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Abstract: It is a very difficult challenge to automatically describe an image using a sentence from any natural language, such as 

English. It necessitates knowledge of both natural language processing and picture processing. The fusion of computer vision and 

natural language processing has received a lot of interest recently thanks to the advent of deep learning. This field is exemplified by 

image captioning, which teaches a computer to understand an image's visual information using one or more phrases. In addition to the 

ability to recognize the item and the scene, high-level image semantics also needs the ability to analyze the state, the properties, and the 

relationship between these things. Despite the fact that image captioning is a challenging and intricate endeavor, numerous academics 

have made substantial advancements. In artificial intelligence (AI), computer vision and natural language processing are used to 

automatically create an image's contents (Natural Language Processing). The regenerative neuronal model is developed. It is dependent 

on machine translation and computer vision. Using this technique, natural phrases are produced that finally explain the image. 

Convolutional neural networks (CNN)and recurrent neural networks (RNN) are also components of this architecture. RNN is utilized 

for phrase creation, while CNN is used to extract features from images. The model has been taught to produce captions that, when given 

an input image, almost exactly describe the image. On various datasets, the model's precision and the fluency or command of the 

language it learns from visual descriptions are examined. These tests demonstrate that the model frequently provides precise descriptions 

for an input image. 
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1. Introduction 
 

The inclination to characterize an image with a wealth of 

information about it by simply taking a quick glance is a 

fundamental human talent. Artificial intelligence and 

machine learning researchers have long sought to build 

computer systems that can mimic human talents. Research 

has advanced in a number of areas, including the 

identification of objects in an image, attribute classification, 

picture classification, and the categorization of human 

actions. Making an image caption generator system—a 

computer program that can identify a picture and generate a 

description using natural language processing—is a difficult 

task. Creating a caption for a picture entails a variety of 

problems, such as comprehending the deeper levels of 

semantics and expressing those semantics in human-

understandable sentences. 

 

The computer system must learn the connections between the 

items in an image in order to comprehend higher levels of 

semantics. Natural language is typically used in human 

communication; therefore creating a system that can generate 

descriptions that people can understand is a difficult task. 

The process of creating captions involves numerous 

processes; including comprehending how items are 

represented visually, figuring out how the objects relate to 

one another and creating captions that are both linguistically 

and semantically accurate. The objectives of this paper 

include deep learning based detection, recognition, and 

caption generation. 

 

We must first comprehend how critical this issue is to the 

scenarios that occur in the actual world. Let's look at a 

couple of scenarios when a solution to this issue would be 

quite beneficial.  

Aid to the Blind: We are able to develop a product that will 

enable blind people to navigate the highways independently. 

To accomplish this, first, translate the scene into text, and 

then speak the text. Both are now well-known Deep Learning 

applications. Autonomous driving is one of the major 

obstacles, and if the environment around the automobile can 

be captioned correctly, the self-driving system will benefit. 

As every image could be transformed into a caption before 

being searched on, automatic captioning might help make 

Google Image Search as excellent as Google Search. 
 
For any image that shows on the website, it's best practice in 

web development to include a description so that an image 

can be heard or read as well as seen. This facilitates access to 

the web material. CCTV cameras are widely used today, but 

in addition to seeing the outside world, if we can also 

produce pertinent captions, we can alert authorities as soon 

as some nefarious behavior takes place. This may contribute 

to a decrease in some accidents or crimes. 

 
Real-time video can also be described using this concept. 

 

2. Literature Review 

 
Kojima et al [1] used case structure, action hierarchy, and 

verb patterns to generate captions of human activities in a 

fixed environment. 

 
Patrick Hède et al [2] proposed a method for image caption 

generation, which involves a series of object names stored in 

a database called Dictionary. Such method can generate 

caption for only fixed content, but it fails to generate 

captions for real world. 
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Farhadi, A., et al [3] proposed an information retrieval-based 

image captioning system, where a score is generated for 

every object in an image and the score is compared with 

other images to generate captions. 
 

Hodosh, M., et al [4] proposed a ranking based image 

captioning system, where the captions are generated with the 

help of sentence-based image captioning ranking system. 
 

Yang, Y., et al [5] proposed a sentence making strategy, 

which builds a semantic phrase using verbs, nouns, and 

prepositions, uses trained detectors to find the image, then 

estimates the image using data from the English corpus. 
 

Socher, R., et al [6] proposed a decision tree based recursive 

neural networks to represent the visual meaning of the 

image. 
 

You, Q., et al [7] proposed a model of semantic attention, 

which deals with the semantics, stored in a hidden layer of 

neural networks and fusion them to gain more semantically 

sentence. 
 

Vinyals, O., et al [8] proposed a generative model that 

combines computer vision and machine learning to generate 

captions for a given image. 
 

3. Methodology 

 
To understand the context of an image and explain it in a 

natural language like English, an image caption generator 

uses computer vision and natural language processing 

techniques. The goal of our project is to become familiar 

with the ideas of a CNN and LSTM model and to implement 

CNN with LSTM to create a workable model of an image 

caption generator. 

 
Fig-1 illustrates the suggested process for creating captions 

using deep learning for item detection and recognition. 

Convolution Neural Network (CNN) for feature extraction 

and scene categorization, Recurrent Neural Network (RNN) 

for human and object attributes, RNN encoder, and a fixed 

length RNN decoder system make up this system. 

 

 
Figure 1 

 

The following are the steps for utilizing neural networks to 

recognize objects and extract features to create captions.  

 

Step 1: Object detection  

In this step, the R-CNN region proposal approach is used to 

detect the objects in the input image. 

 

Step 2: Feature Extraction  

In this stage, principal component analysis with NumPy is 

used to extract the image's features. RNN is used to 

recognize objects and human traits whereas CNN is used to 

classify scenes. 

 

Step 3: Creating attributes  

In this stage, the characteristics with their label strings were 

defined using the features that the neural networks had 

retrieved. 

 

Step 4: Encoder and Decoder  

The label strings were put through an encoder RNN in this 

phase to put them into the correct format, and the resulting 

variable-length string was put through a fixed-length decoder 

to turn it into a fixed-length descriptive phrase. 

 

Fig-2 represents the model diagram of the project  

 

 
Figure 2: Model diagram 

 

4. Experimental Setup 
 

4.1 System Requirements 

 

 CPU and GPU  with at least 8GB of RAM 

 i5 processor 

 NVDIA graphic card 

 

4.2 System Requirements 

 

 TensorFlow 

 Keras 

 NumPy 

 Pillow 

 Jupyterlab 

 Tqdm 

 

4.3 Data Collection 

 

We will make use of the Flickr 8K dataset to create the 

image caption generator. We will use the smaller Flickr8k 
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dataset instead of other larger ones like the Flickr 30K and 

MSCOCO datasets because training the network on those 

can take weeks. We can create better models thanks to a 

large dataset. 

 

 Flicker8k Dataset 

 Flickr 8k text 

 

The main file of our dataset, Flickr8k.token, which contains 

the names of the images and their corresponding captions, 

separated by newlines ("n"), can be found in the Flickr 8k 

text folder. 

 

5. Convolutional Neural Network 

 
Convolutional Neural Networks are customized deep neural 

networks that are capable of processing data with input 

shapes similar to a 2D matrix. CNN is particularly helpful 

when working with photos and can readily express images as 

a 2D matrix. Fig-3 illustrates the working of deep CNN. 

Images are scanned from top to bottom and left to right to 

extract key details, which are then combined to identify the 

images. It can handle images that have been resized, rotated, 

translated, and perspective-shifted. 

 

 
Figure 3: CNN Layers 

 

5.1 Types of CNN Layers 

 

There are 4 types of CNN layers (fig-4). They are 

 Convolutional Layer 

 ReLU Layer 

 Pooling Layer 

 Fully Connected Layer 

 

 
Figure 4: Layers in CNN 

5.1.1 Convolutional Layer 

In order to extract features from the input image, a 

convolution layer alters it. This transformation involves 

convoluting the picture with a kernel (or Filter). A kernel 

(also known as a filter) is a tiny matrix having dimensions 

that are less than those of the picture to be convolved. This 

filter moves across the input image's height and breadth, 

computing the dot product of the filter and the image at each 

spatial location. 

 

 
Figure 5: Gray Scale Image 

 

 
Figure 6: RGB Image 

 

(a) Padding 

In order to stop our image from shrinking, we use padding. 

We add layers of zero to stop shrinking.  

Types of Convolutions in padding: 

 Valid: No padding takes place because no need to stop 

shrinking of image 

 Same: Pad so that the output image size is the same as the 

input image size. 

 

 
Figure 7: Padding 

 
(b) Striding 

The number of pixels shifted across the input matrix called 

the stride. The filters are moved to 1 pixel at a time when the 

stride is 1. The filters are moved to 2 pixels at a time when 

the stride is 2, and so on. Stride length is the length at which 

the filter slides. 
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Figure 8: Striding 

 

5.1.2 ReLU Layer 

Every negative value from the filtered photos is removed and 

replaced with zeros in this layer. To prevent the values from 

adding up to 0, this is done. Rectifies only when the input 

exceeds a certain threshold does the Linear Unit (ReLU) 

transform function activate a node; otherwise, the output is 

zero. However, if the input climbs above the predetermined 

threshold, the input has a linear relationship with the 

dependent variable. 

 

 
Figure 9: ReLU Function 

 

5.1.3 Pooling Layer 

 

The input image's size is decreased by using a pooling layer. 

Typically, a pooling layer is added to speed up computation 

and strengthen some of the identified features. Filter and 

stride are also utilized in pooling operations. 

 

 Max Pooling: Here, the maximum value is chosen from 

each patch of the feature map to produce a reduced map. 

 Average Pooling: Here, the average value is chosen from 

each patch of the feature map to produce a reduced map. 

 

 
Figure 10: Pooling layer 

 

5.1.4 Fully Connected Layer 

This layer is located at the convolution neural network's 

conclusion. The earlier layer's features map is flattened to a 

vector. The complicated interactions between high level 

features are then captured by feeding this vector into a fully 

linked layer.  

 

 
Figure 11: Fully Connected Layer 

 

6. Long Short-Term Memory  

 
Recurrent neural networks (RNNs) of the LSTM variety are 

very effective at solving sequence prediction issues. We can 

anticipate the following word based on the prior text. By 

addressing the short-term memory restrictions of RNN, it has 

distinguished itself as an effective alternative to regular 

RNN. Through the use of a forget gate, the LSTM may carry 

out relevant information while processing inputs and reject 

irrelevant information. 

 

 
Figure 12: LSTM Structure 

 

LSTM units are horizontally connected (parallel). The input 

for the following time stamp is the output of the preceding 

one. 

 

Paper ID: SR22809213717 DOI: 10.21275/SR22809213717 705 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 8, August 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
Figure 13: LSTM Units Connected in Parallel 

 

7. Implementation 

 
Steps performed while building the model has been 

discussed below. 

 

a) First, we import all necessary packages. 

 TensorFlow 

 NumPy 

 Keras 

 Tqdm 

 Pillow 

 Jupyterlab 

 
b) Dataset loading for model training 

 

We have a file called Flickr 8k.trainImages.txt in our Flickr 

8k test folder that has a list of 6000 picture names that we 

will use for training. 

 

More functions are required to load the training dataset, 

including: 

 

 load_photos(filename): returns the list of image names 

after loading the text file as a string. 
 load_clean_descriptions(filename, image): builds a 

dictionary with captions for each picture in the collection 

of pictures. 

 load_features(image): provides us with the list of image 

names and the feature vector associated with them, both 

of which we previously collected from the Xception 

model. 
 

c) Tokenizing the vocabulary 

 

Because English words are not understood by computers, we 

must represent them using numbers. Therefore, we will 

assign a distinct index value to each word in the lexicon. The 

tokenizer function from the Keras package is what we will 

use to generate tokens from our vocabulary and store them to 

the "tokenizer.p" pickle file. Our vocabulary is 7577 words 

strong. The maximum length of the descriptions is 

determined. This is significant for choosing the parameters 

for the model structure. The maximum description length is 

32. 

 

d) Create data generator 

 

Let's first have a look at what our model's input and output 

will entail. We must give the model input and output for 

training in order to convert this task into a supervised 

learning task. Our model needs to be trained on 6000 photos, 

each of which has a 2048-length feature vector and a caption 

that is likewise represented as a number. Because it is 

impossible to store this much data in memory for 6000 

photos, we will use a generator method that will produce 

batches. 

 

e) The CNN-RNN model is defined. 

 

The organizational structure of the model will be specified 

using the Keras Model from the Functional API. It will 

include three main sections: 

 

 Feature Extractor: With a dense layer, we can shrink the 

2048 node feature that was retrieved from the image to 

256 nodes. 

 Sequence Processor: The textual input will be handled by 

an embedding layer, then by an LSTM layer. 

 Decoder: We will process by the dense layer after 

integrating the output from the aforementioned two layers 

in order to arrive at the final forecast. The number of 

nodes in the final layer will be equal to the size of our 

vocabulary. 

 

f) Training the model 

 

By creating the input and output sequences in batches and 

fitting them to the model using the model.fit generator() 

method, we will be using the 6000 training photos to train 

the model. The model is also saved to our model's folder. 

Depending on the capabilities of your equipment, this will 

take some time. 

 

g) Testing the model 

 

We will create a second file called testing caption 

generator.py to load the learned model and produce 

predictions. We will use the same tokenizer.p pickle file to 

extract the words from their index values because the 

predictions contain the maximum length of index values. 

 

8. Results 

 
Following model implementation, the output is shown in fig. 

14 below in terms of accuracy. RNN and CNN algorithms 

are both used in the model's construction. 
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Figure 14: Output 

AVERAGE ACCURACY  

Generating > 70% accurate captions for 64 out of 100 images  

Generating 50% to 70% accurate captions for 16 out of 100 

images  

Generating < 50% accurate captions for 20 out of 100 images 

 

9. Conclusion 

 
By developing an image caption generator, we developed a 

CNN-RNN model in this advanced model Python project. It's 

important to keep in minds that because our model is data-

dependent, it cannot predict terms that don’t exist in the 

English language. We worked with a tiny dataset of 8000 

photos. We need to train on datasets bigger than 100,000 

photos for production-level models in order to get models 

with higher levels of accuracy. 

 

Using neural networks and deep learning, a method for 

creating image captions is provided. The suggested method 

was tested on the Flickr 8k dataset. Compared to the 

currently available image caption generation generators, the 

proposed deep learning methodology produced captions with 

more descriptive meaning. In the future, a hybrid picture 

caption generator model may be created for captions that are 

more accurate. 
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