
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Image Caption Generator Using Convolutional

Neural Network Algorithm

Shaik Parvez

Department of Computer Science Engineering, Gayatri Vidya Parishad College of Engineering, Jawaharlal Nehru Technological University

Kakinada (JNTUK), Visakhapatnam, India

shaikparvez977[at]gmail.com

Abstract: It is a very difficult challenge to automatically describe an image using a sentence from any natural language, such as

English. It necessitates knowledge of both natural language processing and picture processing. The fusion of computer vision and

natural language processing has received a lot of interest recently thanks to the advent of deep learning. This field is exemplified by

image captioning, which teaches a computer to understand an image's visual information using one or more phrases. In addition to the

ability to recognize the item and the scene, high-level image semantics also needs the ability to analyze the state, the properties, and the

relationship between these things. Despite the fact that image captioning is a challenging and intricate endeavor, numerous academics

have made substantial advancements. In artificial intelligence (AI), computer vision and natural language processing are used to

automatically create an image's contents (Natural Language Processing). The regenerative neuronal model is developed. It is dependent

on machine translation and computer vision. Using this technique, natural phrases are produced that finally explain the image.

Convolutional neural networks (CNN)and recurrent neural networks (RNN) are also components of this architecture. RNN is utilized

for phrase creation, while CNN is used to extract features from images. The model has been taught to produce captions that, when given

an input image, almost exactly describe the image. On various datasets, the model's precision and the fluency or command of the

language it learns from visual descriptions are examined. These tests demonstrate that the model frequently provides precise descriptions

for an input image.

Keywords: Convolutional Neural Network, Long Short-Term Memory (LSTM), Recurrent Neural Network, TensorFlow, Keras, NumPy

1. Introduction

The inclination to characterize an image with a wealth of

information about it by simply taking a quick glance is a

fundamental human talent. Artificial intelligence and

machine learning researchers have long sought to build

computer systems that can mimic human talents. Research

has advanced in a number of areas, including the

identification of objects in an image, attribute classification,

picture classification, and the categorization of human

actions. Making an image caption generator system—a

computer program that can identify a picture and generate a

description using natural language processing—is a difficult

task. Creating a caption for a picture entails a variety of

problems, such as comprehending the deeper levels of

semantics and expressing those semantics in human-

understandable sentences.

The computer system must learn the connections between the

items in an image in order to comprehend higher levels of

semantics. Natural language is typically used in human

communication; therefore creating a system that can generate

descriptions that people can understand is a difficult task.

The process of creating captions involves numerous

processes; including comprehending how items are

represented visually, figuring out how the objects relate to

one another and creating captions that are both linguistically

and semantically accurate. The objectives of this paper

include deep learning based detection, recognition, and

caption generation.

We must first comprehend how critical this issue is to the

scenarios that occur in the actual world. Let's look at a

couple of scenarios when a solution to this issue would be

quite beneficial.

Aid to the Blind: We are able to develop a product that will

enable blind people to navigate the highways independently.

To accomplish this, first, translate the scene into text, and

then speak the text. Both are now well-known Deep Learning

applications. Autonomous driving is one of the major

obstacles, and if the environment around the automobile can

be captioned correctly, the self-driving system will benefit.

As every image could be transformed into a caption before

being searched on, automatic captioning might help make

Google Image Search as excellent as Google Search.

For any image that shows on the website, it's best practice in

web development to include a description so that an image

can be heard or read as well as seen. This facilitates access to

the web material. CCTV cameras are widely used today, but

in addition to seeing the outside world, if we can also

produce pertinent captions, we can alert authorities as soon

as some nefarious behavior takes place. This may contribute

to a decrease in some accidents or crimes.

Real-time video can also be described using this concept.

2. Literature Review

Kojima et al [1] used case structure, action hierarchy, and

verb patterns to generate captions of human activities in a

fixed environment.

Patrick Hède et al [2] proposed a method for image caption

generation, which involves a series of object names stored in

a database called Dictionary. Such method can generate

caption for only fixed content, but it fails to generate

captions for real world.

Paper ID: SR22809213717 DOI: 10.21275/SR22809213717 702

mailto:1shaikparvez977@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Farhadi, A., et al [3] proposed an information retrieval-based

image captioning system, where a score is generated for

every object in an image and the score is compared with

other images to generate captions.

Hodosh, M., et al [4] proposed a ranking based image

captioning system, where the captions are generated with the

help of sentence-based image captioning ranking system.

Yang, Y., et al [5] proposed a sentence making strategy,

which builds a semantic phrase using verbs, nouns, and

prepositions, uses trained detectors to find the image, then

estimates the image using data from the English corpus.

Socher, R., et al [6] proposed a decision tree based recursive

neural networks to represent the visual meaning of the

image.

You, Q., et al [7] proposed a model of semantic attention,

which deals with the semantics, stored in a hidden layer of

neural networks and fusion them to gain more semantically

sentence.

Vinyals, O., et al [8] proposed a generative model that

combines computer vision and machine learning to generate

captions for a given image.

3. Methodology

To understand the context of an image and explain it in a

natural language like English, an image caption generator

uses computer vision and natural language processing

techniques. The goal of our project is to become familiar

with the ideas of a CNN and LSTM model and to implement

CNN with LSTM to create a workable model of an image

caption generator.

Fig-1 illustrates the suggested process for creating captions

using deep learning for item detection and recognition.

Convolution Neural Network (CNN) for feature extraction

and scene categorization, Recurrent Neural Network (RNN)

for human and object attributes, RNN encoder, and a fixed

length RNN decoder system make up this system.

Figure 1

The following are the steps for utilizing neural networks to

recognize objects and extract features to create captions.

Step 1: Object detection

In this step, the R-CNN region proposal approach is used to

detect the objects in the input image.

Step 2: Feature Extraction

In this stage, principal component analysis with NumPy is

used to extract the image's features. RNN is used to

recognize objects and human traits whereas CNN is used to

classify scenes.

Step 3: Creating attributes

In this stage, the characteristics with their label strings were

defined using the features that the neural networks had

retrieved.

Step 4: Encoder and Decoder

The label strings were put through an encoder RNN in this

phase to put them into the correct format, and the resulting

variable-length string was put through a fixed-length decoder

to turn it into a fixed-length descriptive phrase.

Fig-2 represents the model diagram of the project

Figure 2: Model diagram

4. Experimental Setup

4.1 System Requirements

 CPU and GPU with at least 8GB of RAM

 i5 processor

 NVDIA graphic card

4.2 System Requirements

 TensorFlow

 Keras

 NumPy

 Pillow

 Jupyterlab

 Tqdm

4.3 Data Collection

We will make use of the Flickr 8K dataset to create the

image caption generator. We will use the smaller Flickr8k

Paper ID: SR22809213717 DOI: 10.21275/SR22809213717 703

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

dataset instead of other larger ones like the Flickr 30K and

MSCOCO datasets because training the network on those

can take weeks. We can create better models thanks to a

large dataset.

 Flicker8k Dataset

 Flickr 8k text

The main file of our dataset, Flickr8k.token, which contains

the names of the images and their corresponding captions,

separated by newlines ("n"), can be found in the Flickr 8k

text folder.

5. Convolutional Neural Network

Convolutional Neural Networks are customized deep neural

networks that are capable of processing data with input

shapes similar to a 2D matrix. CNN is particularly helpful

when working with photos and can readily express images as

a 2D matrix. Fig-3 illustrates the working of deep CNN.

Images are scanned from top to bottom and left to right to

extract key details, which are then combined to identify the

images. It can handle images that have been resized, rotated,

translated, and perspective-shifted.

Figure 3: CNN Layers

5.1 Types of CNN Layers

There are 4 types of CNN layers (fig-4). They are

 Convolutional Layer

 ReLU Layer

 Pooling Layer

 Fully Connected Layer

Figure 4: Layers in CNN

5.1.1 Convolutional Layer

In order to extract features from the input image, a

convolution layer alters it. This transformation involves

convoluting the picture with a kernel (or Filter). A kernel

(also known as a filter) is a tiny matrix having dimensions

that are less than those of the picture to be convolved. This

filter moves across the input image's height and breadth,

computing the dot product of the filter and the image at each

spatial location.

Figure 5: Gray Scale Image

Figure 6: RGB Image

(a) Padding

In order to stop our image from shrinking, we use padding.

We add layers of zero to stop shrinking.

Types of Convolutions in padding:

 Valid: No padding takes place because no need to stop

shrinking of image

 Same: Pad so that the output image size is the same as the

input image size.

Figure 7: Padding

(b) Striding

The number of pixels shifted across the input matrix called

the stride. The filters are moved to 1 pixel at a time when the

stride is 1. The filters are moved to 2 pixels at a time when

the stride is 2, and so on. Stride length is the length at which

the filter slides.

Paper ID: SR22809213717 DOI: 10.21275/SR22809213717 704

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 8: Striding

5.1.2 ReLU Layer

Every negative value from the filtered photos is removed and

replaced with zeros in this layer. To prevent the values from

adding up to 0, this is done. Rectifies only when the input

exceeds a certain threshold does the Linear Unit (ReLU)

transform function activate a node; otherwise, the output is

zero. However, if the input climbs above the predetermined

threshold, the input has a linear relationship with the

dependent variable.

Figure 9: ReLU Function

5.1.3 Pooling Layer

The input image's size is decreased by using a pooling layer.

Typically, a pooling layer is added to speed up computation

and strengthen some of the identified features. Filter and

stride are also utilized in pooling operations.

 Max Pooling: Here, the maximum value is chosen from

each patch of the feature map to produce a reduced map.

 Average Pooling: Here, the average value is chosen from

each patch of the feature map to produce a reduced map.

Figure 10: Pooling layer

5.1.4 Fully Connected Layer

This layer is located at the convolution neural network's

conclusion. The earlier layer's features map is flattened to a

vector. The complicated interactions between high level

features are then captured by feeding this vector into a fully

linked layer.

Figure 11: Fully Connected Layer

6. Long Short-Term Memory

Recurrent neural networks (RNNs) of the LSTM variety are

very effective at solving sequence prediction issues. We can

anticipate the following word based on the prior text. By

addressing the short-term memory restrictions of RNN, it has

distinguished itself as an effective alternative to regular

RNN. Through the use of a forget gate, the LSTM may carry

out relevant information while processing inputs and reject

irrelevant information.

Figure 12: LSTM Structure

LSTM units are horizontally connected (parallel). The input

for the following time stamp is the output of the preceding

one.

Paper ID: SR22809213717 DOI: 10.21275/SR22809213717 705

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 13: LSTM Units Connected in Parallel

7. Implementation

Steps performed while building the model has been

discussed below.

a) First, we import all necessary packages.

 TensorFlow

 NumPy

 Keras

 Tqdm

 Pillow

 Jupyterlab

b) Dataset loading for model training

We have a file called Flickr 8k.trainImages.txt in our Flickr

8k test folder that has a list of 6000 picture names that we

will use for training.

More functions are required to load the training dataset,

including:

 load_photos(filename): returns the list of image names

after loading the text file as a string.
 load_clean_descriptions(filename, image): builds a

dictionary with captions for each picture in the collection

of pictures.

 load_features(image): provides us with the list of image

names and the feature vector associated with them, both

of which we previously collected from the Xception

model.

c) Tokenizing the vocabulary

Because English words are not understood by computers, we

must represent them using numbers. Therefore, we will

assign a distinct index value to each word in the lexicon. The

tokenizer function from the Keras package is what we will

use to generate tokens from our vocabulary and store them to

the "tokenizer.p" pickle file. Our vocabulary is 7577 words

strong. The maximum length of the descriptions is

determined. This is significant for choosing the parameters

for the model structure. The maximum description length is

32.

d) Create data generator

Let's first have a look at what our model's input and output

will entail. We must give the model input and output for

training in order to convert this task into a supervised

learning task. Our model needs to be trained on 6000 photos,

each of which has a 2048-length feature vector and a caption

that is likewise represented as a number. Because it is

impossible to store this much data in memory for 6000

photos, we will use a generator method that will produce

batches.

e) The CNN-RNN model is defined.

The organizational structure of the model will be specified

using the Keras Model from the Functional API. It will

include three main sections:

 Feature Extractor: With a dense layer, we can shrink the

2048 node feature that was retrieved from the image to

256 nodes.

 Sequence Processor: The textual input will be handled by

an embedding layer, then by an LSTM layer.

 Decoder: We will process by the dense layer after

integrating the output from the aforementioned two layers

in order to arrive at the final forecast. The number of

nodes in the final layer will be equal to the size of our

vocabulary.

f) Training the model

By creating the input and output sequences in batches and

fitting them to the model using the model.fit generator()

method, we will be using the 6000 training photos to train

the model. The model is also saved to our model's folder.

Depending on the capabilities of your equipment, this will

take some time.

g) Testing the model

We will create a second file called testing caption

generator.py to load the learned model and produce

predictions. We will use the same tokenizer.p pickle file to

extract the words from their index values because the

predictions contain the maximum length of index values.

8. Results

Following model implementation, the output is shown in fig.

14 below in terms of accuracy. RNN and CNN algorithms

are both used in the model's construction.

Paper ID: SR22809213717 DOI: 10.21275/SR22809213717 706

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 14: Output

AVERAGE ACCURACY

Generating > 70% accurate captions for 64 out of 100 images

Generating 50% to 70% accurate captions for 16 out of 100

images

Generating < 50% accurate captions for 20 out of 100 images

9. Conclusion

By developing an image caption generator, we developed a

CNN-RNN model in this advanced model Python project. It's

important to keep in minds that because our model is data-

dependent, it cannot predict terms that don’t exist in the

English language. We worked with a tiny dataset of 8000

photos. We need to train on datasets bigger than 100,000

photos for production-level models in order to get models

with higher levels of accuracy.

Using neural networks and deep learning, a method for

creating image captions is provided. The suggested method

was tested on the Flickr 8k dataset. Compared to the

currently available image caption generation generators, the

proposed deep learning methodology produced captions with

more descriptive meaning. In the future, a hybrid picture

caption generator model may be created for captions that are

more accurate.

References

[1] Kojima, Atsuhiro & Tamura, Takeshi & Fukunaga,

Kunio. (2002). Natural Language Description of Human

Activities from Video Images Based on Concept

Hierarchy of Actions. International Journal of Computer

Vision. 50. 171-184. 10.1023/A:1020346032608.

[2] Patrick Hède, Pierre-Alain Moëllic, Joël Bourgeoys,

Magali Joint, and Corinne Thomas. 2004. Automatic

generation of natural language descriptions for images.

In Coupling approaches, coupling media and coupling

languages for information retrieval (RIAO '04). LE

CENTRE DE HAUTES ETUDES

INTERNATIONALES D'INFORMATIQUE

DOCUMENTAIRE, Paris, FRA, 306–313.

[3] Farhadi, A. et al. (2010). Every Picture Tells a Story:

Generating Sentences from Images. In: Daniilidis, K.,

Maragos, P., Paragios, N. (eds) Computer Vision –

ECCV 2010. ECCV 2010. Lecture Notes in Computer

Science, vol 6314. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-15561-1_2

[4] Hodosh, M., Young, P., & Hockenmaier, J. (2013).

Framing image description as a ranking task: Data,

models and evaluation metrics. Journal of Artificial

Intelligence Research, 47, 853-899.

https://doi.org/10.1613/jair.3994

[5] Yang, Y., Teo, C.L., Daumé, H., & Aloimonos, Y.

(2011). Corpus-Guided Sentence Generation of

Natural Images. EMNLP.

[6] Socher, R., Karpathy, A., Le, Q., Manning, C., & Ng, A.

(2014). Grounded Compositional Semantics for Finding

and Describing Images with Sentences. Transactions of

the Association for Computational Linguistics, 2, 207-

218. Retrieved from

https://transacl.org/index.php/tacl/article/view/325

[7] You, Q., Jin, H., Wang, Z., Fang, C., & Luo, J. (2016).

Image Captioning with Semantic Attention. 2016 IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), 4651-4659.

[8] Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015).

Show and tell: A neural image caption generator. 2015

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 3156-3164.

Paper ID: SR22809213717 DOI: 10.21275/SR22809213717 707

https://doi.org/10.1007/978-3-642-15561-1_2
https://doi.org/10.1613/jair.3994
https://transacl.org/index.php/tacl/article/view/325

