On Sanskruti Index of the Line Graphs of Certain Nanostructures

Dr. K Vijila Dafini¹, Dr. M Little Flower², Dr. X Lenin Xaviour³

¹Assistant Professor, Department of Mathematics, Malankara Catholic College, Mariagiri, Tamil Nadu, India E-mail: *kdafini[at]gmail.com*

²Assistant Professor, Department of Mathematics, Malankara Catholic College, Mariagiri, Tamil Nadu, India E-mail: *mlittleflower6574[at]gmail.com*

³Assistant Professor, Department of Mathematics, Nesamoni Memorial Christian College, Marthandam, Tamil Nadu, India E-mail: *leninxaviour934[at]gmail.com*

Abstract: In QSAR/QSPR study, topological indices are utilized to guess the bioacitivity of chemical compounds. Hosamani [11], has studied a novel topological index, namely the Sanskruti index S(G) of a molecular graph G. The Sanskruti index S(G)shows good correlation with entropy of an octane isomers. In this paper we compute the Sanskruti index S(G) of line graphs of V- Phenylenic nanotubes, V-Phenylenic nanotorus, H- Naphtalenic nanotubes and H-Naphtalenic nanotorus.

Keywords: Sankruti index, topological index, molecular graph, Nanotubes, Nanotorus

1. Introduction

Let G be a simple graph. The order of a graph is |V(G)| its number of vertices denoted by p. The size of a graph is |E(G)|, its number of edges denoted byq. The degree of a vertex, denoted by $d_G(v)$. The line graph L(G) of a graph is the graph derived from G in such a way that the edges in G are replaced by vertices in L(G) and two vertices in L(G) are connected whenever the corresponding edges in G are adjacent [24]. For any number d, we define $V_d = \{u \in$ $V(G) \setminus S_G(u) = d\}$, in which $S_G(u) \sum_{v \in N_G(u)} d_G(v)$ and $N_a(u) = \{v \in V(G) \setminus uv \in E(G)\}$.

Topological indices are the mathematical measures which correspond to the structures of any simple finite graph. They are invariant under the graph isomorphism. The interest of study of topological indices is mainly associated with its applications in QSAR/QSPR. The applications of line graphs in chemistry was originated from structural chemistry. The first edge version molecular descriptors were introduced in 1981 the advanced theory of molecular branching and complexity. For several molecular descriptors based on the line graph of molecular graph, more about its applications and edge version of other molecular structures and nanotubes referred to the articles [1 - 10]. One of the best known and widely used is the connectivity index, introduced in 1975 by Milan Randic[9], who has shown this index to reflect molecular brancing and defined as $R(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_u} d_v}$.

The Sanskruti index S(G) of a graph G is defined as follows [11 - 15]; S(G) = $\sum_{uv \in E(G)} \left(\frac{S_u S_v}{S_u + S_v - 2}\right)^3$ where S_u is the summation of degrees of all neighbours of vertex u in *G*.]

In 2018, V. Shigehalli, R. Kanabur calculated the Sanskruti index of H-Naphtalenic Nanotube and Nanotori [16]. In 2017, Muhammad Shoaib Sardar, Mohammad Raza Farahani studied the Sanskruti index of Titania Nanotubes [17]. In 2017, Gao, Y. Farahani, M. R., Sardar, M. S., and Zafars., computed Sanskruti index of circumcoronene series of Benzenoid [18] and the dendrimer nanostars [14]. In 2017, Jiang, H., Sardar, M. S., Farahani, M. R., Rezaeim and Siddiqu, M. K., calculated the Sanskruti index of V-Phenylenic nanotubes and nanotri [19]. Motivated by the results of [23], we computed the Sanskruti index of line of graph of V-Phenylenic nanotubes, V-Phenylenic nanotorus, H-Naphtalenic nanotubes and H-Naphtalenic nanotorus.

2. Main Results and Discussion

Following M.V. Diudea [22] we denote a V-Phenylenic nanotube and V-Phenylenic nanotorus by VPHX[m, n] and VPHY [m, n] respectively, where m denotes the number of hexagons in a row and n denotes the alternative hexagons in a column. H-Naphtalenic nanotube and H-Naphtalenic nanotorus usually symbolized as NPHX[m, n] and NPHY [m, n], in which m is the number of pair of hexagons in first row and n is the number of alternative hexagons in a column.

Lemma 2.1[21]

Let *G* be a (p,q) graph whose points have degree d_i , then L(G) has *q* points and q_L lines, where $q_L = \frac{1}{2} \sum d_i^2 - q$.

Theorem 2.2

Let *G* be a line graph of 2*D*-lattice of *V*-Phenylenic nanotube VPHX[m,n] (m,n > 1). Then S(G) = 11184.81mn - 6795.89m.

Proof:

The graph of 2D-lattice of V-Phenylenic nanotube VPHX[m, n] and the graph G are shown in Figure 1 and Figure 2 respectively. The 2D-lattice of VPHX[m, n] is a graph of order 6mn and size 9mn - m. Then by Lemma 2.1, the line graph of 2D-lattice of VPHX[m, n] is of order of 9mn - m.

Volume 11 Issue 8, August 2022 www.ijsr.net

mand size 18mn - 4m. Further note that the vertices of Gare either of degree 3 or 4. From Figure 1 and 2, it can be easily verified that in G, $|V_{11}| = 4m$, $|V_{14}| = 2m$, $|V_{15}| =$ $4m \text{ and } |V_{16}| = 9mn - 11m$. Thus the edge partition based on the degree sum of neighbour vertices of each vertex is obtained, as shown in Table 1.

Table 1: Edge partition of G, when m > 1 and n > 1.

$(SG(u), SG(v))$ where $uv \in E(G)$	Number of edges
(11, 11)	2m
(11, 14)	4m
(11, 15)	4m
(14, 15)	4m
(15, 16)	8m
(16, 16)	(18mn - 26m)

Figure 1: Graph of 2D-lattice of V-Phenylenic V P HX[4, 3] nanotube.

Now, S(G) =

Figure 2: Line Graph of 2D-lattice of V-Phenylenic V P HX[4, 3] nanotube.

Theorem 2.3

Let Gbe a line graph of 2D-lattice of V-Phenylenic VPHY[m, n] (m, n > 1).Then S(G) =nanotorus 11184.8106mn.

Proof:

Figure 3: Graph of 2D-lattice of V-Phenylenic V PHY [4, 3] nanotorus.

The graph of 2D-lattice of V-Phenylenic nanotorus VPHY [m, n] and the graph G are shown in Figure 3 and 4 respectively. The 2D lattice of VPHY[m, n] is a graph of order 6mn and size 9mn. Then by Lemma 2.1, the line graph of 2D-lattice of VPHY [m, n] is a order of 9mn and size 18mn. Further note that the degree of each vertex is 4 in G. From Figure 3 and 4, it can be easily verified that in $G_{1}|V_{16}| = 9mn$ and we have trivial edge partition based on the degree sum of neighbour vertices of each vertex is obtained, as shown in Table 2.

Table 2. Edge partition of G, when m > 1 and n > 1. Number of edges (SG(u), SG(v)) where $uv \in E(G)$ (16, 16) 18mn

Figure 4: Line Graph of 2D-lattice of V-Phenylenic V PHY [4, 3] nanotorus.

Now, S(G) = $\sum_{uv \in E(G)} \left(\frac{S_G(u)S_G(v)}{S_G(u) + S_G(v) - 2} \right)^3$ = $(18mn) \left(\frac{16 \times 16}{16 + 16 - 2} \right)^3$ = 11184.8106mn.

Volume 11 Issue 8, August 2022

www.ijsr.net

Theorem 2.4

Let G be a line graph of 2D-lattice of H –Naphtalenic nanotube NPHX[m, n] (m, n > 1). Then S(G) =18641.3511mn - 12982.8961m.

Figure 5: Graph of 2D-lattice of H-Naphtalenic NPHX[4, 3] nanotube

Proof:

The graph of 2*D*-lattice of *H*-Naphtalenic nanotube NPHX[m, n] and the graph *G* are shown in Figure 5 and 6 respectively. The 2*D* lattice of NPHX[m, n] is a graph of order 10*mn* and size 15mn - 2m. Then by Lemma 2.1, the line graph of 2*D*-lattice of NPHX[m, n] is of order 15mn - 2m and size 30mn - 8m. Further note that the vertices of *G* are either of degree 3 or 4. From Figure 5 and 6, it can be easily verified that in *G*, $|V_{10}| = 4m$, $|V_{11}| = 4m$, $|V_{14}| = 4m$, $|V_{15}| = 4mn$ and $|V_{16}| = 15mn - 18m$. Thus the edge partition based on the degree sum of neighbour vertices of each vertex is obtained, as shown in Table 4.

Figure 6: Line Graph of 2D-lattice of H-Naphtalenic NPHX[4, 3] nanotube

Now, S(G) =
$$\sum_{uv \in E(G)} \left(\frac{S_G(u)S_G(v)}{S_G(u)+S_G(v)-2} \right)^3$$

$$= 2m \left(\frac{10 \times 10}{10 + 10 - 2}\right)^3 + 4m \left(\frac{10 \times 11}{10 + 11 - 2}\right)^3 + 4m \left(\frac{10 \times 14}{10 + 14 - 2}\right)^3 + 4m \left(\frac{11 \times 14}{11 + 14 - 2}\right)^3 + 4m \left(\frac{11 \times 15}{11 + 15 - 2}\right)^3 + 4m \left(\frac{14 \times 15}{14 + 15 - 2}\right)^3 + 4m \left(\frac{14 \times 16}{14 + 16 - 2}\right)^3 + 8m \left(\frac{15 \times 16}{15 + 16 - 2}\right)^3 + (30mn - 42m) \left(\frac{16 \times 16}{16 + 16 - 2}\right)^3 = 18641.3511mn - 12982.8961m.$$

Table 3: Edge partition of G, when m > 1 and n > 1.

3

$(SG(u), SG(v))$ where $uv \in E(G)$	Number of edges
(10, 10)	2m
(10, 11)	4m
(10, 14)	4m
(11, 14)	4m
(11, 15)	4m
(14, 15)	4m
(14, 16)	4m
(15, 16)	8m
(16, 16)	(30mn - 42m)

Theorem 2.5

Let G be a line graph of 2D-lattice of H -Naphtalenic nanotube NPHY[m,n](m,n > 1). Then S(G) = 18641.3511mn.

Proof:

The graph of 2D-lattice of *H*-Naphtalenic nanotorus *NPHY* [*m*, *n*] and the graph *G* are shown in Figure 7 and 8 respectively. The 2D lattice of *NPHY* [*m*, *n*] is a graph of order 10*mn* and size 15*mn*. Then by Lemma 2.1, the line graph of 2D-lattice of *NPHY* [*m*, *n*] is of order 15*mn* and size 30*mn*. Further note that the degree of each vertex is 4 in *G*. From Figure 7 and 8, it can be easily verified that in*G*, $|V_{16}| = 15mn$ andwe have the trivial edge partition based on the degree sum of neighbour vertices of each vertex is obtained, as shown in Table 4.

Now, S(G) =
$$\sum_{uv \in E(G)} \left(\frac{S_G(u)S_G(v)}{S_G(u)+S_G(v)-2} \right)^3$$

= $(30mn) \left(\frac{16 \times 16}{16+16-2} \right)^3$
= $18641.3511mn.$

Volume 11 Issue 8, August 2022

<u>www.ijsr.net</u>

Figure 7: Graph of 2D-lattice of H-Naphtalenic NPHY [4, 3] nanotorus.

Figure 8: Line Graph of 2*D*-lattice of *H*-Naphtalenic *NPHY* [4, 3] nanotorus

Table 4: Edge partition of G, when $m > 1$ and $n > 1$.		
$(SG(u), SG(v))$ where $uv \in E(G)$	Number of edges	
(16, 16)	30mn	

3. Conclusions

In this paper, we have computed the value of Sanskruti Index of line graph of V-Phenylenic nanotube, V-Phenylenic nanotorus, H-Naphtalenic nanotube and H-Naphtalenic nanotorus.

References

- [1] Bertz, S.H. 1981. The bond Graph. Journal of the Chemical Society, Chemical Communications, 818-820.
- [2] Gutman, I., Estrada, E. 1996. Topological indices based on the line graph of the molecular graph. Journal of chemical information and computer sciences, 36, 535-538.
- [3] Gutman, I. 2010. Edge versions of topological indices. Novel Molecular Structure Descriptors-Theory and Applications II, 3.
- [4] Iranmanesh, A., Gutman, I., Khormali, O., Mahmiani, A. 2009. The edge versions of the Wiener index. MATCH Communications in Mathematical and in Computer Chemistry, 61.
- [5] Gutman, I., Tomovic, Z. 2000. Modeling boiling points of cycloalkanes by means of iterated line graph sequences. Journal of the Serbian Chemical Society, 65.
- [6] Gutman, I., Tomovic, Z. 2001. On application of the line graphs in quantitative structure property studies. Journal of chemical information and computer sciences, 41.

- [7] Gutman, I., Popovic, L., Mishra, B.K., Kaunar, M., Estrada, E., Guevara, N. 1997. Applications of the line graphs in Physical Chemistry Predicting Surface tensions of alkanes. Journal of the Serbian Chemical Society, 62.
- [8] Nadeem, M.F., Zafar, S., Zahid, Z. 2016. On Topological Properties of line graphs of certain nanostructures. Applied Mathematics and Computation, 273, 125-130.
- [9] Randic, M. 1975. On Characterization of molecular branching. Journal of the American Chemical Society, 97, 6609-6615.
- [10] Wiener, H. 1974. Structural determination of paraffin boling points. Journal of the American Chemical Society, 69, 17-20.
- [11] S. M. Hosamani: S. M. Hosamani: Computing Sanskruti index of certain nanos- tructures. Journal of Applied Mathematics and Computing. In press, 2017. DOI 10.1007/s12190-016-1016-9.
- [12] M.S. Sardar, S. Zafar, M.R. Farahani. Computing Sanskruti index of the Polycyclic Aromatic Hydrocarbons. Geology, Ecology, and Landscapes. In press, (2017), http://dx.doi.org/10.1080/24749508.2017.1301056
- [13] Y.Y. Gao, M.R. Farahani, M.S. Sardar, S. Zafar. On the Sanskruti Index of Circumcoronene Series of Benzenoid. Applied Mathematics. 8 (4), (2017), 520-524. doi:10.4236/am.2017.84041
- Y.Y. Gao, M.S. Sardar, S.M. Hosamani, M.R. Farahani. Computing sanskruti index of TURC4C8(s) nanotube. International Journal of Pharmaceutical Sciences and Research. 8 (10), (2017), 1000-03. doi: 10.13040/JJPSR.0975-8232.8(10).1000-03.
- [15] Y.Y. Gao, M.S. Sardar, S. Zafar, M.R. Farahani. Computing Sanskruti index of dendrimer nanostars. International Journal of Pure and Applied Mathematics. 115(2), In press, (2017), http://ijpam.eu/contents/index.php
- [16] V. SWGEHALLI, R. KANABUR Computing Sanskruti index of certain nantubes TWMS Journal of Applied and Engineering Mathematics Vol. No. 2, 2018, pp 447-482.
- [17] Muhammad Shoaib Sardar, XIANG-FENG PAN, WEI GAO, Mohammad Reza Farahani, Computing Sanskruti index of Titania nanotubes open J. Math.Sci. Vol. 1 (2017). No. 1, pp. 126-131.
- [18] Gao, Y., Farahani, M.R., Sardar, M.S., Zafar.S (2017). On the Sanskruti index of circumcoronene series of Benzenoid, Applied Mathematics, 8(4), 520-524.
- [19] Jiang, H., Sardar, M.S., Farahani, M.R., Rezaei, M., and Siddique., M.K., (2017). Computing Sanskurti index of V-Phenylenic nanotubes and nanotori, International Journal of Pure and Applied Mathematics, 115(4), 859-865.
- [20] Zhang, X., Sardar, M.S., Zahid, Z., Rezaei, M., and Farahani, M.R., (2017). Computing Sanskruti index of Capra-degined planar benzenoid series Cak(C6), International Journal of Pure and Applied Mathematics, 115(4), 851-858.
- [21] Harary, F., Graph Theory. Addison-Wesely, Reading, MA(1969).
- [22] Diudea, M.V., Fuller. Nanotube. Carbo. Nanostruct, (2002), 10, 273-292.
- [23] Mohamad zazri Husin, Roslan Hasni, Muhamad Imran Hailiza Kamarulhaili, The edge version of geometric arithmetic index of nanotubes and nanotori Opoelectronics and Advanced materials. Rapid Communications Vol.9 N0:9.10(2015), p.1292-1300.

Volume 11 Issue 8, August 2022