜓(𝑥, 𝛼) = 𝐸𝜓(𝑥, 𝛼)

 (22) 

 

 means that we are to find a superpotential 𝑊(𝑥, 𝜆) , the 

function 𝑓(𝑥, 𝛼)  and the parameter 𝜆 , such that the 

following conditions are satisfied.   

 

 

𝑉1,𝑒𝑓𝑓 = 𝑊2(𝑥, 𝜆) − 𝑓(𝑥, 𝛼)𝑊′(𝑥, 𝜆), 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑆ℎ𝑎𝑝𝑒 𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝐴†(𝜆1)𝐴(𝜆1) = 𝐴(𝜆2)𝐴†(𝜆2) + 𝑅(𝜆1)
(23) 

 

 Let us consider the superpotential be of the form   

 

 𝑊(𝑥, 𝜆) = 𝜆𝜙(𝑥) + 𝜇               (24) 

 

 where 𝜙(𝑥) is a parameter independent function. 

 

Then from Eqn.(23), the SI condition gives   

 

 (𝜆2
2 − 𝜆1

2)𝜙2(𝑥) + 2(𝜆2𝜇2 − 𝜆1𝜇1)𝜙(𝑥) − (𝜆2 + 𝜆1)(1 +
𝑔(𝑥, 𝛼))𝜙′(𝑥) + 𝑅(𝜆1 , 𝜇1) + 𝜇2

2 − 𝜇1
2 = 0  (25) 

 

 Assuming   

 
𝜆2 − 𝜆1 = 𝛼   𝑎𝑛𝑑  

𝜇2 =
𝛼𝛽 +𝜆1𝜇1+2𝜆1𝛽

𝜆1+𝛼

               (26) 

 we have   

 𝛼𝜙2(𝑥) + 2𝛽𝜙(𝑥) − (1 + 𝑔(𝑥))𝜙′(𝑥) +
𝑅(𝜆1 ,𝜇1)+𝜇2

2−𝜇1
2

2𝜆1+𝛼
= 0

 (27) 

 

 Since 𝜙(𝑥)  is independent of parameters, Eqn. (27) 

implies that   

 

 
𝛼𝜙2(𝑥) + 2𝛽𝜙(𝑥) − (1 + 𝑔(𝑥))𝜙′(𝑥) = −𝑐1

𝑅(𝜆1 ,𝜇1)+𝜇2
2−𝜇1

2

2𝜆1+𝛼
= 𝑐1

 (28) 

 where 𝑐1 is a constant. 

 

Therefore for a given 𝜙(𝑥) we can calculate 𝑔(𝑥, 𝛼) and 

consequently 𝑉1,𝑒𝑓𝑓 . The corresponding energy eigenvalues 

can be obtained by the following relation   

 

 
𝐸𝑛 =   𝑛

𝑖=1 𝑅(𝜆𝑖 , 𝜇𝑖)

= 𝑐1(2𝑛𝜆 + 𝑛2𝛼) + 𝜇2 −  
𝑛2𝛼𝛽 +𝜆𝜇 +2𝑛𝛽𝜆

𝜆+𝑛𝛼
 
            (29) 

 where   
𝜆𝑖+1 = 𝜆1 + 𝑖𝛼

𝜇𝑖 =
𝜆1𝜇1+2𝑖𝛽𝜆1+𝑖2𝛼𝛽

𝜆1+𝑖𝛼

𝜆1 = 𝜆,    𝜇1 = 𝜇

                    (30) 

  

4.3  Form of Interpolation Hamiltonian for given 𝝓(𝒙)  

 

We have for the chosen 𝑊(𝑥, 𝜆) in Eq.(24), from Eq. (28), 
𝑓(𝑥) can be calculated as   

 

𝑓(𝑥) =
𝛼𝜙2(𝑥)+2𝛽𝜙 (𝑥)+𝑐1

𝜙 ′(𝑥)
                  (31) 

 

Therefore the interpolation Hamiltonian has the form   

𝐻𝑠,𝑝𝑑𝑚 = Π2 + 𝜆(𝜆 + (2𝑠 − 1)𝛼)𝜙2(𝑥) + 2𝜆(𝜇 + (2𝑠 −

1)𝛽)𝜙(𝑥) + 𝜇2 + (2𝑠 − 1)𝜆𝑐1 (32) 

  

5. Example 
 
Let us take 𝜙(𝑥) = 𝑥 and 𝑐1 = 1, then we have   

 
𝑊(𝑥, 𝜆) = 𝜆𝑥 + 𝜇

𝑔(𝑥) = 𝛼𝑥2 + 2𝛽𝑥

𝑉1,𝑒𝑓𝑓 (𝑥, 𝜆) = (𝜆2 − 𝛼𝜆)𝑥2 + 2𝜆(𝜇 − 𝛽)𝑥 + 𝜇2 − 𝜆

𝑉𝑠,𝑒𝑓𝑓 (𝑥, 𝜆) = (𝜆2 + 2𝑠𝛼𝜆 − 𝛼𝜆)𝑥2 + 2𝜆(𝜇 + 2𝑠𝛽 − 𝛽)𝑥 + 𝜇2 + (2𝑠 − 1)𝜆

 (33) 

 

Therefore it is obvious that the interpolating Hamiltonian 

𝐻𝑠,𝑝𝑑𝑚  has the same form as the original Hamiltonian 

𝐻1,𝑝𝑑𝑚  with the coupling constants 𝜆 and 𝜇 are replaced by 

𝜆′ and 𝜇′, given by :   

𝜆′ =
𝛼+ (2𝜆−𝛼)2+8𝑠𝛼𝜆

2

𝜇′ = 𝛽 +
𝜆

𝜆 ′
(𝜇 + 2𝑠𝛽 − 𝛽)

                   (34) 

together with the shift of the ground state energy Δ𝐸 = 𝜇2 −

𝜇′2 + (2𝑠 − 1)𝜆 + 𝜆′ 
 

6. Conclusion 
 
In conclusion, using the idea of deformed shape invariance, 

we were able to develop certain precisely solved position 

dependent mass interpolating Schrödinger equations. The 

similar method can be used with a few other shape invariant 

potentials, such as [23]. It would be intriguing to investigate 

whether this formalism may be used to self-similar shape 

invariant potentials, as mentioned by [24, 25]. If the original 

system is precisely solvable but not necessarily shape 

invariant, it would be interesting to investigate whether 

perfectly solvable interpolating Hamiltonians can be found.  
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